改性二氮杂萘酮结构聚芳醚砜酮树脂、微孔材料及制备方法与流程

文档序号:11469768阅读:206来源:国知局
改性二氮杂萘酮结构聚芳醚砜酮树脂、微孔材料及制备方法与流程
本发明涉及高分子材料
技术领域
,具体涉及一种改性二氮杂萘酮结构聚芳醚砜酮树脂、改性二氮杂萘酮结构聚芳醚砜酮微孔材料以及制备方法。
背景技术
:微孔发泡材料是指泡孔密度范围在109~1015个/cm3之间,泡孔尺寸(比传统的泡沫材料小1~2个数量级)范围在0.1~10μm之间的一类新型材料。这一概念最早由美国麻省理工学院(mit)机械系的suh教授等人提出,而且在过去的二十几年里,已经得到了深入的研究。相对于未发泡材料,微孔发泡材料的独特结构使其在冲击强度、韧性和抗疲劳等方面具有优良的性能,热稳定性高,介电常数低,热导率低,同时具有比强度高,可改善光学、隔热和隔音性能等优点。这些优点使微孔发泡材料得到了广泛的关注,并且促进了微孔发泡技术的发展,如间歇式发泡、连续挤出发泡以及注塑成型发泡等。其中注塑成型发泡由于具有注射压力小、成型周期短、节省材料等优点,使其成为了发展最为迅速的微孔发泡技术之一。二氮杂蔡酮结构聚醚砜酮树脂(ppesk)是一类新型高性能工程塑料,其玻璃化温度为230~370℃之间(可调控),耐热性优于聚醚醚酮(peek),且可溶解,是目前耐热等级最高的可溶性聚芳醚新品种,综合性能优于传统耐高温树脂,性价比高,是制备高性能树脂基复合材料的理想基体选材,具有很好的应用前景。目前,关于ppesk的合成以及复合材料制备及性能研究等方面的文献较多,但尚未见到有关于ppesk微孔材料制备或性能研究方面的报道。因此,获得ppesk微孔材料对于进一步拓展该材料的应用领域具有重要意义。聚合物微孔材料的应用由基体本身性质和泡孔结构(泡孔大小、分布、泡孔密度及开/闭孔等)两方面因素共同决定。而气泡的生长和固化则强烈的依赖于基体的流变学性质。从气泡生长动力学来看,聚合物的粘弹性是一个主要的控制因素,特别是在气泡成核生长初期需要小的粘度以利于气泡形成。因此,具有适当的流变性质是获得优良聚合物泡沫材料的前提。然而ppesk虽然综合性能优异,但熔体粘度太高,常规的热成型加工较为困难,更无法直接利用超临界流体微孔注射成型(mucell)的方式进行发泡,严重制约了其作为微孔材料的应用。技术实现要素:本发明要解决的技术问题是通过共混改性的方法来获得适用于mucell注射成型方式的改性ppesk树脂,并利用mucell注射成型的方式获得改性ppesk微孔材料。本发明还要提供改性ppesk树脂和改性ppesk微孔材料的制备方法。本发明的目的之一,在于提供了一种改性二氮杂萘酮结构聚芳醚砜酮树脂,所述的改性二氮杂萘酮结构聚芳醚砜酮树脂,由如下重量份的原材料配制而成:ppesk树脂6~9重量份、pps树脂1~4重量份、磨碎玻璃纤维不超过1重量份。所述的ppesk树脂,熔点为310~320℃,玻璃化转变温度为233℃,起始热分解温度>500℃;所述pps树脂熔点290~295℃,玻璃化转变温度为89℃,起始热分解温度>490℃;所述磨碎玻璃纤维长度为80~100μm,直径为15~25μm。相应的,作为本发明的目的之一,本发明提供了上述改性二氮杂萘酮结构聚芳醚砜酮树脂的制备方法,包括:步骤一、配料将ppesk树脂、pps树脂、磨碎玻璃纤维按照上述重量份称取,并经140℃,6小时的烘干预处理后,加入到高速配料搅拌机中混合3~5分钟,得到预混料;步骤二、挤出将步骤一得到的预混料置于双螺杆中经熔融挤出造粒,挤出工艺为:双螺杆机温度区:一段温度270~280℃、二段温度290~310℃、三段温度315~330℃、四段温度320~340℃、五段温度330~350℃、六段温度340~360℃、机头温度335~355℃;主机频率:20~24hz;喂料频率:22~25hz;切粒机转速:200~400r/min。将挤出的物料浸入水槽中冷却,送入切粒机中切粒,最后将切好的粒子打包,即制成改性二氮杂萘酮结构聚芳醚砜酮树脂。本发明的另一个目的在于,在制备得到改性二氮杂萘酮结构聚芳醚砜酮树脂的基础上,提供进一步获得改性二氮杂萘酮结构聚芳醚砜酮微孔材料的制备方法。具体实现方式如下:改性二氮杂萘酮结构聚芳醚砜酮微孔材料的制备方法,包括:将改性二氮杂萘酮结构聚芳醚砜酮树脂粒料经140℃,6小时的烘干预处理后利用超临界流体注塑机进行注塑发泡。所用发泡剂为超临界co2,进气量为0.1~1.0%,注塑机各段温度为:料筒270~280℃,后段290~310℃,中段310~330℃,前段330~350℃,喷嘴335~360℃。模具温度150~170℃。本发明的再一个目的,在于保护根据前述改性二氮杂萘酮结构聚芳醚砜酮微孔材料的制备方法制备得到的改性二氮杂萘酮结构聚芳醚砜酮微孔材料。本申请中,采用的ppesk树脂熔融粘度太高,很难直接用于挤出造粒或注塑成型,而且,熔体粘度过高会造成超临界流体难以扩散进入聚合物熔体内部,无法得到相应的微孔材料。因此,本发明利用熔体粘度较低、加工性能优异的pps树脂作为改性剂,改善ppesk的加工流动性。通过对pps/ppesk共混体系的流变行为研究(图1)证明:pps的引入可以有效降低ppesk的熔体粘度,当pps与ppesk比例为4:6时,共混体系粘度较纯ppesk降低了一个数量级;通过对pps/ppesk共混体系的玻璃化转变温度研究(图2)表明:在该聚合物共混体系中,pps相与ppesk相并不能达到完全相容,随着pps含量的增加,共混体系显示出两个相互靠近的玻璃化转变温度充分证明该共混体系是一个部分相容体系,当分散相相筹尺寸较小时,两相的界面可以充当异相成核点,起到异相成核的作用,异相成核作用能极大地提高成核密度和泡孔的均匀性,减小泡孔尺寸,因此,本专利所述pps/ppesk共混体系(部分相容体系)是为了获得其微孔材料而专门设计的;通过接触角法测试以及相应的计算表明:pps与ppesk的界面张力为0.23mn/m,粘附功为99.52mn/m,较小的表面张力以及较高的粘附功说明pps/ppesk共混体系中两相扩散程度较高,且两相粘结强度较强,这是其力学性能的重要保障。进一步的力学性能测试表明(图3),随着pps含量的增加,共混体系的拉伸及弯曲强度略有增加;通过对pps/ppesk共混体系热稳定性的测试表明(图4):pps/ppesk共混体系的耐热性与纯ppesk树脂相当,即,pps的引入并未造成ppesk耐热性的损失。以上结论均表明,本发明利用pps改性ppesk可以有效的降低ppesk的熔体粘度,同时又不会造成ppesk力学性能以及耐热性的降低,除此之外,本发明巧妙的利用pps与ppesk部分相容的特性,使两相界面在发泡过程中起到异相成核作用以提高成核密度和泡孔的均匀性,减小泡孔尺寸。本发明充分考虑树脂体系的加工性、力学性能以及发泡过程,选用磨碎玻璃纤维作为辅助填料。玻璃纤维是热塑性高分子复合材料制备过程中最为常见的一种增强填料,为了弥补材料发泡所造成的力学性能下降,需要添加适当的增强填料。普通短切纤维或长纤维虽然具有较为明显的增强作用,但会引起聚合物熔体粘度的急剧上升,不利于发泡过程中泡孔的形成与生长,而且普通短切纤维或长纤维尺寸太大,也无法起到异相成核的作用。因此,本发明利用磨碎玻璃纤维作为增强填料,一方面不会太过明显的造成聚合物熔体粘度的上升,另一方面也能起到异相成核的作用,有利于泡孔结构的优化。在本申请中,发明人首次提出了改性ppesk微孔材料及制备方法。本发明利用pps树脂作为改性剂降低ppesk的熔体粘度的同时利用pps与ppesk的部分相容的特性,促进了发泡过程中的异相成核,从而通过mucell注射成型的方式获得了泡孔密度和均匀性较高,泡孔尺寸较小的微孔材料。此外由于材料制备过程中还使用了磨碎玻璃纤维作为异相成核剂和增强材料,在异相成核方面有一定促进作用,所得微孔材料比强度与实体未发泡材料相当,而且冲击强度明显优于实体未发泡材料。本发明ppesk微孔材料在继承树脂本身优异性能的同时又赋予其特殊的泡孔结构,其表观密度较同组份实体材料降低了近30%,是实现材料轻量化的有效方法,大大的拓宽了ppesk树脂的应用范围,同时,本发明对特种工程塑料基微孔材料的发展也具有指导性的意义。附图说明图1为不同pps含量的pps/ppesk共混体系330℃下的流变曲线;图2为不同pps含量的pps/ppesk共混物的dma曲线;图3为不同pps含量的pps/ppesk共混物力学性能;图4为不同pps含量的pps/ppesk共混物热失重曲线;图5为实例1所得材料断面形貌;图6为实例2所得材料断面形貌;图7为实例3所得材料断面形貌;图8为实例4所得材料断面形貌;具体实施方式下面通过实施例对本发明作进一步阐述:实施例1按以下重量配比的原材料配制原料:原材料名称质量份数ppesk树脂9pps树脂1磨碎玻璃纤维1实施例2按以下重量配比的原材料配制原料:原材料名称质量份数ppesk树脂8pps树脂2磨碎玻璃纤维1实施例3按以下重量配比的原材料配制原料:原材料名称质量份数ppesk树脂7pps树脂3磨碎玻璃纤维1实施例4按以下重量配比的原材料配制原料:原材料名称质量份数ppesk树脂6pps树脂4磨碎玻璃纤维1以上实施例采用的原材料,其中ppesk熔点为310~320℃,玻璃化转变温度为233℃,起始热分解温度>500℃;所述pps树脂熔点290~295℃,玻璃化转变温度为89℃,起始热分解温度>490℃;所述磨碎玻璃纤维长度为80~100μm,直径为15~25μm。以上实施例中,最终制备得到改性ppesk微孔材料的制备方法,均包括以下步骤:1)配料步骤将ppesk树脂、pps树脂、磨碎玻璃纤维经140℃,6小时的烘干预处理后加入高速配料搅拌机中混合3~5分钟。2)挤出步骤将混合后的预混料置于双螺杆中经熔融挤出造粒,其挤出工艺为:双螺杆机温度区:一段温度270~280℃、二段温度290~310℃、三段温度315~330℃、四段温度320~340℃、五段温度330~350℃、六段温度340~360℃、机头温度335~355℃;主机频率:20~24hz;喂料频率:22~25hz;切粒机转速:200~400r/min。将挤出的物料浸入水槽中冷却,送入切粒机中切粒,最后将切好的粒子打包,即制成改性ppesk树脂。3)超临界流体微孔注塑将步骤2中所得粒料经140℃,6小时的烘干预处理后利用超临界流体注塑机进行注塑发泡。所用发泡剂为超临界co2,进气量为0~0.5%,注塑机各段温度为:料筒270~280℃,后段290~310℃,中段310~330℃,前段330~350℃,喷嘴335~360℃。模具温度150~170℃。图5~8分别给出了实例1~4所得材料的断面形貌。从图5可以看出,实例1所得材料基本上仍然为实体材料,材料断面的孔洞为玻纤拔出所留下的空隙,而并非超临界co2发泡所致,参照图1可知,其原因在于实例1中pps与ppesk的质量比仅为1:9,共混体系粘度仍然较高,在注塑过程中,超临界流体难以进入聚合物熔体内部形成气核进而形成泡孔,因此无法获得其微孔材料;从图6可看出,实例2所得材料内部已有一定量的泡孔,这是由于pps含量的增加导致共混体系熔融粘度进一步降低,相对于实例1而言,此时有一定量的超临界流体可以在注塑过程中进入聚合物熔体内部,进行成核及泡孔生长,但由于体系粘度任然较高,因此所得材料泡孔密度较低,分布不均,大小也层次不齐;从图7可以看出,实例3所得材料相对于前两个实例有大幅度的改善,泡孔均一且尺寸较小,这是由于聚合物熔体粘度进一步降低,有利于微孔注塑发泡过程中气核的形成与气泡的生长;从图8可以看出,实例4所得材料较为理想,泡孔密度较高,尺寸较小,而且分布均匀,这是由于共混体系熔体粘度较为适中,能很好的与mucell注塑成型方式相匹配,同时作为部分相容体系,分散相与连续相的界面可充当异相成核点,因此所得微孔材料较为理想。将实施例4所得微孔材料与实体未发泡材料的性能对照如下表所示:性能微孔材料实体材料平均孔径(m)17.7~泡孔密度(个/cm3)4.78×109~表观密度(g/cm3)1.091.5比强度(n〃m/kg)6.6×1046.0×104缺口冲击强度(kj/m2)47尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1