一种喹唑啉衍生物及其制备方法和应用与流程

文档序号:12689475阅读:492来源:国知局
一种喹唑啉衍生物及其制备方法和应用与流程

本发明涉及有机电致发光材料技术领域,尤其涉及一种喹唑啉衍生物及其制备方法和应用。



背景技术:

随着显示技术的发展,对平板显示器件的要求越来越高。近年来出现了三种显示技术:等离子显示器、场发射显示器和有机电致发光显示器(OLED)。其中,OLED具有自主发光、低电压直流驱动、全固化、视角宽、颜色丰富等一系列的优点。与液晶显示器相比,OLED不需要背光源,视角大,功率低,其响应速度达到液晶显示器的1000倍,而制造成本却低于同等分辨率的液晶显示器,因此,OLED势必具有广阔的应用前景。

OLED的典型结构包括阴极层、阳极层和位于这两层之间的有机发光层,有机发光层中可包括电子传输层、空穴传输层和发光层中的一种或几种功能层。采用性能良好的传输材料是制备此类OLED器件的重要基础。

目前常用OLED器件中,空穴的传输速度明显高于电子的传输,使得电子/空穴对不平衡,引起OLED器件效率不高。



技术实现要素:

为了解决现有技术中的问题,本发明的目的是提供一种喹唑啉衍生物,本发明的喹唑啉衍生物因具有含氮杂环体系,且具有很好的平面结构,可有效促进OLED器件中电子的传输,从而提高器件的发光效率。

为了实现上述目的,本发明采用的技术方案:一种喹唑啉衍生物,其特征在于,结构通式如下:

其中:

R选自氢原子,卤素原子,烷基,取代烷基,氰基,氨基,取代氨基,取代硅烷基,取代或未取代的芳基、联芳基、稠环芳基,取代或未取代的含有氮原子的杂环芳基、苯并杂环芳基中的任意一种;

Ar1或Ar2选自苯基,萘基,取代或未取代的芳基、联芳基、稠环芳基、取代或未取代的含 有氮原子的杂环芳基,苯并杂环芳基中的任意一种。

其中,所述的Ar1和Ar2为相同或不同的取代基。

优选的是,所述的Ar1或Ar2选自如下结构:

更为优选的是,所述的喹唑啉衍生物的结构式为:

一种喹唑啉衍生物的制备方法,其特征在于,包括如下步骤:

其中:R选自氢原子,卤素原子,烷基,取代烷基,氰基,氨基,取代氨基,取代硅烷基, 取代或未取代的芳基、联芳基、稠环芳基,取代或未取代的含有氮原子的杂环芳基、苯并杂环芳基中的任意一种;

Ar1或Ar2选自苯基,萘基,取代或未取代的芳基、联芳基、稠环芳基、取代或未取代的含有氮原子的杂环芳基,苯并杂环芳基中的任意一种。

其中,所述的Ar1,Ar2相同或不同。

优选的是,所述的R为氢原子,所述的Ar1或Ar2选自如下结构:

喹唑啉结构是由一个苯环与一个嘧啶环并联而成的,而嘧啶是由两个氮原子取代苯环上间位的两个碳原子而成的,是一种二嗪。和吡啶一样,嘧啶保留了芳香性。一般来说,分子内的电荷转移特性对发光特性有重要的影响,而嘧啶环是一个高度缺电子芳香环,常被用作分子内的电荷转移的推-拉结构的吸电子单元。喹唑啉是含共轭结构的芳香性缺电子的杂环化合物,其中的氮原子因为参与了π共轭体系,使得体系的共轭长度延长了,从而改善了材料的光电特性。

以喹唑啉为基础,引入咔唑芳香基团或者苯并咪唑基团或者三亚苯基团,得到2,4-取代喹唑啉的主体结构,有效地延长了共轭长度,达到综合性能的进一步优化。咔唑是一类很好的空穴导电分子,由于其特殊的刚性结构以及极易在其分子的3、6、9位进行功能化修饰等优点,咔唑衍生物在电致发光领域也常被用作具有高热稳定性的空穴传输材料。咔唑衍生物的主体材料通常具有其固有的较高三线态能级,优异的空穴迁移率和空穴传输性能。苯基咪唑官能团被广泛用于电子的注入与传输,苯基咪唑官能团不仅增强了材料分子的电子传输性能,同时,也有利于实现材料分子的高热稳定性。三亚苯基既能很好的传输电子又具有持久性,其作为电子传输材料时,表现出较低的启动电压和低能耗。此外,具有双极性的主体材料对获得高效和平衡的电子迁移率非常重要,通过向喹唑啉中引入上述三种取代基来调节材 料分子的光物理特性,得到光热性能优良的新型发光材料。

与现有技术相比,本发明实现的有益效果:本发明的喹唑啉衍生物可以作为电子/空穴传输材料,同时还可用作发光体;本发明的喹唑啉衍生物在液体和固体膜中都有较强的荧光,可以形成良好的无定型薄膜,同时又具有相当好的热、光稳定性;本发明的喹唑啉衍生物因具有含氮杂环体系,且具有很好的平面结构,可有效促进OLED器件中电子的传输,从而提高器件的发光效率。

附图说明

图1为E1-8的紫外吸收光谱(Abs)和荧光光谱;

图2为D2-8的紫外吸收光谱(Abs)和荧光光谱;

图3为应用实例四OLED器件的亮度/电流密度/电压关系曲线。

具体实施方式

实施例一:2,4-二(2-萘基)-喹唑啉(A5-1)的制备

在装有搅拌子和冷凝装置的100毫升三口烧瓶中依次加入2,4-二氯喹唑啉(5克),萘-2-硼酸(10克),醋酸钯(0.11克),三苯基膦(0.27克),碳酸钾(25克)和1,4-二氧六环/水混合溶剂(80毫升),在氮气氛围下,加热至回流,反应24小时。待温度降至室温后,在反应体系中加入二氯甲烷,过滤除去不溶物,水相用二氯甲烷萃取2次,合并有机相后用饱和食盐水清洗3次,减压除去溶剂,用石油醚重结晶,得到2,4-二(2-萘基)-喹唑啉,产率86%。质谱:理论值m/e,382.1;实测值382.2。

实施例二:2-(4-(二苯基氨基)苯基)-4-(萘-2-基)-喹唑啉(A5-3)的制备

(1)在装有搅拌子和冷凝装置的100毫升三口烧瓶中依次加入2,4-二氯喹唑啉(5克),萘-2-硼酸(5克),醋酸钯(80毫克),三苯基膦(0.27克),碳酸钾(15克)和1,4-二氧六环/水混合溶剂(60毫升),在氮气氛围下,加热至回流,反应24小时。待温度降至室温后,在反应体系中加入二氯甲烷,过滤除去不溶物,水相用二氯甲烷萃取2次,合并有机相后用饱和食盐水清洗3次,减压除去溶剂后,用石油醚重结晶,得到2-氯-4-(2-萘基)-喹唑啉,产率79%。质谱:理论值m/e,290.1;实测值290.0。

(2)在装有搅拌子和冷凝装置的100毫升三口烧瓶中依次加入2-氯-4-(2-萘基)-喹唑啉(1.5克),4-(二苯基氨基)苯基硼酸(1.5克),醋酸钯(20毫克),三苯基膦(40毫克),碳酸钾(2克)和1,4-二氧六环/水混合溶剂(50毫升),在氮气氛围下,加热至回流,反应24小时。待温度降至室温后,在反应体系中加入二氯甲烷,过滤除去不溶物,水相用二氯甲烷萃取2次,合并有机相后用饱和食盐水清洗3次,减压除去溶剂后,用石油醚/氯仿重结晶,得到2-(4-(二苯基氨基)苯基)-4-(萘-2-基)-喹唑啉(A5-3),产率89%。质谱:理论值m/e,499.1; 实测值499.2。

实施例三:2-(4-(N-苯基苯并咪唑-2-基)苯基)-4-(萘-2-基)-喹唑啉(A5-6)的制备

(1)2-氯-4-(2-萘基)-喹唑啉按实施例二方法合成。

(2)在装有搅拌子和冷凝装置的100毫升三口烧瓶中依次加入2-氯-4-(2-萘基)-喹唑啉(1.5克),4-(N-苯基苯并咪唑-2-基)苯基硼酸频哪醇酯(1.8克),醋酸钯(20毫克),三苯基膦(40毫克),碳酸钾(2克)和1,4-二氧六环/水混合溶剂(70毫升),在氮气氛围下,加热至回流反应6-24小时。待温度降至室温后,在反应体系中加入二氯甲烷稀释,过滤除去不溶物,水相用二氯甲烷萃取2次,合并有机相后用饱和食盐水清洗3次,减压除去溶剂后,用石油醚/氯仿重结晶,得到2-(4-(N-苯基苯并咪唑-2-基)苯基)-4-(萘-2-基)-喹唑啉(A5-6),产率91%。质谱:理论值m/e,524.2;实测值524.2。

实施例四:2-(3-(三亚苯-2-基)苯基)-4-(萘-2-基)-喹唑啉(A5-8)的制备

(1)2-氯-4-(2-萘基)-喹唑啉按实施例二方法合成。

(2)在装有搅拌子和冷凝装置的100毫升三口烧瓶中依次加入2-氯-4-(2-萘基)-喹唑啉(1.5克),3-(三亚苯-2-基)苯基硼酸频哪醇酯(1.9克),醋酸钯(20毫克),三苯基膦(40毫克),碳酸钾(2克)和1,4-二氧六环/水混合溶剂(70毫升),在氮气氛围下,加热至回流反应6-24小时。待温度降至室温后,在反应体系中加入二氯甲烷稀释,过滤除去不溶物,水相用二氯甲烷萃取2次,合并有机相后用饱和食盐水清洗3次,减压除去溶剂后,用石油醚/氯仿重结晶,得到2-(3-(三亚苯-2-基)苯基)-4-(萘-2-基)-喹唑啉(A5-8),产率90%。质谱:理论值m/e,558.2;实测值558.1。

实施例五:2-(9-苯基-咔唑-3-基)-4-(吡啶-4-基)喹唑啉(B3-4)的制备

(1)2-氯-4-(吡啶-4-基)-喹唑啉按实施例二方法合成。

质谱:理论值m/e,241.0;实测值241.1。

(2)取2-氯-4-(吡啶-4-基)-喹唑啉与9-苯基-咔唑-3-硼酸作为原料,合成步骤与实施例四(2)相同。

质谱:理论值m/e,448.17;实测值448.2。

实施例六:2-(3-(三亚苯-2-基)苯基)-4-(吡啶-4-基)-喹唑啉(B3-8)的制备

以2-氯-4-(吡啶-4-基)-喹唑啉与3-(三亚苯-2-基)苯基硼酸频哪醇酯为原料,合成步骤如实施例四(2)相同。

质谱:理论值m/e,509.19;实测值509.2。

实施例七:2,4-二(4-(二苯基氨基)苯基)-喹唑啉(C3-3)的制备

以2,4-二氯喹唑啉,4-(二苯基氨基)苯基硼酸为原料,合成步骤与实施例一相同。

质谱:理论值m/e,616.26;实测值616.2。

实施例八:2-(4-(N-苯基苯并咪唑-2-基)-4-(4-(二苯基氨基)苯基)喹唑啉(C3-6)的制备

以2-氯-4-(4-(二苯基氨基)苯基)喹唑啉和4-(N-苯基苯并咪唑-2-基)苯基硼酸频哪醇酯为原料,合成步骤与实施例三(2)相同。

质谱:理论值m/e,641.26;实测值641.3。

实施例九:2,4-二(9-苯基-咔唑-3-基)-喹唑啉(D2-4)的制备

以2,4-二氯喹唑啉,9-苯基-咔唑-3-硼酸为原料,合成步骤与实施例一相同。质谱:理论值m/e,612.23;实测值612.2。

实施例十:2-(3-(三亚苯-2-基)苯基)-4-(9-苯基咔唑-3-基)-喹唑啉(D2-8)的制备

在装有搅拌子和冷凝装置的100毫升三口烧瓶中依次加入2-氯-4-(9-苯基咔唑-3-基)-喹唑啉(1.6克),3-(三亚苯-2-基)苯基硼酸频哪醇酯(1.9克),醋酸钯(20毫克),三苯基膦(40毫克),碳酸钾(2克)和1,4-二氧六环/水混合溶剂(70毫升),在氮气氛围下,加热至回流反应6-24小时。待温度降至室温后,在反应体系中加入二氯甲烷稀释,过滤除去不溶物,水相用二氯甲烷萃取2次,合并有机相后用饱和食盐水清洗3次,减压除去溶剂后,用石油醚/氯仿重结晶,得到2-(3-(三亚苯-2-基)苯基)-4-(4-(二苯基氨基)苯基)-喹唑啉(D2-8),产率78%。

质谱:理论值m/e,673.26;实测值673.1。

元素分析:C 89.26,H 4.58,N,6.26。

实施例十三:2-(3-(三亚苯-2-基)苯基)-4-(4-(N-苯基苯并咪唑-2-基)苯基)-喹唑啉(E1-8)的制备

(1)2-氯-4-(4-(N-苯基苯并咪唑-2-基)苯基)-喹唑啉的制备方法与实施例二的相同,以4-(N-苯基苯并咪唑-2-基)苯基硼酸频哪醇酯和2,4-二氯喹唑啉为原料。

质谱:理论值m/e,432.11;实测值432.1。

(2)在装有搅拌子和冷凝装置的100毫升三口烧瓶中依次加入2-氯-4-(4-(N-苯基苯并咪唑-2-基)苯基)-喹唑啉(1.7克),3-(三亚苯-2-基)苯基硼酸频哪醇酯(1.9克),醋酸钯(20毫克),三苯基膦(40毫克),碳酸钾(2克)和1,4-二氧六环/水混合溶剂(70毫升),在氮气氛围下,加热至回流反应6-24小时。待温度降至室温后,在反应体系中加入二氯甲烷稀释,过滤除去不溶物,水相用二氯甲烷萃取2次,合并有机相后用饱和食盐水清洗3次,减压除去溶剂后,用石油醚/氯仿重结晶,得到2-(3-(三亚苯-2-基)苯基)-4-(4-(N-苯基苯并咪唑-2-基)苯基)-喹唑啉(E1-8),产率83%。

质谱:理论值m/e,700.26;实测值700.2。

应用实例

将实施例制备的材料用于有机电致发光器件,这类器件的典型结构为:ITO/HIL/TCTA/EML/TPBI(10nm)/ETL(30nm)/LiF(1nm)/Al(80nm)。其中ITO为阳极,HIL为空穴注入材料,TCTA为空穴传输及电子阻挡层,EML为发光层,TPBI为空穴阻挡层,ETL为电子传输层,LiF/Al为阴极。为了提高阳极空穴的注入,被旋涂在净化处理后的ITO基板上从而形成一层空穴注入层HIL。空穴传输层HTL包括一层具有良好的传输能力TCTA。发光层包含本发明的材料直接作为发光层、或本发明的材料掺杂在合适的主体材料中、或本发明的材料掺杂磷光材料。TPBI被用作空穴阻挡和电子的注入和传输。ETL层包含本发明的材料或其他常规材料,LiF和Al分别为电子注入层和阴极。

应用实例一:EML层为本发明制得的材料,即2-(3-(三亚苯-2-基)苯基)-4-(9-苯基咔唑-3-基)-喹唑啉(D2-8),器件最大发光亮度7500cd/m2,启亮电压为3.9V,最大发光效率为1.7cd/A,最大功率效率为1.6lm/W,最大量子产率为1.5%。

应用实例二:EML层为本发明制得的材料,即2-(3-(三亚苯-2-基)苯基)-4-(9-苯基咔唑-3-基)-喹唑啉(D2-8)作为主体材料,掺杂磷光客体材料,器件最大发光亮度20000cd/m2,启亮电压为2.6V,最大发光效率为16cd/A,最大功率效率为18lm/W,最大量子产率为18%。

应用实例三:EML层为本发明制得的材料,即2-(3-(三亚苯-2-基)苯基)-4-(4-(N-苯基苯并咪唑-2-基)苯基)-喹唑啉(E1-8),器件最大发光亮度2700cd/m2,启亮电压为3.4V,最大发光效率为0.9cd/A,最大功率效率为0.8lm/W,最大量子产率为0.4%。

应用实例四:EML层为本发明制得的材料,即2-(3-(三亚苯-2-基)苯基)-4-(4-(N-苯基苯并咪唑-2-基)苯基)-喹唑啉(E1-8)作为主体材料,掺杂磷光客体材料,器件最大发光亮度19000cd/m2,启亮电压为2.4V,最大发光效率为18.1cd/A,最大功率效率为21lm/W,最大量子产率为19%。

应用实例五:典型的单空穴器件(结构为ITO/实施例材料/MoO3/Al)和单电子器件(结构为ITO/LiF/实施例材料/LiF/Al)测得代表性实施例材料的空穴迁移率和电子迁移率如下:

上述的具体实施方式只是示例性的,是为了更好地使本领域技术人员能够理解本专利,不能理解为是对本专利包括范围的限制;只要是根据本专利所揭示精神的所作的任何等同变更或修饰,均落入本专利包括的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1