制备改性金属氧化物的纳米颗粒分散体的方法

文档序号:3696712阅读:130来源:国知局
专利名称:制备改性金属氧化物的纳米颗粒分散体的方法
技术领域
本发明涉及包含分散在聚合物中的改性纳米颗粒的聚合物组合物及其制备方法。
背景技术
聚合物组合物已经用于在包括光学器件(例如透镜)的许多不同应用中代替玻璃 组合物。所述应用的特殊要求决定所选的聚合物的类型。例如,在一些应用中,可能希望提 供具有改善的物理性质(例如机械强度、耐热性、或韧性)的聚合物组合物。此外,还可能 需要考虑可加工性、可成型性、和成本。对于光学器件而言,改善的光学性质(例如折射率、透明度或澄清度)以及光学 均勻性也可能是重要的,并且已经制备了具有这些改善性质的聚合物组合物。例如,美国 专利4,990,653描述了这样的含硫低聚物组合物的制备,该组合物可以进行聚合以形成 具有1.60或更高的折射率以及有优异透明度和光学均勻性的固化产物。此外,美国专利 5,683,628描述了包含特定类型二(甲基)丙烯酸酯化合物的光致变色树脂组合物,该专利 称这类二(甲基)丙烯酸酯化合物具有优异的耐热性、机械强度、粘合性质、可成型性、和耐 光性。这些可用作例如透镜上的抗反射膜。该组合物的折射率可通过改变特定二(甲基) 丙烯酸酯化合物的量而进行控制并且可为1. 54或更高。然而,随着不断提高的对改善的光 学性能的要求,以及对改善的物理性质、可加工性和降低成本的需要,限制了这些特制聚合 物类型的使用。已知几种类型的金属氧化物具有高的折射率。例如,一般来说,二氧化钛(氧化 钛)、氧化锆(锆土)、氧化铈(铈土)、氧化钽、氧化铌、氧化锌、钛酸钡、和钛酸锶具有大于 或等于约1. 7的折射率。然而,金属氧化物可能难以良好地分散在聚合物型体系中,且差的 分散体通常具有差的光学性质。为了提供在各种基质(包括溶剂和聚合物体系)中改善的 可分散性,已经制备了改性金属氧化物,并且所用的改性类型取决于特定体系。例如,具有 能够与二氧化硅反应并且与橡胶基质反应的官能团的硅烷偶联剂已经用于制备用在轮胎 应用中的改性二氧化硅颗粒。还已知对其它金属氧化物(包括具有高折射率的那些金属氧 化物)的改性。然而,预计对金属氧化物的改性会显著降低该材料的折射率,从而降低改性 金属氧化物对光学应用的有效性。此外,金属氧化物(具有小于50nm粒径的那些)的纳米 颗粒分散体的改性通常导致粒径不期望的增大,从而损耗光学澄清度。粒径的保持通常需 要使用如分散剂的稳定剂(其通常对于物理和光学性质有不利影响)或者使用降低粒径的 机械方法。例如,美国专利公开2007/0036962描述了制备纳米颗粒-树脂复合材料的方法, 其包括使用有机化合物对金属氧化物的分散体进行改性的步骤。然后,通过沉淀和再聚集 而分离所得改性金属氧化物,随后使用机械分散技术将其分散在聚合物中。这样的多步骤 方法通常是麻烦且效率低的,并且昂贵和劳动密集。还预计所得复合材料具有不期望的光 学性质(包括模糊和高散射)。因此,在工业中需要提供这样的用于光学器件的聚合物组合物,其具有良好的整 体性能(包括机械性质和可加工性)以及改善的光学性质,尤其是高折射率和透明度。此外,需要制备包含金属氧化物的纳米颗粒分散体的聚合物组合物而不损耗(loss)该金属 氧化物的纳米粒径的方法。

发明内容
本发明涉及制备包含分散在聚合物中的改性纳米颗粒的聚合物组合物的方法。在一个实施方式中,所述方法包括如下步骤i)将金属氧化物在非水溶剂中的纳米颗粒分散 体与至少一种偶联剂组合以形成改性金属氧化物在所述非水溶剂中的纳米颗粒分散体; ii)将所述改性金属氧化物在所述非水溶剂中的纳米颗粒分散体与至少一种聚合物组合; 和iii)除去所述非水溶剂以形成聚合物组合物。在第二实施方式中,所述方法包括如下步 骤i)将金属氧化物在非水溶剂中的纳米颗粒分散体与至少一种偶联剂组合以形成改性 金属氧化物在所述非水溶剂中的纳米颗粒分散体;ii)将所述改性金属氧化物在所述非水 溶剂中的纳米颗粒分散体与至少一种单体组合以形成能聚合的组合物;iii)除去所述非 水溶剂;和iv)使所述能聚合的组合物聚合以形成聚合物组合物。对于这两种实施方式而 言,所述偶联剂具有大于或等于1. 48的折射率。可选择地,或者另外,所述聚合物组合物具 有大于或等于1.5的折射率。优选地,所述聚合物组合物是透明的。本发明还涉及通过本 文所述方法制备的包含分散在聚合物中的改性纳米颗粒的聚合物组合物。应该理解,以上一般描述和以下具体描述都只是示例性和说明性的,且意图在于 提供对所要求保护的本发明的进一步说明。


图1显示可用于本发明的组合物和方法中的代表性偶联剂。图2和图3显示本发明的聚合物组合物在各种波长下的吸光度值。图4和图5显示本发明的聚合物组合物在以不同时间间隔曝露于UV辐照之后在 各种波长下的透射率%数值。图6显示了,在不同热老化时间下,本发明的聚合物组合物在各种波长下的透射
率%数值。
具体实施例方式本发明涉及制备包含在聚合物中的改性纳米颗粒金属氧化物的聚合物组合物的 方法、以及由此制得的聚合物组合物。本发明的方法包括将金属氧化物在非水溶剂中的纳米颗粒分散体与至少一种偶 联剂组合以形成改性金属氧化物在所述非水溶剂中的纳米颗粒分散体的步骤。所述金属氧化物可为本领域中已知的任意无机氧化物。例如,所述金属氧化物可 为二氧化钛(氧化钛)、氧化锆(锆土 )、氧化铈(铈土 )、氧化锌、钛酸钡、或钛酸锶。优选 地,所述金属氧化物为钛酸钡。所述金属氧化物为在分散在所述非水溶剂中(在下文中将 对此进行更详细的描述)时具有非常小的平均粒径、从而在所述非水溶剂中形成纳米颗粒 分散体的金属氧化物。“纳米颗粒分散体”是指所分散的颗粒(在该情况下为金属氧化物) 的平均粒径小于50nm。例如,所述非水分散体中的金属氧化物优选具有小于50nm、更优选 小于20nm(包括约2 约15nm)、或更优选约5 IOnm的粒径。而且,所述分散体中的金属氧化物还优选具有大于或等于0. 5nm且更优选大于或等于Inm的粒径。所述粒径可使用本 领域中已知的任意技术(例如包括动态光散射或小角χ-射线散射(SAXS))进行测量。此外,所述金属氧化物优选具有大于或等于约1.8 (例如约1.9 2. 9)的折射率。除非另有说明,本文中使用的折射率值是在室温和钠D-线(589nm)下测量的。所述非水溶剂为包含< 10重量%的水、优选<5重量%的水(包括< 2重量% 的水或< 1重量%的水(痕量级))的溶剂或溶剂混合物。此外,所述非水溶剂为这样的 溶剂,所述金属氧化物在该溶剂中形成稳定的纳米颗粒分散体(在约0.001体积% 约10 体积%的浓度下具有小于50nm的粒径)。所述非水溶剂可包括各种不与水混溶的溶剂,例 如烃溶剂、酯溶剂(包括乙酸乙酯)、和芳族溶剂(包括甲苯、二甲苯、苯等)。根据偶联剂、 聚合物、或单体(在下文中将对它们进行更详细的描述)的溶解特征和反应性,也可选择其 它不与水混溶的溶剂。优选地,所述溶剂能溶于水或者可与水混溶,并且因此可含有痕量的 水。实例包括能与水混溶的醚(例如四氢呋喃)、酮(例如甲乙酮或丙酮)、甘醇二甲醚(例 如二甘醇二甲醚)、和二醇醚(例如乙氧基乙醇或乙氧基丙醇)。而且,所述非水溶剂可为 用于形成所述聚合物组合物的单体、或者可包含所述单体,在下文中将对所述单体进行更 详细的描述。金属氧化物在非水溶剂中的纳米颗粒分散体可使用本领域中已知的任意方法进 行制备,所述方法例如下列文献中所述的方法G. Hsiue,Li W. Chu和I. N. Lin, Colloids and Surfaces A =Physiochem. Eng. Aspects, 294, (2007),212-220 ;U.Paik, V. Hackley, S.Choi 和Y. JunR, Colloids and Surfaces A :Physiochem. Eng. Aspects, 135, (1998), 77-88 ;K.Sumida, K.Hiramatsu, W. Sakamoto 和Τ·Yogo, Journal of Nanoparticle Research, (2007),9 (2),225—232 ;以及 T. Yogo, R. Fukuzawa, W. Sakamoto 和 S. Hirano, Journal of NanoparticleResearch, (2005),7,633-640,上述文献均引入本文作为参考。 例如,可在非水溶剂中通过金属氧化物前体的水解形成所述金属氧化物。可选择地,可在非 水溶剂中在高剪切条件下形成并分散所述金属氧化物以形成纳米颗粒分散体。金属氧化物 还可通过金属氧化物前体的分解形成。优选地,不使用分散剂。在本发明的方法中,通过将金属氧化物的纳米颗粒分散体与偶联剂组合而形成改 性金属氧化物的纳米颗粒分散体。所述偶联剂可为能够与所述金属氧化物反应或相互作 用的任意材料。例如,所述偶联剂可包含至少一种能够通过例如与金属氧化物表面形成共 价键或离子键而与所述金属氧化物反应的基团。反应性基团的实例包括含金属基团,例 如含Si、Ti、Sn、或Se的基团;羧酸基,例如芳基或烷基羧酸基、亚磺酸基或磺酸基;硫醇基 团(thiol);以及含磷基团,例如具有至少一个P-O或P = O键的基团,包括膦酸基、次膦酸 基、次亚膦酸基、亚磷酸根基团、或磷酸根、二磷酸根、三磷酸根、或焦磷酸根基团;以及它们 的偏酯或它们的盐。例如,所述反应性基团可为膦酸基、其偏酯、或其盐。“其偏酯”是指所 述膦酸基可为具有式-PO3RH的部分膦酸酯基团、或者其盐,其中,R为芳基、烷芳基、芳烷基、 或烷基。“其盐”是指所述膦酸基可为具有阳离子性抗衡离子的部分或完全离子化形式。因 此,所述反应性基团可包含具有式-PO3H2、-PO3H-M+ ( 一碱价盐)、或-P03_2M+2 ( 二碱价盐)的 基团,其中,M+为例如Na+、K+、Li+、或NR4+的阳离子,其中R可以相同或不同且代表氢或有机 基团(例如取代或未取代的芳基和/或烷基)。所述偶联剂也能够与介质(偶联剂分散在该介质中)反应或相互作用。从而,所述偶联剂将金属氧化物与介质“偶联”,从而形成改性金属氧化物的纳米颗粒分散体。例如, 所述偶联剂除了具有能够与所述金属氧化物反应或相互作用的基团之外还包含至少一种 能够与所述非水溶剂相互作用的基团。对于该实施例而言,所述偶联剂可包含至少一种聚 亚烷基氧(polyalkyleneoxide)基团,例如具有式-(O-ALKl)x-(0-ALK2)y-(0_ALK3)z-的基 团。ALK1、ALK2、和ALK3为线型或支化的C1-C8亚烷基,χ为1 10,且y和ζ为0 10。 已经发现,这样的偶联剂可用于从金属氧化物(例如氧化钛或钛酸钡)在非水溶剂(例如 醚溶剂)中的纳米颗粒分散体来制备改性金属氧化物在同一非水溶剂中的纳米颗粒分散 体。作为另一实例,所述偶联剂可包含至少一种具有式R1-[SiR2R3-O]η-的硅氧烷基团,其 中R1为C1-C8烷基(例如甲基、乙基、丙基、或丁基),R2和R3独立地为C1-C6烷基或芳基 (例如甲基或苯基),且η为1 12 (包括为1 9)。对于该实例而言,所述偶联剂的硅氧 烷基团可为具有式R1-[SiMe2-O]n-SiMe2-(ALKl-O)x-的基团,其中ALKl和χ如上所示。反 应性基团和ALK1、ALK2、ALK3、R1, R2, R3> η、χ、y、和ζ的选择将取决于金属氧化物的类型和 其中分散有纳米颗粒金属氧化物的非水介质的类型。例如,对于包含至少一种具有以上所 示式的聚亚烷基氧基团的偶联剂而言,χ可为2 8且y和ζ可为0,其将为聚亚烷基氧 基团例如聚亚乙基氧、聚亚丙基氧或聚亚丁基氧。对于该实例,所述偶联剂可包含具有式 (HO) 2P (0) - (O-ALKl) x-或(HO) 2P (0) - (ALKl-O) χ-的基团。所述偶联剂可进一步能够与能聚合的单体(在下文中将对其进行更详细的描述) 反应或相互作用,以及与由所述能聚合的单体形成的聚合物反应或相互作用,或者与上述 两者反应或相互作用。例如,如果所述单体为能自由基聚合的单体,则所述偶联剂也可包含 至少一种能自由基聚合的基团,例如丙烯酸酯或甲基丙烯酸酯基团。而且,所述偶联剂可为 能够与聚合物组合物的聚合物(在下文中将对其进行更详细的描述)反应或相互作用的。 例如,如果聚合物为醚类聚合物(例如聚亚烷基氧)或者硅氧烷聚合物(例如硅油),则所 述偶联剂可包含使所述改性金属氧化物能够形成在聚合物中的纳米颗粒分散体的基团,例 如上述聚亚烷基氧偶联剂。所述偶联剂可为液体或固体的形式。例如,所述偶联剂可为在非水溶剂中的分散 体或溶液。所述非水溶剂应不与所述偶联剂反应。具有高折射率的偶联剂对于通过本发明的方法形成的聚合物组合物而言特别有 用。优选地,所述偶联剂具有大于或等于1.48、更优选大于或等于1.5、甚至更优选大于或 等于1. 55、且最优选大于或等于1. 6 (例如大于或等于1. 64)的折射率。与常规的偶联剂不 同,与金属氧化物组合的具有这些折射率值的偶联剂产生了在聚合物组合物中具有改善的 整体性能(特别是光学性能)的改性金属氧化物。具有这些折射率值的偶联剂的实例包括 这样的偶联剂,这些偶联剂包含至少一种亚芳基或杂亚芳基且包含至少一种含硫基团(例 如硫醚基团或砜基团)或者至少一种卤素。具体实例包括图1中所示的化合物。为了对比 的目的,在下表1中示出了常规偶联剂和它们相应的折射率值(R. I.)。表 1 在本发明的方法中,将金属氧化物在非水溶剂中的纳米颗粒分散体与偶联剂组合 以形成改性金属氧化物的分散体,其也作为在所述非水溶剂中的纳米颗粒分散体。因此, 改性金属氧化物包含金属氧化物与偶联剂的反应产物。组合以形成改性金属氧化物的金 属氧化物和偶联剂的量可根据许多因素而改变,这些因素包括例如金属氧化物的类型(例 如粒径、表面积、密度、和反应性基团的数量和类型)以及改性金属氧化物的期望性质。例 如,所述金属氧化物和所述偶联剂可以约1 4 100 1(包括约4 1 约100 1、约 25 1 约100 1、和约50 1 约100 1)的金属氧化物/偶联剂重量比使用。通 常,所述金属氧化物的密度越高,则金属氧化物与偶联剂的比率(以重量计)越低。粒径越 小,则表面积(以重量计)越高,这意味着金属氧化物与偶联剂的比率越低。而且,为了使 最终聚合物组合物的折射率最大化,希望高折射率金属氧化物与偶联剂的比率较高,所述 比率取决于所述偶联剂的折射率(对于高折射率偶联剂而言,该比率可以较低)。对于本发 明的方法而言,可以控制所用偶联剂的量,从而避免了由于偶联剂过量而引起对任何纯化 的潜在需要。当所述偶联剂的折射率低于聚合物的折射率时,这还提供了较高折射率的聚 合物组合物,因为所述组合物不受显著过量的低折射率偶联剂的存在的不利影响。令人惊讶的是,已经发现所得改性金属氧化物也为纳米颗粒分散体的形式。因此, 已经发现改性金属氧化物可由金属氧化物在非水溶剂中的纳米颗粒分散体制备而不显著损失其纳米颗粒性质。 在本发明方法的第一实施方式中,所述方法还包括将改性金属氧化物在非水溶剂 中的纳米颗粒分散体与聚合物组合的步骤。所述聚合物可为液体或固体的形式,并且可使 用各种不同的聚合物,这取决于聚合物组合物的期望性质和用途。例如,聚合物的类型包 括有机硅聚合物,例如聚硅氧烷均聚物或共聚物(包括,例如,甲基苯基聚硅氧烷、甲基 苯基氢聚硅氧烷、二苯基聚硅氧烷、二苯基氢聚硅氧烷、或其混合物);环氧化物;聚碳酸 酯;聚酯;和聚氨酯。合适的有机硅聚合物包括在美国专利公开2007/0036962和美国专利 7,160,972和6,160,151中描述的那些,这些文献引入本文作为参考。优选地,所述聚合物 为能溶于所述非水溶剂中的聚合物,并且用作在所述非水溶剂中的分散体或溶液。此外,所 述聚合物可为在不同于所述非水溶剂的有机溶剂中的分散体或溶液,其形成能溶于所述非 水溶剂中的聚合物溶液。对于该实施方式而言,本发明的方法还包括在将改性金属氧化物的纳米颗粒分散 体与聚合物组合之后除去非水溶剂从而形成改性金属氧化物在聚合物中的分散体的步骤。 为了除去非水溶剂,可使用本领域中已知的各种不同方法。例如,非水溶剂可通过在大气压 或减压下的蒸发除去。优选地,非水溶剂可在不导致所述聚合物显著变色或分解的条件下 除去。由于该原因,一些非水溶剂也可在将改性金属氧化物的纳米颗粒分散体与聚合物组 合之前除去,这使得在将分散体与聚合物组合之后,所要除去的非水溶剂的量最小化,并且 因此可以例如减少所述聚合物上的热历史。虽然可除去一些溶剂,但是改性金属氧化物应 该仍为分散体的形式(即,可除去一些但不是所有的非水溶剂)。而且,还可以在该方法中 使用溶剂交换,特别是用可以更容易或更经济地除去的溶剂替代非水溶剂。在第二实施方式中,本发明的方法还包括将改性金属氧化物在非水溶剂中的纳米 颗粒分散体与单体组合以形成能聚合的组合物的步骤。所述单体可为在本领域中已知的条 件下能够形成聚合物的无机或有机化合物。例如,所述单体可为任何能自由基聚合的单体, 包括例如烯属不饱和单体,如取代或未取代的丙烯酸烷基酯或甲基丙烯酸烷基酯单体或者 取代或未取代的苯乙烯类单体。其它单体也是本领域技术人员已知的。所述单体可为能够形成具有高折射率(例如1. 5或更高)的均聚物或共聚物的单 体。实例包括具有式CH2 = C(R1)-COOR2的单(甲基)丙烯酸酯化合物,其中R1为氢或甲基 且R2为取代或未取代的苯基、苄基或2-苯氧基乙基。单(甲基)丙烯酸酯化合物的具体 实例包括(甲基)丙烯酸苯基酯、(甲基)丙烯酸苄基酯、(甲基)丙烯酸2-苯氧基乙酯、 (甲基)丙烯酸1,3,5_三溴苯基酯和(甲基)丙烯酸2_(1' ,3' ,5'-三溴苯基)_氧 基乙酯。所述单体也可为二(甲基)丙烯酸酯,包括例如2,2' -二 [4-(甲基-丙烯酰氧 基乙氧基)苯基]丙烷和2,2' -二 [(3,5-二溴-4-甲基丙烯酰氧基乙氧基)苯基]-丙 烷。其它实例包括各种含硫的二丙烯酸酯或二甲基丙烯酸酯化合物,例如具有式(CH2 = C(Rj)-COOR3-S-R4) 2-Ar的那些,其中R1为氢或甲基,R3和R4独立地为Cl C12亚烷基,且 Ar为取代或未取代的亚芳基或杂亚芳基,例如取代或未取代的亚苯基。实例包括美国专利 4,990,653和5,683,628中所述的那些。所述单体也可为能聚合化合物的混合物。例如,所述单体可为这样的混合物,该混 合物包含任意上述具体单体和至少一种在聚合之后使所得聚合物组合物具有额外光学性 质或物理性质的单体。例如,所述单体可包括至少一种单(甲基)丙烯酸酯化合物,例如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸异丙酯、 (甲基)丙烯酸正丁酯、(甲基)丙烯酸异丁酯和(甲基)丙烯酸叔丁酯、(甲基)丙烯酸环 戊酯、(甲基)丙烯酸环己酯、(甲基)丙烯酸甲基环己酯、(甲基)丙烯酸三甲基环己酯、 (甲基)丙烯酸降冰片酯、(甲基)丙烯酸异冰片酯、(甲基)丙烯酸金刚烷酯、(甲基)丙 烯酸二环戊酯和(甲基)丙烯酸二环戊烯酯。此外,还可包括二(甲基)丙烯酸酯化合物 以及其它能交联的单体。而且,所述单体也可为能够进一步聚合的能聚合的低聚化合物和 /或小分子量聚合物(通常称作预聚物)。 对于该实施方式而言,本发明的方法进一步包括除去非水溶剂并聚合能聚合的组 合物的步骤。这些可以任一顺序进行。本领域中已知的各种不同方法可用于除去非水溶剂。 例如,如以上对于第一实施方式所讨论的,非水溶剂可通过在大气压或减压下的蒸发除去。 因此,对于该实施方式而言,非水溶剂应该具有低于所述单体沸点的沸点。而且,非水溶剂 可在不导致所述单体聚合的条件下除去。可选择地,聚合可与溶剂的除去同时进行。而且,可使用本领域中已知的任何方法聚合能聚合的组合物的单体,所述方法包 括例如自由基聚合(使用或不使用催化剂,例如硅氢化作用)或缩聚,并且具体的方法将取 决于单体的类型。例如,对于所谓的双组分有机硅而言,可将改性金属氧化物在非水溶剂中 的纳米颗粒分散体与乙烯基硅氧烷及催化剂组合以形成第一组分,并且可通过将该第一组 分与包含乙烯基硅氧烷和硅氧烷共聚单体的第二组分组合而使所述第一组分聚合。通过催 化剂和硅氧烷共聚单体与乙烯基硅氧烷的反应进行聚合。本发明的方法对于这样的聚合物 型体系的令人惊讶的优势在于由于存在改性金属氧化物纳米颗粒分散体,因而,需要较少 的催化剂和/或可改变硅氧烷共聚单体与乙烯基硅氧烷的比率,这可提供额外的交联能力 (这是因为所述硅氧烷化合物与偶联剂和/或金属氧化物表面的相互作用/反应)。对于这两个实施方式而言,单体和聚合物可以任何取决于许多因素(包括聚合物 组合物的期望性质和用途)的量存在。例如,对于可用于其中需要有改善的光学性质(例 如高折射率)的光学器件中的聚合物组合物的制备而言,如果选择折射率低于改性金属氧 化物的折射率的单体或聚合物,则应该使单体或聚合物的量最小化以制造高折射率聚合物 组合物。通常,单体或聚合物的折射率越高,则可用的量越高。此外,改性金属氧化物或者 改性金属氧化物所包含的金属氧化物和/或偶联剂的折射率越高,则可用的单体或聚合物 的量越高(即,需要较少的高折射率改性金属氧化物以便仍然制造具有高折射率的聚合物 组合物),这对于提供例如改善的机械和/或流变性质和降低的成本可为期望的。通常,基 于聚合物组合物的总重量,单体或聚合物的量可为约5重量% 95重量%。例如,基于聚 合物组合物的总重量,单体的存在量可为约5重量% 90重量% (包括约5重量% 70 重量%和约5重量% 50重量% )。因此,本发明的方法包括如下步骤将金属氧化物在非水溶剂中的纳米颗粒分散 体与偶联剂组合;形成改性金属氧化物在非水溶剂中的纳米颗粒分散体;和将其与聚合物 组合并随后除去非水溶剂,或者将其与单体组合并随后以任一顺序除去非水溶剂和聚合所 述单体以形成聚合物,从而形成包含分散在聚合物中的改性金属氧化物的聚合物组合物。 令人惊讶的是,已经发现在所述方法的每个步骤中,保持了金属氧化物的纳米颗粒性质。 因此,本发明的方法从金属氧化物在非水溶剂中的纳米颗粒分散体制造了包含分散在聚合 物中的改性纳米颗粒的聚合物组合物,且无需任何分离或纯化步骤并且未显著提高粒径。此外,一旦形成金属氧化物的纳米颗粒分散体,已经发现额外的分散或粒径降低步骤(例 如使用机械分散器)是不必要的。实际上,由于本发明的方法不包括中间改性金属氧化物 的任何分离或纯化,可认为本发明的方法是用于制备包含纳米颗粒金属氧化物的聚合物组 合物的一罐法。该方法可以制备具有完全均勻的纳米颗粒分散体并且没有颗粒明显聚集的 聚合物组合物,这对于防止由于散射引起的透射率损失来说是重要的。本发明还涉及通过上述方法制造包含分散在聚合物中的纳米颗粒(优选改性纳 米颗粒例如 改性纳米颗粒金属氧化物)的聚合物组合物。基于聚合物组合物的重量,所述 改性纳米颗粒的存在量可为约5重量% 约95重量% (包括约10重量% 约95重量%、 约30重量% 约95重量%、或者约50重量% 约95重量% )。此外,所述改性纳米颗粒的 存在量可为聚合物组合物的约5体积% 约90体积% (包括 约20体积% 约90体积%、 约30体积% 约90体积%、或者约15体积% 约50体积% )。在一个实施方式中,本发明的聚合物组合物具有大于或等于1.5的折射率。更优 选地,所述聚合物组合物的折射率大于或等于1.6、甚至更优选大于或等于1.7、且最优选 大于或等于1.8。而且,所述聚合物组合物优选是透明的而不是不透明的、混浊的、或半透 明的。本文中所用的透明材料为在可见光范围内(400 SOOnm)可具有高水平的光透射率 (即,低吸光度)的材料。具有样品厚度L(光程长度以cm度量)和改性金属氧化物浓度 c (改性金属氧化物的重量/组合物的重量)的材料的吸光度A可以通过在特定波长下测量 透射率% (% T)并使用方程式I进行确定
(1)本发明的透明组合物优选具有i)在400nm下彡6、优选彡5、更优选彡4且最优 选彡3. 5的吸光度A ;ii)在450nm下彡3、优选彡2. 5且更优选彡2的吸光度A ;和iii)在 650nm下彡1、优选彡0. 5且更优选彡0. 34的吸光度A。已经令人惊讶地发现具有高折射 率值的聚合物组合物可由包含至少一种改性金属氧化物的组合物制造,并且这样的组合物 可以是透明的、在波长范围内(尤其是蓝色波长范围内)具有低的吸光度(高透射率)。因此,对于该实施方式来说,本发明的聚合物组合物是透明的并且还颜色淡。颜色 的量将取决于多种因素,包括例如改性金属氧化物的类型和尺寸、聚合物的类型、改性金属 氧化物和聚合物各自的相对量、以及样品的厚度。例如,具有约200微米的厚度并通过将改 性金属氧化物(例如钛酸钡)的纳米颗粒分散体与聚合物(例如有机硅)组合而制备的聚 合物组合物,虽然是透明的,但是,已经发现其具有介于淡黄色和琥珀色之间的颜色,这取 决于改性金属氧化物的量。然而,已经令人惊讶地发现,可通过用UV辐射对所述组合物进 行辐照进一步降低颜色的水平。所述组合物的该光致漂白或光老化可以在宽范围的条件下 进行,包括例如在室温下用UV辐射辐照几小时。因此,本发明的方法可进一步包括使所述 聚合物组合物光致漂白以降低颜色的水平的步骤。在另一实施方式中,本发明的聚合物组合物为透明的并且在热老化之后保持为透 明的。例如,在一些应用中,希望所述聚合物组合物经受长时间(例如大于或等于1000小 时)的高温和高湿的条件,并保持透明而无明显褪色。已经令人惊讶地发现使用上述方法 制备的本发明的聚合物组合物能够经受长时间的高温条件,并因此具有耐热的光学性质。本发明的聚合物组合物可用于许多不同的应用中,但是已经发现特别可用于希望高折射率的应用中。例如,所述聚合物组合物可用于各种类型的光学器件(包括例如透镜、 棱镜、发光二极管、全息数据存储器件、光子晶体器件(photonic crystal device)、波导 管、反射器、浸渍材料等)中。因此,本发明还涉及包含任意上述聚合物组合物的光学器件。将通过如下实施例进一步说明本发明,这些实施例本质上仅是示例性的。
实施例实施例1本实施例描述了使用本发明的方法来制备包含纳米颗粒金属氧化物和聚合物的 聚合物组合物。按照 T. Yogo, R. Fukuzawa, W. Sakamoto 禾口 S. Hirano, Journal ofNanoparticle Research, (2005),7,633-640中所述的程序制备BaTiO3在二醇醚中的纳米颗粒分散体,除 了使用混合的金属氧化物前体(DBATI 50,Ba和Ti摩尔比为1 1且经验式为BaTi (OR)x 的双金属醇盐,可得自Gelest)来替代Yogo等人使用的改性复合醇盐用于水解。而且,将 甲氧基丙醇用作二醇醚溶剂。该分散体中的金属氧化物的粒径小于50nm(在0. 23重量% 的浓度下),并且发现,该分散体在室温下在几周内是稳定的。向其中加入Ethfac 161 (6-乙氧基化癸醇的磷酸酯,可得自EthoxChemicals)在 相同的二醇醚溶剂中的10重量%的溶液(基于金属氧化物的重量,偶联剂为20重量% )。 产生包含BaTiO3和磷酸烷基酯的反应产物的改性金属氧化物的分散体。没有观察到可见 的散射,且因此粒径没有显著提高。将能溶于该二醇醚溶剂中的PMM0021 (可得自Gelest的甲基苯基聚硅氧烷)加入 到该改性金属氧化物的纳米颗粒分散体内。然后,通过在50 75°C下真空蒸馏除去所述溶 齐U,从而导致形成包含改性金属氧化物的聚合物组合物。在所得聚合物组合物中没有观察 到可见的散射,且因此粒径没有显著提高。所述组合物具有1. 64的折射率。使用标准实验室UV-可见光分光光度计测量以垂直入射方向放置在两块载玻片 之间的本发明的聚合物组合物的UV-可见光透射率。扣除适当的背景并使用上述方程式I 将数据转化为吸光度单位。结果示于图2(对数曲线)和图3(标准尺度)中。可以看出, 本发明的聚合物组合物在各种波长下具有低的吸光度(低透射率损失)。虽然这些组合物 的颜色稍显黄色,但是视觉上观察它们也基本上是不模糊的。此外,发现本发明的聚合物组合物与用于制备该聚合物组合物的聚合物相比具有 改善的流变性质。例如,苯基甲基聚硅氧烷为低粘度硅油,而包含改性金属氧化物在该硅油 中的纳米颗粒分散体的本发明的聚合物组合物具有明显较高的粘度并且在室温下不流动。 因此,发现本发明的聚合物组合物具有良好的流变性质和良好的光学性质的组合。此外,聚合物组合物可使用如下程序制备其中,偶联剂为丁基聚(二甲基硅氧 烷)_2_ 丙氧基乙基磷酸,其为具有结构 Bu-[SiMe2-O]n-SiMe2-(CH2CH2CH2-O)-CH2CH2OP(0) (OH)2的硅氧烷偶联剂,其中η为1 9 ;或者偶联剂为丁基聚(二甲基硅氧烷)-2-丙氧基 乙基膦酸,其为具有结构 Bu-[SiMe2-O]n-SiMe2-(CH2CH2CH2-O)-CH2CH2P(O) (OH)2 的硅氧烷偶 联剂,其中η为10。实施例2使用实施例1中所述程序制备包含3. 9体积% BaTiO3U. 9体积%的Ethfacl61、 和95体积%的PMM0021的本发明的聚合物组合物。发现该组合物的折射率为1. 556。将该组合物的样品置于玻璃小瓶的底部以形成通过轮廓测定法(profilometry)测量的表面积 为约5cm2且厚度为约150 200微米的膜。该膜是透明的并且颜色稍显黄色。通过在环境气氛下、在使用1200瓦金属卤化物灯(λ = 350 400nm)的UV固化 室(Amergraph V28 VMS)中对该样品辐照几小时而进行该样品的加速UV老化。在UV曝露 1小时和5小时之后,使用标准实验室UV-可见光分光光度计测量以垂直入射方向放置在两 块载玻片之间的聚合物组合物的UV-可见光透射率。结果示于图4和图5(其为由图4的 数据相对于玻璃进行归一化(normalize)的数据)中。在仅曝露1小时之后,虽然肉眼看 不出颜色的损失,但UV/可见光透射率数据显示颜色稍有变浅。然而,在UV曝露5小时之 后,清楚可见颜色的变浅。所述样品明显较少有色,并且% T数据支持该观察结果。因此, 将本发明的聚合物组合物曝露UV辐射可使观察到的颜色变浅,并且该光致漂白产生不仅 透明而且还几乎无色的组合物。实施例3使用实施例1中所述程序制备包含3. 9体积% BaTiO3U. 9体积%的Ethfacl61、 和95体积%的PMM0021的本发明的聚合物组合物。将该组合物的样品置于玻璃小瓶的底 部以形成表面积为约5cm2且厚度为约200微米的膜。该膜是透明的并且颜色稍显黄色。通过将所述膜在150°C烘箱中储存超过1000小时而进行该样品的加速热老化,并 且在该时间段内在不同波长下测量透射率%。结果示于图6中。可以看出在24小时之后, 所述样品在长波长的光谱下呈现出透射率%的几个百分数的小的初始下降,但是对于该持 续测试期间(> 1000小时),在实验误差内、透射率%保持为高的并且相对恒定(对于λ =600 700nm而言为约95%透射率,对于λ = 500nm而言为90 %,且对于λ = 400nm 而言为75% )。因此,由本发明的聚合物组合物制造的膜未呈现出明显的“黄化”(初现黄 颜色的形成,并且近UV光吸收的程度高)。这是令人惊讶的,因为已知这些类型的体系通常 发生氧化,并且随着这些体系的降解,其明显变黄。此外,具有相同重量负载的Ethfac 161 的未固化的有机硅样品(作为对照样品)在150°C下在24小时内呈现出降解和严重黄化。 因此,已经令人惊讶地发现,本发明的聚合物组合物是热稳定的,并且已经发现,其具有在 热老化之后保持相对不变的光学性质。
为了进行说明和描述,已经呈现了本发明优选实施方式的上述描述。这些描述并 非是穷举的或者将本发明限制为所公开的确切形式。根据上述教导,可进行改进和变型,或 者可由本发明的实践而获知改进和变型。为了解释本发明的原理及其实际应用以使本领域 技术人员能够在各种实施方式中利用本发明并以适合于可能的具体应用的各种变型来利 用本发明,对实施方式进行了选择和描述。本发明的范围应由所附权利要求及其等价物限 定。
权利要求
制备包含分散在聚合物中的改性纳米颗粒的聚合物组合物的方法,其中所述方法包括如下步骤i)将金属氧化物在非水溶剂中的纳米颗粒分散体与至少一种偶联剂组合以形成改性金属氧化物在所述非水溶剂中的纳米颗粒分散体;ii)将所述改性金属氧化物在所述非水溶剂中的纳米颗粒分散体与至少一种聚合物组合;和iii)除去所述非水溶剂以形成聚合物组合物,其中,所述偶联剂具有大于或等于1.48的折射率。
2.权利要求1的方法,其中所述非水溶剂为能与水混溶的醚溶剂。
3.权利要求1的方法,其中所述非水溶剂为二醇醚。
4.权利要求1的方法,其中所述聚合物能溶于所述非水溶剂中。
5.权利要求1的方法,其中,将所述聚合物溶于有机溶剂中,以形成能溶解于所述非水 溶剂中的聚合物溶液。
6.权利要求5的方法,其中所述有机溶剂和所述非水溶剂是相同的。
7.权利要求5的方法,其中所述有机溶剂和所述非水溶剂是不同的。
8.权利要求1的方法,其中所述偶联剂具有大于或等于1.5的折射率。
9.权利要求1的方法,其中所述偶联剂具有大于或等于1.55的折射率。
10.权利要求1的方法,其中所述偶联剂具有大于或等于1.6的折射率。
11.权利要求1的方法,其中所述金属氧化物和所述偶联剂以约1 4 约100 1的 金属氧化物/偶联剂重量比组合。
12.权利要求1的方法,其中所述金属氧化物和所述偶联剂以约4 1 约100 1的 金属氧化物/偶联剂重量比组合。
13.权利要求1的方法,其中所述金属氧化物和所述偶联剂以约25 1 约100 1 的金属氧化物/偶联剂重量比组合。
14.权利要求1的方法,其中所述金属氧化物和所述偶联剂以约50 1 约100 1 的金属氧化物/偶联剂重量比组合。
15.权利要求1的方法,其中所述金属氧化物具有大于或等于1.8的折射率。
16.权利要求1的方法,其中所述金属氧化物具有约1.8 2. 9的折射率。
17.权利要求1的方法,其中所述金属氧化物为钛酸盐。
18.权利要求1的方法,其中所述金属氧化物为金红石型二氧化钛。
19.权利要求1的方法,其中所述金属氧化物为钛酸钡。
20.权利要求1的方法,其中,在所述非水溶剂中的纳米颗粒分散体中,所述金属氧化 物的粒径为约2 约15nm。
21.权利要求1的方法,其中,在所述非水溶剂中的纳米颗粒分散体中,所述金属氧化 物的粒径为约5 约10nm。
22.权利要求1的方法,其中,在所述非水溶剂中的纳米颗粒分散体中,所述改性金属 氧化物的粒径为约2 约15nm。
23.权利要求1的方法,其中,在所述非水溶剂中的纳米颗粒分散体中,所述改性金属 氧化物的粒径为约5 约lOnm。
24.权利要求1的方法,其中所述偶联剂包含至少一种能够与所述金属氧化物反应的 基团和至少一种能够与所述非水溶剂、所述聚合物、或这两者相互作用的基团。
25.权利要求24的方法,其中所述能够与所述金属氧化物反应的基团包括至少一种含 金属基团、至少一种羧酸基团、至少一种亚磺酸基团、至少一种磺酸基团、至少一种硫醇基 团、至少一种含磷基团。
26.权利要求25的方法,其中所述含金属基团包含Si、Ti、Sn、或Se。
27.权利要求24的方法,其中所述能够与所述金属氧化物反应的基团包括至少一种膦 酸基团。
28.权利要求24的方法,其中所述能够与所述聚合物相互作用的基团包括至少一种亚烷基氧基团。
29.权利要求28的方法,其中所述能够与所述聚合物相互作用的基团包括具有 式-(O-ALKl) x- (0-ALK2) y- (0-ALK3) z-的聚亚烷基氧基团,其中,ALKl、ALK2、和 ALK3 为线型 或支化的C1-C8亚烷基,χ为1 10,且y和ζ为0 10。
30.权利要求29的方法,其中χ为2 8,且y和ζ为0。
31.权利要求1的方法,其中所述非水溶剂通过蒸发除去。
32.权利要求1的方法,其中所述聚合物组合物具有大于或等于1.5的折射率。
33.权利要求32的方法,其中所述聚合物组合物具有大于或等于1.6的折射率。
34.权利要求32的方法,其中所述聚合物组合物具有大于或等于1.7的折射率。
35.权利要求32的方法,其中所述聚合物组合物具有大于或等于1.8的折射率。
36.权利要求32的方法,其中所述聚合物组合物为透明的。
37.权利要求1的方法,其中所述聚合物的存在量以所述聚合物组合物的总重量计为 约5重量% 95重量%。
38.权利要求1的方法,其中所述聚合物的存在量以所述聚合物组合物的总重量计为 约5重量% 90重量%。
39.权利要求1的方法,其中所述聚合物的存在量以所述聚合物组合物的总重量计为 约5重量% 70重量%。
40.权利要求1的方法,其中所述聚合物的存在量以所述聚合物组合物的总重量计为 约5重量% 50重量%。
41.权利要求1的方法,其中所述方法还包括使所述聚合物组合物光致漂白的步骤。
42.制备包含分散在聚合物中的改性纳米颗粒的聚合物组合物的方法,其中所述方法 包括如下步骤i)将金属氧化物在非水溶剂中的纳米颗粒分散体与至少一种偶联剂组合以形成改性 金属氧化物在所述非水溶剂中的纳米颗粒分散体; )将所述改性金属氧化物在所述非水溶剂中的纳米颗粒分散体与至少一种聚合物组 合以形成聚合物组合物;和iii)除去所述非水溶剂,其中所述聚合物组合物具有大于或等于1. 5的折射率并且是透明的。
43.权利要求42的方法,其中所述方法还包括使所述聚合物组合物光致漂白的步骤。
44.制备包含分散在聚合物中的改性纳米颗粒的聚合物组合物的方法,其中所述方法包括如下步骤i)将金属氧化物在非水溶剂中的纳米颗粒分散体与至少一种偶联剂组合以形成改性 金属氧化物在所述非水溶剂中的纳米颗粒分散体;ii)将所述改性金属氧化物在所述非水溶剂中的纳米颗粒分散体与至少一种单体组合 以形成能聚合的组合物;iii)除去所述非水溶剂;和iv)使所述能聚合的组合物聚合以形成聚合物组合物,其中至少一种偶联剂具有大于或等于1. 48的折射率。
45.权利要求44的方法,其中所述单体能溶于所述非水溶剂中。
46.权利要求44的方法,其中所述单体为丙烯酸酯或甲基丙烯酸酯单体。
47.权利要求44的方法,其中所述偶联剂包含至少一种能够与所述金属氧化物反应的 基团和至少一种能够与所述非水溶剂、所述单体、或这两者相互作用的基团。
48.权利要求47的方法,其中所述能够与所述单体相互作用的基团包括至少一种亚烷 基氧基团。
49.权利要求47的方法,其中所述能够与所述单体相互作用的基团包括具有 式-(O-ALKl)x-(0-ALK2)y-(0-ALK3)z-的聚亚烷基氧基团,其中 ALK1、ALK2、和 ALK3 为线型 或支化的C1-C8亚烷基,χ为1 10,且y和ζ为0 10。
50.权利要求49的方法,其中χ为2 8,且y和ζ为0。
51.权利要求44的方法,其中所述单体的存在量以所述聚合物组合物的总重量计为约 5重量% 95重量%。
52.权利要求44的方法,其中所述单体的存在量以所述聚合物组合物的总重量计为约 5重量% 90重量%。
53.权利要求44的方法,其中所述单体的存在量以所述聚合物组合物的总重量计为约 5重量% 70重量%。
54.权利要求44的方法,其中所述单体的存在量以所述聚合物组合物的总重量计为约 5重量% 50重量%。
55.权利要求47的方法,其中所述能够与所述单体相互作用的基团与所述单体聚合。
56.权利要求47的方法,其中所述能够与所述单体相互作用的基团包括至少一种丙烯 酸酯或甲基丙烯酸酯基团。
57.权利要求44的方法,其中所述聚合物组合物具有大于或等于1.5的折射率。
58.权利要求44的方法,其中所述聚合物组合物具有大于或等于1.6的折射率。
59.权利要求44的方法,其中所述聚合物组合物具有大于或等于1.7的折射率。
60.权利要求44的方法,其中所述聚合物组合物具有大于或等于1.8的折射率。
61.权利要求44的方法,其中所述聚合物组合物为透明的。
62.权利要求44的方法,其中所述方法还包括使所述聚合物组合物光致漂白的步骤。
63.制备包含分散在聚合物中的改性纳米颗粒的聚合物组合物的方法,其中所述方法 包括如下步骤i)将金属氧化物在非水溶剂中的纳米颗粒分散体与至少一种偶联剂组合以形成改性 金属氧化物在所述非水溶剂中的纳米颗粒分散体;ii)将所述改性金属氧化物在所述非水溶剂中的纳米颗粒分散体与至少一种单体组合 以形成能聚合的组合物;iii)除去所述非水溶剂;和iv)使所述能聚合的组合物聚合以形成聚合物组合物,其中所述聚合物组合物具有大于或等于1. 5的折射率并且是透明的。
64.权利要求63的方法,其中所述方法还包括使所述聚合物组合物光致漂白的步骤。
65.包含分散在聚合物中的改性纳米颗粒的聚合物组合物,其通过包括如下步骤的方 法制备i)将金属氧化物在非水溶剂中的纳米颗粒分散体与至少一种偶联剂组合以形成改性 金属氧化物在所述非水溶剂中的纳米颗粒分散体; )将所述改性金属氧化物在所述非水溶剂中的纳米颗粒分散体与至少一种聚合物组 合;和iii)除去所述非水溶剂以形成聚合物组合物, 其中所述偶联剂具有大于或等于1. 48的折射率。
66.权利要求65的聚合物组合物,其中所述方法还包括使所述聚合物组合物光致漂白 的步骤。
67.包含分散在聚合物中的改性纳米颗粒的聚合物组合物,其通过包括如下步骤的方 法制备i)将金属氧化物在非水溶剂中的纳米颗粒分散体与至少一种偶联剂组合以形成改性 金属氧化物在所述非水溶剂中的纳米颗粒分散体; )将所述改性金属氧化物在所述非水溶剂中的纳米颗粒分散体与至少一种聚合物组 合以形成聚合物组合物;和 iii)除去所述非水溶剂,其中所述聚合物组合物具有大于或等于1. 5的折射率并且是透明的。
68.权利要求67的聚合物组合物,其中所述方法还包括使所述聚合物组合物光致漂白 的步骤。
69.权利要求67的聚合物组合物,其中所述聚合物组合物在热老化之后保持透明。
70.包含分散在聚合物中的改性纳米颗粒的聚合物组合物,其通过包括如下步骤的方 法制备i)将金属氧化物在非水溶剂中的纳米颗粒分散体与至少一种偶联剂组合以形成改性 金属氧化物在所述非水溶剂中的纳米颗粒分散体; )将所述改性金属氧化物在所述非水溶剂中的纳米颗粒分散体与至少一种单体组合 以形成能聚合的组合物;iii)除去所述非水溶剂;和iv)使所述能聚合的组合物聚合以形成聚合物组合物, 其中至少一种偶联剂具有大于或等于1. 48的折射率。
71.权利要求70的聚合物组合物,其中所述方法还包括使所述聚合物组合物光致漂白 的步骤。
72.包含分散在聚合物中的改性纳米颗粒的聚合物组合物,其通过包括如下步骤的方法制备i)将金属氧化物在非水溶剂中的纳米颗粒分散体与至少一种偶联剂组合以形成改性 金属氧化物在所述非水溶剂中的纳米颗粒分散体;ii)将所述改性金属氧化物在所述非水溶剂中的纳米颗粒分散体与至少一种单体组合 以形成能聚合的组合物;iii)除去所述非水溶剂;和 iv)使所述能聚合的组合物聚合以形成聚合物组合物,其中所述聚合物组合物具有大于或等于1. 5的折射率并且是透明的。
73.权利要求72的聚合物组合物,其中所述方法还包括使所述聚合物组合物光致漂白 的步骤。
74.权利要求72的聚合物组合物,其中所述聚合物组合物在热老化之后保持透明。
全文摘要
本发明涉及制备包含在聚合物中的改性金属氧化物的聚合物组合物的方法,其中,将金属氧化物在非水溶剂中的纳米颗粒分散体与至少一种偶联剂组合以形成改性金属氧化物在所述非水溶剂中的纳米颗粒分散体。然后,在除去所述非水溶剂之前,使所述纳米颗粒分散体与聚合物组合,或者,可选择地,以任意次序使所述纳米颗粒分散体与聚合以形成所述聚合物的单体组合和除去所述溶剂。本发明还公开了通过该方法制备的聚合物组合物。
文档编号C08K9/04GK101842420SQ200880114143
公开日2010年9月22日 申请日期2008年8月20日 优先权日2007年8月31日
发明者李志峰, 达瓦尔·A·多希 申请人:卡伯特公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1