一种含醛基的两亲性氟硼二吡咯衍生物及其制备方法和应用与流程

文档序号:11399023阅读:850来源:国知局
一种含醛基的两亲性氟硼二吡咯衍生物及其制备方法和应用与流程

本发明属于超分子荧光传感薄膜材料技术领域,具体涉及一种含醛基的两亲性氟硼二吡咯衍生物,该衍生物的制备方法,以及该衍生物在检测苯胺气体中的应用。



背景技术:

有机胺污染是严重的社会问题以及健康问题的根源之一,因为有机胺广泛存在于制药工厂、化工厂、制革厂、肉类食品加工厂、垃圾桶和下水道等中,而有机胺会对人体的皮肤、呼吸道系统、造血系统、神经系统、泌尿系统等造成严重的或者潜在的危害,它还会导致角膜浑浊,视力模糊,甚至癌症的发生。

苯胺作为有机胺的一种,又称阿尼林、阿尼林油、氨基苯,是一种无色油状、有刺激性气味的液体。它在生产中的应用却很广泛,例如在印染工业中用于染料苯胺黑,在农业生产中用于生产许多杀虫剂、杀菌剂,是橡胶助剂的重要原料,也是医药磺胺药的原料,同时也是生产香料、塑料、油漆、胶片等的中间体。短期内皮肤吸收或吸入大量苯胺者会出现高铁血红蛋白血症,严重时会头昏、头痛、乏力、胸闷,甚至意识障碍。值得一提的是苯胺是肺癌的标志物,这样就可通过对人的呼吸道气体的检测实现对肺癌的简单、快速的判断。

因此,寻找一种低成本、高效、灵敏检测苯胺的方法一直受到科研工作者的高度重视和广泛关注。在过去的几十年里,研究者付出很大的努力发展传感器和检测方法,期望实现对有机胺的检测。目前,国内外用于检测苯胺的手段主要有电化学法、分光光度计法、气相色谱法、高效液相色谱法等,这些方法都实现了对苯胺的检测,但它们存在一些不足之处,如操作复杂,反应慢,花费高。因此实现对苯胺的实时灵敏检测仍然是一个大的挑战。荧光传感器由于操作方便,分析速度快,高灵敏度,高选择性和较低的检出限,而备受广大科研工作者的亲睐。



技术实现要素:

本发明所要解决的技术问题在于提供一种含醛基的两亲性氟硼二吡咯衍生物,以及该衍生物的制备方法,并为该衍生物提供一种新的应用。

解决上述技术问题所采用的含醛基的两亲性氟硼二吡咯衍生物的结构式如下所示:

上述含醛基的两亲性氟硼二吡咯衍生物的制备方法由下述步骤组成:

1、制备式ii化合物

在氮气保护下,以无水二氯甲烷为溶剂,将式i所示的醚氧链修饰的对羟基苯甲醛与2,4-二甲基吡咯、2,3-二氯-5,6-二氰基对苯醌、三氟化硼二乙醚、三乙胺按摩尔比为1:(1~3):(0.5~1.5):(12~14):(10~12),室温搅拌反应,分离纯化产物,得到式ii化合物,其反应方程式如下:

2、制备含醛基的两亲性氟硼二吡咯衍生物

在氮气保护和冰浴条件下,将三氯氧磷、n,n-二甲基甲酰胺混合均匀,再逐滴加入式ii化合物的无水二氯乙烷溶液,式ii化合物与三氯氧磷、n,n-二甲基甲酰胺的摩尔比1:(120~130):(150~160),40~60℃搅拌反应1~3小时,分离纯化产物,得到含醛基的两亲性氟硼二吡咯衍生物,其反应方程式如下:

上述步骤1中,优选醚氧链修饰的对羟基苯甲醛与2,4-二甲基吡咯、2,3-二氯-5,6-二氰基对苯醌、三氟化硼二乙醚、三乙胺的摩尔比为1:2:1:13:11。

上述步骤2中,优选式ii化合物与三氯氧磷、n,n-二甲基甲酰胺的摩尔比为1:128:154。

本发明含醛基的两亲性氟硼二吡咯衍生物在检测苯胺气体中的用途,具体检测方法如下:

将含醛基的两亲性氟硼二吡咯衍生物溶于1-丁基-3-甲基咪唑四氟硼酸盐中,配制成15~25μmol/l含醛基的两亲性氟硼二吡咯衍生物储备液;将含醛基的两亲性氟硼二吡咯衍生物储备液与具有亲疏水微区的金基底(根据公布号为cn105524611a中的方法制备)相接触,在亲水性巯基十一烷酸单分子层区域形成液滴直径为25~100μm的有序图案,制备成离子液体微阵列单分子层荧光传感薄膜;将离子液体微阵列单分子层荧光传感薄膜置于不含苯胺的空气中,采用荧光光谱仪测定传感薄膜荧光发射强度i0,然后将离子液体微阵列单分子层荧光传感薄膜置于不同浓度苯胺蒸汽中,采用荧光光谱仪测定波长为509nm下不同浓度苯胺体系对应的荧光发射强度i,绘制i/i0值随苯胺浓度变化的标准曲线;按照上述方法用荧光光谱仪测量待测空气的荧光强度,结合标准曲线的线性方程即可实现对待测空气中苯胺气体的定性和定量检测。与现有技术相比,本发明具有的有益效果如下:

1、本发明含醛基的两亲性氟硼二吡咯衍生物是以含有醛基的氟硼二吡咯主体分子为疏水头基、醚氧链为亲水尾巴的两亲性荧光分子,其制备方法简单、反应条件温和、产率高。

2、本发明以超分子自组装原理为理论依据,利用含醛基的两亲性氟硼二吡咯衍生物的表面富集特性实现荧光物种在微阵列化的离子液体气液界面的有序组装,形成分子层次上高度有序,微米尺度上规则排布的新型荧光传感材料。

3、采用本发明含醛基的两亲性氟硼二吡咯衍生物制备的离子液体微阵列单分子层荧光传感薄膜可用于苯胺气体的快速高选择性检测,并且可以循环利用。

附图说明

图1是离子液体微阵列单分子层荧光传感薄膜的金相显微镜照片。

图2是离子液体微阵列单分子层荧光传感薄膜的荧光显微镜照片。

图3是离子液体微阵列单分子层荧光传感薄膜在苯胺饱和蒸汽压下浸泡前后的荧光发射光谱图。

图4是离子液体微阵列单分子层荧光传感薄膜在空气和苯胺饱和蒸汽压下509nm处的荧光强度随时间变化的点线图。

图5是离子液体微阵列单分子层荧光传感薄膜对苯胺气体可逆性传感的示意图。

具体实施方式

下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。

实施例1

1、制备式ii化合物

在氮气保护下,将1.20g(3.84mmol)式i所示的醚氧链修饰的对羟基苯甲醛、0.73g(7.68mmol)2,4-二甲基吡咯溶于200ml无水二氯甲烷中,滴加100μl三氟乙酸,室温搅拌12小时,然后加入0.87g(3.84mmol)2,3-二氯-5,6-二氰基对苯醌,搅拌40分钟,再加入5.85ml(42.24mmol)三乙胺,搅拌20分钟,加入6.27ml(50.0mmol)三氟化硼二乙醚,搅拌40min。依次用超纯水(25ml×2次)、饱和nacl水溶液(25ml×2次)洗涤,所得有机相用无水硫酸钠干燥,减压蒸除二氯甲烷,所得粗产品以乙酸乙酯和石油醚的体积比为1:1的混合溶剂为流动相、硅胶为固定相进行柱层析纯化,得到红色固体369mg,即式ii化合物,其产率为18.5%。反应方程式如下:

所得式ii化合物的结构表征数据为1hnmr(600mhz,cdcl3,me4si)δh:7.15(2h),7.02(2h),5.98(2h),4.18(2h),3.91(2h),3.69(10h),3.56(2h),3.38(3h),2.55(6h),1.42(6h)。

2、制备含醛基的两亲性氟硼二吡咯衍生物

在氮气保护下,将7.17ml(92.20mmol)n,n-二甲基甲酰胺和7.17ml(77.0mmol)三氯氧磷在冰浴条件下搅拌均匀,然后逐滴加入溶解于70ml二氯乙烷的式ii化合物(316mg,0.60mmol),50℃搅拌反应2小时,冷却至室温,将反应液慢慢倒入处于冰水浴中的饱和碳酸氢钠水溶液(200ml)中,搅拌30分钟,用超纯水(100ml×2次)洗涤,所得有机相用无水硫酸钠干燥,减压蒸除二氯甲烷,所得粗产品以乙酸乙酯和石油醚的体积比为3:1的混合溶剂为流动相、硅胶为固定相进行柱层析纯化,得到粉红色固体289mg,即含醛基的两亲性氟硼二吡咯衍生物,其产率为89%,反应方程式如下:

所得含醛基的两亲性氟硼二吡咯衍生物的结构表征数据为:1hnmr(600mhz,cdcl3,me4si)δh:10.01(1h),7.15(2h),7.07(2h),6.15(1h),6.21(2h),3.92(2h),3.68(10h),3.56(2h),3.38(3h),2.82(3h),2.61(3h),1.71(3h),1.48(3h)。

实施例2

实施例1中含醛基的两亲性氟硼二吡咯衍生物在检测苯胺气体中的应用,具体检测方法如下:

将含醛基的两亲性氟硼二吡咯衍生物溶于1-丁基-3-甲基咪唑四氟硼酸盐中,配制成20μmol/l含醛基的两亲性氟硼二吡咯衍生物储备液;将含醛基的两亲性氟硼二吡咯衍生物储备液与具有亲疏水微区的金基底相接触,在亲水性巯基十一烷酸单分子层区域形成液滴直径为50μm的有序图案,制备成离子液体微阵列单分子层荧光传感薄膜(见图1和图2)。

将离子液体微阵列单分子层荧光传感薄膜置于不含苯胺的空气中,采用fls920型单光子计数时间分辨荧光光谱仪测定传感薄膜荧光发射强度i0,然后将离子液体微阵列单分子层荧光传感薄膜置于饱和苯胺蒸汽中,采用荧光光谱仪测定波长为509nm下体系对应的荧光发射强度i,结果见图3,并绘制i/i0值随苯胺浓度变化的标准曲线,结果见图4。由图3可见,该离子液体微阵列单分子层荧光传感薄膜在苯胺饱和蒸汽压下,荧光强度有大幅度的猝灭,说明此荧光传感薄膜对苯胺蒸汽有很高的响应性。由图4可见,该离子液体微阵列单分子层荧光传感薄膜对苯胺气体具有很快的响应速度。

将离子液体微阵列单分子层荧光薄膜置于不含苯胺的空气中,采用fls920型单光子计数时间分辨荧光光谱仪测定波长为509nm下薄膜的荧光发射强度,然后将离子液体微阵列单分子层荧光传感薄膜置于饱和苯胺蒸汽中,采用荧光光谱仪测定波长为509nm下体系的荧光发射强度,而后将薄膜置于负压环境40分钟后,测定体系在509nm处的荧光强度,进行该循环七次,结果见图5。由图5可知,每次暴露于苯胺饱和蒸汽后,薄膜的荧光被猝灭90%,将薄膜置于负压环境40分钟后,薄膜的荧光几乎完全恢复,并且薄膜对苯胺的响应程度并未因为使用次数的增加而降低,该循环至少可以进行7次以上,表明薄膜具有很好的传感可逆性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1