一种新型比率型二价铅离子荧光探针及其制备方法与应用与流程

文档序号:12608746阅读:370来源:国知局
一种新型比率型二价铅离子荧光探针及其制备方法与应用与流程

本发明涉及一种新型比率型二价铅离子荧光探针及其制备方法与应用,尤其涉及一种苝酰亚胺-卟啉大环化合物及其制备方法和应用;属于有机小分子荧光探针领域。



背景技术:

铅离子(Pb2+)是一种极具生理毒性的重金属元素,它被广泛地应用于人类生活生产的各个领域,例如矿山开采、金属冶炼、汽油、建筑材料、燃煤、蓄电池汽车尾气等,使其在许多地区引发了不同程度地铅污染,给自然环境和人类身体健康带来危害。铅作为目前全球最引人关注的环境污染物之一,它对人体的危害主要通过消化道和呼吸道等方式进入到人体内,并且与人体内的各种酶和氨基酸等相互结合,干扰人体的生化和生理活性;铅中毒容易引发贫血症、神经失调和肾损伤等。因此,研发简便、快速、有效、经济的重金属检测方法是非常有必要的。常见的铅离子检测方法有原子吸收光谱法、电感耦合等离子体质谱法、电化学分析法、离子色谱法等,但是这些方法依赖于昂贵的仪器设备、繁杂的预处理或者需要熟练的操作技巧等大大限制了其实际应用。因此,研发一种简单、准确同时专一性比较强的检测铅离子的方法具有非常重要的意义。而荧光分析法由于具有分析灵敏度高、选择性强、使用简便、空间分辨能力高及对细胞损伤小等特点已成为检测微量样品的一个重要且有力的手段,同时引起人们越来越多的关注。

通常情况下,合理的荧光分子探针的设计就是把荧光信号基团与具有某种检测功能的识别基团通过特定的连接方式有效连接在一起。但在已经报道的荧光分子探针中,以荧光强度变化作为检测信号的探针分子其强度变化很容易受到设备效率、环境条件、探针浓度等外在因素的干扰,从而降低荧光探针检测的选择性和灵敏度。而比率型荧光探针主要是依靠双发射波长的比值提供信号,能够有效的解决这些问题的干扰。比率型荧光探针是由两个具有不同发射波长的发光基团通过特定的识别基团共价连接而成的双元体系,其工作原理是连接体(分子识别基团)与被分析物结合后引起能量供体与受体间距离、偶极参数等变化,影响两个发光基团之间能量或电荷转移效率,导致相对应的荧光信号发射峰的位置和强度发生改变,实现对待测物的检测过程。因此,开发新颖的比率型铅离子荧光探针,在水体系及生物环境中检测二价铅离子具有重要的研究意义。



技术实现要素:

针对现有检测技术的不足,本发明通过分子设计、合成出一种新型比率型二价铅离子荧光探针。

本发明还提供了上述比率型二价铅离子荧光探针的制备方法。

本发明还提供了上述比率型二价铅离子荧光探针的应用。

本发明采用以下技术方案:一种新型比率型二价铅离子荧光探针,其特征在于,其结构式为:

本发明提供了上述比率型二价铅离子荧光探针的制备方法。

上述比率型二价铅离子荧光探针的制备方法,其特征在于,它包括以下步骤:

1)将5-(4-羧基苯基)-10, 15, 20-三(4-叔丁基苯基)-卟啉与SOCl2中回流,得到5-(4-甲酰氯苯基)-10, 15, 20-三(4-叔丁基苯基)-卟啉;

2) 5-(4-甲酰氯苯基)-10, 15, 20-三(4-叔丁基苯基)-卟啉与苝酰亚胺发生缩合反应,得苝酰亚胺-卟啉大环化合物。

上述比率型二价铅离子荧光探针的合成路线如下:

所述步骤1)是采用下述方法完成:在70°C – 80 °C温度条件下,按照5-(4-羧基苯基)-10, 15, 20-三(4-叔丁基苯基)-卟啉溶于氯化亚砜中,加入N,N-二甲基甲酰胺作为催化剂,搅拌反应10-16小时,以氮气作为保护气体。减压蒸馏5-10 min,加入二氯甲烷20 mL,再次减压蒸馏5-10 min,保证完全除去SOCl2,得到5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉。

按照1 : 500-1000 : 0.1-0.5的摩尔比取5-(4-羧基苯基)-10, 15, 20-三(4-叔丁基苯基)-卟啉,氯化亚砜,N,N-二甲基甲酰胺。

所述步骤2)是采用下述方法完成:5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉溶解在三氯甲烷中,苝酰亚胺和三乙胺溶于三氯甲烷溶液,在15-35 °C的温度条件下,将苝酰亚胺和三乙胺混合溶液滴加到5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉三氯甲烷溶液中,逐滴加入,滴加完毕后搅拌10-16小时。反应混合液分别用水、饱和食盐水洗涤3次。加入无水氯化钙干燥、减压蒸馏。以甲醇和二氯甲烷的混合液作为洗脱液,用硅胶柱进行提纯,收集第二带,既得目标产物,苝酰亚胺-卟啉大环化合物。

所述苝酰亚胺和三乙胺的摩尔比是1 : 10-40。

上述柱色谱分离洗脱剂甲醇和二氯甲烷的体积比为1 : 200。

上述的苝酰亚胺-卟啉大环化合物的制备方法,为了进一步提高苝酰亚胺-卟啉大环化合物的纯度,优选的,步骤(2)中将所得产品加氯仿溶解,用甲醇进行重结晶;氯仿和甲醇的摩尔比为1 : 6-8。其中,氯仿作为良溶剂和甲醇作为不良溶剂。

所述的苝酰亚胺-卟啉大环化合物作为比率型二价铅离子荧光探针的应用,其特征在于,用于水体系、有机溶剂体系或生物体中二价铅离子的检测。以荧光强度变化和颜色发生明显变化方式进行测试二价铅离子。

本发明使用的比率型荧光探针本身荧光强度强,溶液呈现紫红色;随着铅离子的加入荧光强度明显降低,且溶液颜色呈现土黄色。

本发明的优势:

(1)本发明比率型二价铅离子荧光探针制备方法简单,且后处理相对容易;

(2)本发明实现了对二价铅离子有效的快速检测,抗其他金属离子干扰性强,具有良好的选择性。

(3)本发明比率型二价铅离子荧光探针对检测环境中和生物体内的重金属离子含量有突出优点,并在生物荧光标记及生物成像领域有潜在的应用。

附图说明

图1是实施例1中探针苝酰亚胺-卟啉大环化合物的1H NMR图谱;

图2是探针苝酰亚胺-卟啉大环化合物的质谱图;

图3是探针苝酰亚胺-卟啉大环化合物随二价铅离子的加入荧光光谱图的变化情况;

图4是探针苝酰亚胺-卟啉大环化合物随着二价铅离子加入的荧光强度比率值(I607/I719)与铅离子浓度线性关系图;

图5是探针苝酰亚胺-卟啉大环化合物随二价铅离子加入紫外可见光谱图的变化情况;

图6是探针苝酰亚胺-卟啉大环化合物对不同金属离子的选择性荧光光谱图;

图7是探针苝酰亚胺-卟啉大环化合物对不同金属离子的选择性柱状图数据,其中1-13分别指的是Ba2+、Co2+ 、Pb2+、Mg2+、K+、Mn2+、Hg2+、Ni2+、Ca2+、Fe2+、Cd2+、Na+

具体实施方式

下面结合具体实施例和附图对本发明做进一步的详细说明。

实施例1比率型二价铅离子荧光探针的制备工艺Ⅰ

氮气保护下,5-(4-羧基卟啉)-10, 15, 20-三(4-叔丁基苯基)-卟啉(20 mg)溶于5 mL SOCl2中,回流12 h,减压蒸馏5-10 min,加入二氯甲烷20 mL,再次减压蒸馏5-10 min,保证完全除去SOCl2,得到5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉。室温下,将得到5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉溶解在2 mL三氯甲烷中,把含有苝酰亚胺(30 mg,过量)和三乙胺(0.1 mL)的三氯甲烷溶液(10 mL)用恒压滴液漏斗逐滴加入。然后再搅拌反应10 h,然后反应混合液减压浓缩,反应固体溶解在50 mL甲苯中,有机相分别用水(3×10 mL),饱和食盐水10 mL洗涤。然后干燥、减压蒸馏。固体产品用硅胶色谱柱分离,淋洗液为甲醇/二氯甲烷=0.5%,收集第二带。用三氯甲烷/甲醇重结晶,得黑紫色固体粉末,干燥得目标产物,产率15.2%。

1H NMR (CDCl3, 300 MHz): δ 8.98-8.91 (m, 4H), 8.88-8.82 (m, 6H), 8.75 (s, 2H), 8.29-8.28 (m, 2H), 8.16-8.10 (m, 6H), 7.75-7.82 (s, 8H), 3.71-3.77 (s, 35H), -2.85 (s, 2H). MS (TOF) m/z: 1423.67. 1H NMR图谱如图1所示,质谱图如图2所示,综合1H NMR和MS结果表明,所得产物正确。

实施例2比率型二价铅离子荧光探针的制备工艺Ⅱ

氮气保护下,将5-(4-羧基卟啉)-10, 15, 20-三(4-叔丁基苯基)-卟啉(80 mg)溶于20 mL SOCl2中,加入150 µL DMF,回流12 h,减压蒸馏5-10 min,加入二氯甲烷20 mL,再次减压蒸馏5-10 min,保证完全除去SOCl2,得到5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉。室温下,将5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉溶解在5 mL无水三氯甲烷中,用恒压滴液漏斗将苝酰亚胺(150 mg)和三乙胺(1 mL)的三氯甲烷(40 mL)溶液逐滴加入,搅拌反应10 h,然后反应混合液减压浓缩,反应固体溶解在200 mL甲苯中,有机相分别用水(3×10 mL),饱和食盐水10 mL洗涤。无水硫酸钠干燥、减压蒸馏。固体产品用硅胶色谱柱分离,淋洗液为甲醇/二氯甲烷=0.5%,收集第二带。用三氯甲烷/甲醇重结晶,得黑紫色固体粉末,常温下干燥得产物。产率37.5%。

1H NMR (CDCl3, 300 MHz): δ 8.98-8.91 (m, 4H), 8.88-8.82 (m, 6H), 8.75 (s, 2H), 8.29-8.28 (m, 2H), 8.16-8.10 (m, 6H), 7.75-7.82 (s, 8H), 3.71-3.77 (s, 35H), -2.85 (s, 2H). MS (TOF) m/z: 1423.67. 1H NMR图谱如图1所示,质谱图如图2所示,综合1H NMR和MS结果表明,所得产物正确。

实施例3荧光探针苝酰亚胺-卟啉大环化合物与二价铅离子作用荧光光谱的变化

将实施例1或实施例2中制备的苝酰亚胺-卟啉大环化合物比率型二价铅离子荧光探针溶于二氯甲烷:甲醇(V:V=1:1)中,配制成浓度为20 µM的苝酰亚胺-卟啉大环化合物溶液,作为储备液。取1 mL储备液到10 mL容量瓶中,分别加入0.02、0.04、0.06、0.08、0.1、0.12、0.14、0.16、0.18、0.2、0.3、0.4、0.5、0.6、0.7、0.8、1 mL的0.2 mM Pb2+溶液,并用二氯甲烷/甲醇(V:V=1:1)定容至10 mL。得到的待测溶液含有2 µM的荧光探针和0.4 µM-20 µM的Pb2+溶液,室温下放置2 h,使铅离子与荧光探针充分反应。相同条件下测试单纯荧光探针溶液,以不加入铅离子作空白对比。上面所述体系用荧光光谱仪测试加入不同铅离子后的荧光光谱,激发波长为418 nm,发射波长范围为550-800 nm,结果如图3所示。实验结果表明随着加入铅离子浓度的不断增多,在653 nm和719 nm处荧光发射峰强度逐渐降低,在607 nm处出现一逐渐增强的新的荧光发射峰,表示荧光探针分子和Pb2+络合形成了一种新的配合物。用荧光探针与Pb2+作用在607 nm和719 nm处的荧光比率值I607/I719作为铅离子识别荧光信号的依据。当铅离子浓度在0.4-22 µM区域内,该荧光比率值随着铅离子的浓度增大逐渐增大,分别在0.4-3.2 µM和3.2-22 µM范围内呈现良好的线性关系,R值为0.98,如图4所示。

实施例4荧光探针苝酰亚胺-卟啉大环化合物与二价铅离子作用的紫外可见吸收光谱变化

向浓度为2 µM荧光探针溶液中分别加入二价铅离子浓度为0.4、0.8、1.2、1.6、2、2.4、2.8、3.2、3.6、4、6、8、10、12、14、16、20 µM,室温下放置2 h,使用UV-2550分光光度计测试其紫外可见吸收光谱,结果如图5所示。从图5中可以看出,随着加入Pb2+的量由 0.4 µM 增加 2 µM 时,溶液在418 nm处的吸光度强度依次减小,但是峰位置依然不变,当加入Pb2+浓度为2.4、2.8、3.2、3.6、4、6、8、10、12、14、16、20 µM 时最大吸收峰位置红移了5 nm左右,且吸收强度依次降低;而在466 nm 处出现了一个随着Pb2+浓度的增加,吸光度逐渐增加的吸收峰。

实施例5荧光探针苝酰亚胺-卟啉大环化合物对不同金属离子的选择性

以Mg2+、Ca2+、Ba2+、Pb2+、Fe2+、Na+、K+、Cd2+、Mn2+、Hg2+、Ni2+、Co2+这12种金属离子作为研究对象,分别向荧光探针溶液中加入上述过量的金属离子,静置2 h,测试其荧光光谱,激发波长为418 nm,实验结果分别见图6和图7所示(序号1-13分别指的是Ba2+、Co2+ 、Pb2+、Mg2+、K+、Mn2+、Hg2+、Ni2+、Ca2+、Fe2+、Cd2+、Na+)。结果表明Pb2+ 荧光强度发生明显的淬灭,而其他11种金属盐离子的溶液荧光强度的变化远远不如Pb2+明显,因此可以证实本发明的探针具有较好的选择性。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1