一种具有光反应活性的配位聚合物及其制备方法和应用与流程

文档序号:14239507阅读:1239来源:国知局
一种具有光反应活性的配位聚合物及其制备方法和应用与流程

本发明涉及一种具有光反应活性的配位聚合物及其制备方法和应用。



背景技术:

近年来,出于绿色环保的考虑,固相反应在有机化合物的合成领域受到科学家们广泛的关注。对于一些高区位选择性和高立体选择性的化合物,固相反应通常是一种非常有效的合成方法,因为在传统的溶液合成方法中很难或根本不可能实现。光催化[2+2]环加成反应是一种非常有趣的固态有机化学反应,这类反应不仅可以在对光敏感的有机化合物中发生,也可以在对光敏感的配位化合物中发生。利用配位聚合物为载体,有序排列含c=c基团的有机化合物,当这些有机物的c=c基团平行排列且距离在合适的范围内,每一对分子就可以在紫外光的催化下发生聚合而形成相应的环丁烷衍生物。

对于不对称单烯烃化合物,烯烃有两种排列方式分别是“头头”模式和“头尾”模式。若在传统的溶液反应中发生[2+2]环加成反应,那么可能生成两种环丁烷衍生物同分异构体,而这两种环丁烷衍生物同分异构体的物理和化学性质非常相似,所以很难将它们彻底分开。而利用配位聚合物模板剂的作用,我们可以高产率得到单一结构的环丁烷衍生物。因此,在固相反应中,利用晶体工程控制有机分子的堆积方式进一步提高其光反应活性和区位选择性是一种非常有效的方法。



技术实现要素:

为了避免上述现有技术所存在的不足,本发明旨在提供一种具有光反应活性的配位聚合物及其制备方法和应用。本发明通过配位聚合物模板剂的作用,可以高效地合成区位专一结构的环丁烷衍生物。

本发明具有光反应活性的配位聚合物,为[三镉-双(1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯)-双(1,3,5-苯三甲酸基)·双水]n。其中n为重复单元数,是任意正整数。

本发明具有光反应活性的配位聚合物的制备方法,其特征在于包括如下步骤:

步骤1:将1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯2.96g溶于40ml二氯甲烷中,室温下搅拌10分钟,过滤,收集滤液,将滤液置于室温下挥发除去溶剂,得到淡黄色棒状1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯晶体;

1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯的化学结构式如下:

所述1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯晶体中每个1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯分子是顺式构象,呈现“v”字形状;相邻烯烃双键间的距离为超出了schmidt烯烃环加成理论所要求的距离,对光稳定,不发生化学反应。

步骤2:将步骤1制备的1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯晶体1.97g、1,3,5-苯三甲酸2.10g和四水合硝酸镉4.62g加入到100ml反应釜中,以n,n′-二甲基甲酰胺和水为混合溶剂(60ml),于90℃反应48小时,反应结束后缓慢冷却至室温,得到配位聚合物的晶体。

步骤2中,混合溶剂中n,n′-二甲基甲酰胺和水的体积比为5:1。

本发明具有光反应活性的配位聚合物的应用,是用于制备区位专一的环丁烷衍生物;所述区位专一结构的环丁烷衍生物的结构式为:

通过本发明具有光反应活性的配位聚合物制备单一结构的环丁烷衍生物的方法,包括如下步骤:

将所述配位聚合物置于发射波长为365nm的高压汞灯(200w)下10cm处,光照5小时,即可得区位专一结构的环丁烷衍生物。

配位聚合物中,其相邻的两分子烯烃化合物1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯以“头尾”模式排列,相邻烯烃双键间的距离为经紫外光催化,形成新化合物1,3-双(2-氨基-3-吡啶基)-2,4-双(4-吡啶基)环丁烷。反应过程如下:

本发明制备的具有区位专一结构的环丁烷衍生物中,所有的烯烃化合物已经聚合形成新化合物1,3-双(2-氨基-3-吡啶基)-2,4-双(4-吡啶基)环丁烷。

单一晶态的1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯没有光反应活性,将其用于合成配位聚合物之后,经光催化,两分子1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯以“头尾”模式形成区位专一结构的环丁烷衍生物。

本发明利用配位聚合物为模板剂,使配位聚合中的不对称烯烃分子采用“头尾”模式排列,经紫外光催化,可使1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯发生二聚环加成反应,高收率的合成区位专一结构的环丁烷衍生物。

本发明的目的是通过1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯的晶体结构说明纯的1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯晶体不具备光反应活性,而通过配位聚合物可以使1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯具备光反应活性而能用于制备环丁烷化合物。不用1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯的晶体,直接用它的粉末也可以合成文本所述的配位聚合物。

附图说明

图1为1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯的核磁共振氢谱图。

图2为1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯的x-射线晶体结构图。

图3为光照后1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯的核磁共振氢谱图。

图4为[三镉-双(1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯)-双(1,3,5-苯三甲酸基)·双水]n的晶体结构图。

图5为[三镉-1,3-双(2-氨基-3-吡啶基)-2,4-双(4-吡啶基)环丁烷-双(1,3,5-苯三甲酸基)·双水]n的晶体结构图。

具体实施方式

1、1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯的制备:

步骤1:将4-溴甲基吡啶氢溴酸盐12.65g(50mmol)和三苯基膦14.43g(55mmol)置于250ml的反应瓶中,向反应瓶中加入80ml乙腈,加热回流搅拌反应3小时,反应结束后冷却至室温,抽滤,可得氢溴酸溴化季鏻盐24.47g,收率为95%。

步骤2:在手套箱内称量甲醇钠2.70g(50mmol),将甲醇钠溶解于30ml无水甲醇,制成甲醇钠的甲醇溶液;

将2-氨基-3-吡啶甲醛2.44g(20mmol)溶于30ml无水甲醇中,制成2-氨基-3-吡啶甲醛的乙醇溶液。

步骤3:将氢溴酸溴化季鏻盐10.30g(20mmol)加入250ml烧瓶中,加60ml无水甲醇溶解氢溴酸溴化季鏻盐,将反应瓶置于冰水浴中,用高纯氮气置换反应体系中的空气,缓慢地向反应瓶中滴加刚制成的甲醇钠2.70g(50mmol)的甲醇溶液,迅速搅拌,此时溶液缓慢变成淡黄色,待甲醇钠的甲醇溶液全部滴加完后,继续搅拌反应半小时生成内鏻盐;反应结束后,撤掉冰水浴,立即向该反应瓶中滴加2-氨基-3-吡啶甲醛2.44g(20mmol)的甲醇溶液,迅速搅拌,待溶液全部滴加完毕后,继续搅拌,在室温下反应5小时。

步骤4:反应结束后,将溶液用旋转蒸发仪蒸干,向其中加入50ml水,于室温下搅拌,然后用30ml二氯甲烷萃取三次,合并有机相,用旋转蒸发仪将二氯甲烷溶剂蒸干,得到淡黄色的固体。将粗产物用30ml苯洗涤后,用30ml二氯甲烷重结晶,即可得1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯3.36g,收率为85%。

步骤5:将1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯2.96g溶于40ml二氯甲烷中,于室温下搅拌10分钟,然后过滤,收集滤液,将滤液置于室温下挥发1天除去溶剂,可得淡黄色棒状1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯的晶体2.22g,收率为75%。

对1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯进行了元素分析、核磁共振氢谱的表征、x-射线单晶衍射的表征。结果如下:

元素分析(c12h11n3):理论值(%):c,73.07;h,5.62;n,21.30;实验值(%):c,73.25;h,5.51;n,21.52。

1hnmr(400mhz,dmso-d6)δ8.52(dd,j=4.4,1.6hz,2h),7.92(dd,j=4.8,1.6hz,1h),7.81(dd,j=7.6,1.6hz,1h),7.63–7.57(m,3h),7.07(d,j=16.0hz,1h),6.58(dd,j=7.6,4.8hz,1h),6.29(s,2h).见图1。

1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯的晶体学参数:c12h11n3,mr=197.24,monoclinic,spacegroupp21/n,α=90.00°,β=93.72(3)°,γ=90.00°,z=4,dc=1.254g·cm-3,μ=0.078mm-1,17922reflectionsmeasured,2405uniquereflections(rint=0.0327),1737observedreflections(i>2σ(i)),137parameters,r1=0.0450,wr2=0.1183,s=1.046.

1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯的x-射线晶体结构图见图2。

2、晶态的1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯光反应活性

将1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯的晶体0.20g置于发射波长为365nm的高压汞灯(200w)下10cm处光照24小时,经核磁共振氢谱分析:光照前后,核磁共振氢谱图未发生变化。见图3。

3、配位聚合物的制备

1-(2-氨基-3-吡啶基)-2-(4-吡啶基)-乙烯1.97g(10mmol),1,3,5-苯三甲酸2.10g(10mmol),四水合硝酸镉4.62g(15mmol)加入到100ml反应釜中,以n,n′-二甲基甲酰胺和水(v:v=5:1)60ml为溶剂于90℃反应48小时,反应结束后缓慢冷却至室温,得到配位聚合物的晶体4.31g,收率为73%。

对配位聚合物进行了元素分析、x-射线单晶衍射的表征。结果如下:

元素分析(c42h32n6o14cd3):理论值(%):c,42.68;h,2.73;n,7.11;实验值(%):c,42.55;h,2.51;n,7.32。

配位聚合物的晶体学参数:c42h32n6o14cd3,mr=1181.97,monoclinic,spacegroupc2/c,α=90.00°,β=133.007(15)°,γ=90.00°,z=4,dc=1.811gcm-3,μ=1.533mm-1,38668reflectionsmeasured,4984uniquereflections(rint=0.0247),4639observedreflections(i>2σ(i)),294parameters,r1=0.0277,wr2=0.0737,s=1.161.

配位聚合物的x-射线单晶结构图见图4。

4、环丁烷衍生物的制备

将配位聚合物的晶体2.36g(2mmol)置于发射波长为365nm的高压汞灯(200w)下10cm处光照5小时,即可得含环丁烷衍生物的配位聚合物晶体2.36g,收率为100%。

对含环丁烷衍生物的配位聚合物进行了元素分析、x-射线单晶衍射的表征。结果如下:

元素分析(c42h32n6o14cd3):理论值(%):c,42.68;h,2.73;n,7.11;实验值(%):c,42.59;h,2.63;n,7.28。

含环丁烷衍生物的配位聚合物的晶体学参数:c42h32n6o14cd3,mr=1181.97,monoclinic,spacegroupc2/c,α=90.00°,β=134.634(14)°,γ=90.00°,z=4,dc=1.838gcm-3,μ=1.556mm-1,37860reflectionsmeasured,4915uniquereflections(rint=0.0543),3993observedreflections(i>2σ(i)),294parameters,r1=0.0324,wr2=0.0588,s=1.078.

含环丁烷衍生物的配位聚合物的x-射线单晶结构图见图5。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1