聚苯并噁唑纳米纤维高强度隔热防火气凝胶及其制备方法与流程

文档序号:13754115阅读:550来源:国知局
聚苯并噁唑纳米纤维高强度隔热防火气凝胶及其制备方法与流程

本发明涉及聚苯并噁唑纳米纤维高强度隔热防火气凝胶及其制备方法,属于气凝胶及其制备方法技术领域。



背景技术:

20世纪30年代,Kistler研究出世界首例气凝胶。随后,人们对二氧化硅气凝胶,交联聚合物气凝胶,金属泡沫、热解碳材料及纤维素气凝胶等各类气凝胶进行了广泛的研究。气凝胶具有低密度、高孔隙率、比表面积大、导热系数极低及低介电常数等优异的性能,广泛应用于热绝缘、声绝缘、油及重金属吸附、储油、储存气体、催化剂载体、超级电容器及过滤材料等领域。二氧化硅气凝胶作为隔热防火材料,导热系数低达17~21m W m-1K-1,但其机械性能差、易碎。与传统的二氧化硅气凝胶相比,由腈纶/二氧化硅纳米纤维、碳纳米管、纤维素纳米纤维等各种聚合物纳米纤维制备的气凝胶,其交联、互穿混合网络结构使气凝胶的机械性能得到了很大的提高,比如机械强度和韧性。例如,纤维素气凝胶储能模量最高可达1.6GPa,然而针对此种复合体系,纳米纤维的固有机械强度不高限制了气凝胶的整体物理化学稳定性及机械性能,并且传统的研究方法较为复杂、制备的材料不耐高温;石墨烯、碳纳米管或全碳气凝胶具有优异的电学性能和热稳定性,但该体系的气凝胶机械性强度不高。从而制备兼具高热稳定性、超高机械性能、超轻等特性的复合材料成为该领域的一个挑战。



技术实现要素:

本发明的目的是为了解决上述现有技术存在的问题,进而提供一种聚苯并噁唑纳米纤维高强度隔热防火气凝胶及其制备方法。

本发明的目的是通过以下技术方案实现的:

一种聚苯并噁唑纳米纤维高强度隔热防火气凝胶,产品内部为纳米纤维构成的网络互穿结构,且纳米纤维的直径尺寸为10~50nm、密度为20~50mg cm-3、比表面积为200~400m2g-1,孔隙率为95~99%,储能模量为2~2.5MPa。

一种聚苯并噁唑纳米纤维高强度隔热防火气凝胶的制备方法,

步骤一、将商业化1wt%PBO纤维溶于甲烷磺酸和三氟乙酸体积比为0.7~0.8:9.2~9.3的混酸溶液中(1wt%=1g PBO纤维比100mL混酸溶液),搅拌8~12分钟,制成PBO混酸溶液后倒入模具中;

步骤二、连同模具一起把PBO混酸溶液置入湿度为96~99%环境中46~50小时使PBO混酸溶液凝胶化;

步骤三、将PBO凝胶用水浸泡并洗涤,直至PBO凝胶PH值等于7;

步骤四、用超临界二氧化碳干燥10~14小时,获得PBO纳米纤维气凝胶。

本发明充分利用混酸裁剪的方法,一步直接获得尺寸均匀可控的PBO纳米纤维,最大可能的保留了PBO纤维原有的苯撑苯并双噁唑结构,且进一步通过溶胶凝胶的方法制备PBO纳米纤维气凝胶,样品表面积高,孔径分布均匀,孔结构发达,比表面积高,网络互穿结构均匀,孔隙率高,密度低,导热系数低,同时具有超高的机械性能,高热稳定性和阻燃防火性能。

附图说明

图1为PBO纳米纤维气凝胶的扫描电镜图。标尺分别为10微米,200纳米。

图2为PBO纳米纤维气凝胶的氮气吸附与脱附曲线图。

图3为PBO纳米纤维气凝胶在剪切模式下储能模量与损耗模量随温度的变化曲线图。

图4为PBO纳米纤维气凝胶火烧实验:分别表示气凝胶燃烧前,燃烧中和火焰离开立即熄灭的状态照片。

具体实施方式

下面将对本发明做进一步的详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式,但本发明的保护范围不限于下述实施例。

实施例1

本实施例所涉及的一种聚苯并噁唑纳米纤维高强度隔热防火气凝胶,产品内部为纳米纤维构成的网络互穿结构,且纳米纤维的直径尺寸为10~50nm、密度为20~50mg cm-3、比表面积为200~400m2g-1,孔隙率为95~99%,储能模量为2~2.5MPa。

实施例2

将商业化1wt%PBO纤维溶于甲烷磺酸和三氟乙酸体积比为0.8:9.2的混酸溶液中(1wt%=1g PBO纤维比100mL混酸溶液),搅拌8分钟,制成PBO混酸溶液倒入模具中。然后,连同模具一起把PBO混酸溶液置入湿度为98%环境中47小时使PBO混酸溶液凝胶化。将PBO凝胶用水浸泡并洗涤,直至PBO凝胶PH值等于7,随后用超临界二氧化碳(1300psi,40℃)干燥11小时,获得PBO纳米纤维气凝胶。

获得的PBO纳米纤维气凝胶未变形收缩,内部纤维网络结构均匀,纤维直径10~20nm,密度为45~50mg cm-3,比表面积为200~270m2g-1,孔隙率为95~96%。

实施例3

将商业化1wt%PBO纤维溶于甲烷磺酸和三氟乙酸体积比为0.8:9.3的混酸溶液中,搅拌10分钟,制成PBO混酸溶液倒入模具中。然后,连同模具一起把PBO混酸溶液置入湿度为97%环境中48小时使PBO混酸溶液凝胶化。将PBO凝胶用水浸泡并洗涤,直至PBO凝胶PH值等于7,随后用超临界二氧化碳(1300psi,40℃)干燥12小时,获得PBO纳米纤维气凝胶。

获得的PBO纳米纤维气凝胶未变形收缩,内部纤维网络结构均匀,纤维直径20~30nm,密度为40~45mg cm-3,比表面积为270~325m2g-1,孔隙率为96~98%。

实施例4

将商业化1wt%PBO纤维溶于甲烷磺酸和三氟乙酸体积比为0.7:9.3的混酸溶液中,搅拌12分钟,制成PBO混酸溶液倒入模具中。然后,连同模具一起把PBO混酸溶液置入湿度为96%环境中49小时使PBO混酸溶液凝胶化。将PBO凝胶用水浸泡并洗涤,直至PBO凝胶PH值等于7,随后用超临界二氧化碳(1300psi,40℃)干燥13小时,获得PBO纳米纤维气凝胶。

获得的PBO纳米纤维气凝胶未变形收缩,内部纤维网络结构均匀,纤维直径30~40nm,密度为30~40mg cm-3,比表面积为325~350m2g-1,孔隙率为98~98.5%。

实施例5

将商业化1wt%PBO纤维溶于甲烷磺酸和三氟乙酸体积比为0.7:9.2的混酸溶液中,搅拌9分钟,制成PBO混酸溶液倒入模具中。然后,连同模具一起把PBO混酸溶液置入湿度为99%环境中46小时使PBO混酸溶液凝胶化。将PBO凝胶用水浸泡并洗涤,直至PBO凝胶PH值等于7,随后用超临界二氧化碳(1300psi,40℃)干燥10小时,获得PBO纳米纤维气凝胶。

获得的PBO纳米纤维气凝胶未变形收缩,内部纤维网络结构均匀,纤维直径40~50nm,密度为20~30mg cm-3,比表面积为350~400m2g-1,孔隙率为98.5~99%。

本发明的PBO纳米纤维气凝胶的结构及性能的评价方法和结果。

使用扫描电子显微镜(Helios Nanolab 600i,USA)表征PBO气凝胶的内部形貌和纤维网络结构;拉曼光谱表征其分子结构;动态机械分析仪(TA Instruments Q800)表征其机械性能;闪光导热仪表征其导热系数(LFA 467HyperFlash,Germany);热解重量分析仪(TA Q50,USA)表征其热稳定性;氮吸附解析等温线(ASAP2020)表征其比表面积及孔径大小、分布。

结果表明,本发明的实验方法简单,所得气凝胶网络结构均匀,内部纤维直径可在10~50nm之间进行调控,密度为20~50mg cm-3,比表面积为200~400m2g-1,孔隙率为95~99%。且制备的气凝胶具有超高的机械性能,最高储能模量可达2.5MPa,具有高的热稳定性和热机械稳定性,属于离火自熄材料,具有优异的阻燃防火性能。

以上所述,仅为本发明较佳的具体实施方式,这些具体实施方式都是基于本发明整体构思下的不同实现方式,而且本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1