一种改性环糊精基多孔微球的制备方法与流程

文档序号:16100796发布日期:2018-11-28 00:04阅读:658来源:国知局
一种改性环糊精基多孔微球的制备方法与流程

本发明涉及聚合物微球合成领域,特别是涉及一种改性环糊精基多孔微球的制备方法。



背景技术:

聚合物微球因其均匀性、结构的规整性、较大的比表面积及易于功能化等特点而广泛应用于环境科学、药物化学、材料化学等多领域的吸附、分离、催化、载体应用中。其中以天然高分子为原料制备的聚合物微球因其良好的生物相容性、生物可降解性,不存在毒副作用、价格低廉等优点而在药物控释系统、吸附载体等方面备受关注。

β-环糊精是一种由7个葡萄糖单元构成的具有“外亲水,内疏水”空腔结构的低聚糖,特殊的空腔结构使其对许多尺寸匹配的疏水性分子如药物、金属离子、有机污染物等具有包结作用,从而能够形成包结配合物。以β-环糊精为原料制成的聚合物微球不仅保持了微球本身的特性,还保留了环糊精催化、识别、包含、缓释的能力,在构建智能药物输送体系、高效吸附材料上具有极大的应用前景。

然而,目前多以乳液聚合法制备环糊精基微球,在制备过程中需依靠乳化剂来改善各种构成相之间的表面张力,其中反相乳液聚合法还需加入油相(例如煤油)与乳化剂混合形成油包水乳液进行聚合,专利201710283918.5提出了以环氧氯丙烷为交联剂,含有乳化剂的煤油为油相制备得到包裹有1-甲基环丙烯的β-环糊精微球应用于保鲜材料。但此类方法存在体系复杂、后期处理繁琐、乳化剂、油相等杂质难以除尽以及分离过程繁杂等缺陷。相比之下,分散聚合法能够在一定程度上克服上述问题。分散聚合反应体系一般由单体、引发剂、稳定剂以及反应介质组成,反应前为均相体系,随着反应的进行,聚合物逐渐从介质中析出,在稳定剂的作用下形成稳定的核心,在此基础上经过聚合物微粒的不断增长,最终以微球形成分散在介质中。分散聚合法多体现在其他材料微球的制备,其中以聚苯乙烯微球较为常见。专利201710207028.6公开了预活化聚苯乙烯微球的制备方法,以苯乙烯为单体,聚乙烯吡咯烷酮为分散稳定剂,30%乙醇水溶液为分散介质,偶氮二异丁腈为引发剂,用分散聚合工艺制备聚苯乙烯微球,再以微球预活化液预活化微球。此外,为了获得合适的极性,常常需选用混合溶剂作为反应介质。专利201610751261.6提出了以乙醇/水为分散介质,大分子RAFT为稳定剂,加入光引发剂的条件下制备聚合物微球。尽管常规分散聚合法具有体系相对简单、产物易于分离等优点,但仍需要加入引发剂、稳定剂等助剂,并且为了获得合适的极性,常常需选用混合溶剂作为反应介质(例如专利201610751261.6以乙醇/水的混合溶剂作为分散介质制备聚合物微球)。



技术实现要素:

针对上述问题,本发明的目的在于提供一种比常规分散聚合法更为简易的聚合物微球制备方法。

本发明提供的聚合物微球制备方法基于改性β-环糊精聚合物,具体技术方案如下步骤:

(1)将β-环糊精溶于NaOH溶液中,60℃下搅拌碱化0.5h,之后加入氯乙酸钠,60℃下继续搅拌反应1h后用盐酸将溶液pH调至7,然后再向溶液中加入无水乙醇并快速搅拌至产生白色沉淀后将溶液静置冷藏12~14h;冷藏处理后的溶液进行抽滤,抽滤分离得到的固体用无水乙醇洗涤后再经真空干燥即为羧甲基-β-环糊精;本步骤中各反应原料添加量的质量份数分别为:NaOH溶液50~60份,β-环糊精11~14份,氯乙酸钠28~36份;其中,NaOH溶液的浓度为0.04~5mol/L。

(2)将步骤(1)得到的羧甲基-β-环糊精溶于NaOH溶液中,之后依次加入聚乙二醇600和环氧氯丙烷,于55~60℃下搅拌反应,直至溶液变为黏度显著增大的非均匀混合物;本步骤中各反应原料添加量的质量份数分别为:羧甲基-β-环糊精9~11份,聚乙二醇600为11~13份,环氧氯丙烷13~15份,NaOH为20~22份,余量为水。

(3)将步骤(2)得到的非均匀混合物转入截留分子量为6000~8000的透析袋中,在蒸馏水中透析至少24h,透析后的产物经干燥后即为β-环糊精聚合物多孔微球。

优选地,所述步骤(2)中,所述环氧氯丙烷的加入方式为逐滴加入,随后的搅拌反应具体采用如下操作:先于55~60℃下搅拌反应2h,之后室温静置12~14h,最后再于55~60℃下搅拌反应至溶液变为黏度显著增大的非均匀混合物。上述搅拌反应过程中的静置处理有利于反应体系中不同的反应核心均一地扩散聚合,一定程度上有利于微球终产物的均一性。

优选地,所述步骤(3)中,透析后的产物先进行机械分散处理,之后再进行抽滤,抽滤分离得到的固体于-65℃冷冻保存至少12h后再进行所述干燥处理,干燥处理的方式为冷冻干燥。

本发明提供的微球制备方法以水为反应介质,无需引发剂,也无需油相、乳化剂以及其它混合溶剂。本制备方法选用的聚乙二醇600在反应体系中既作为稳定剂,同时又作为软段聚合物参与反应,后期分离处理时无需再脱除稳定剂。与常规分散聚合法相比,本发明提供的微球制备方法所需原料及助剂更少,制备、分离处理更简易,生产成本更低。除了上述优点,本发明提供的微球制备方法以羧甲基-β-环糊精为反应单体,体系中存在大量可电离基团,因而在碱性条件下可提供足够的表面电荷,除了利用静电排斥机理可协助分散并提供稳定性外,也赋予了微球产品更多的功能性(如pH敏感性)。

附图说明:

图1实施例1微球样品(粒径小于500μm)的表面扫描电镜图。

图2实施例1微球样品(粒径小于100μm)的表面扫描电镜图。

图3实施例1微球样品内部存在的不规则多孔结构。

图4实施例1样品的可压缩性能测试效果图。

图5实施例2微球样品的表面扫描电镜图。

图6图5的进一步(局部)放大图。

具体实施方式:

下面结合实施例对本发明技术方案做进一步详细说明。

实施例1

(1)取10gβ-环糊精于三颈烧瓶中,加入40mL0.04mol/L的NaOH溶液,60℃水浴下磁力搅拌碱化0.5h;之后加入24g氯乙酸钠,60℃水浴下磁力继续搅拌1h后用6mol/L的盐酸将溶液pH调至7,然后再向溶液中倒入至少5倍体积的无水乙醇并快速搅拌至产生大量白色沉淀,之后将溶液静置冷藏12h,冷藏处理后的溶液进行抽滤,抽滤分离得到的固体用无水乙醇洗涤后再经真空干燥即为羧甲基-β-环糊精。

(2)取5g羧甲基-β-环糊精于烧杯中,加入29.12g质量分数为35%的NaOH溶液,60℃下磁力搅拌至羧甲基-β-环糊精溶解,之后加入6g聚乙二醇600,再逐滴加入7g环氧氯丙烷,60℃下磁力搅拌至溶液变为黏度显著增大的非均匀混合物,该反应过程通常至少需要7h。

(3)将步骤(2)反应获得的混合物转入截留分子量为6000~8000的透析袋中,在蒸馏水中透析24h,透析后的产物于105℃烘箱中干燥至恒重,即获得羧甲基-β-环糊精聚合物微球。

由实施例1步骤(1)制备获得的羧甲基-β-环糊精的取代度经非水滴定法测定为0.62,最后制备获得的微球粒径为25~5000μm,表现出多分散性。微球的扫描电镜图表明微球表面规则,球形度良好(图1、2),微球内部存在不规则的多孔结构(图3)。进一步的压缩测试表明微球具有良好的可压缩性和弹性,可在外界压力下发生形变,当撤销压力后又可恢复原状(图4)。规则光滑的球形表面以及良好的可压缩性非常有利于微球作为药物载体在超微导管介入技术中的应用。

载药实验:选择50mg实施例1制备的粒径为50~150μm的微球于40mL浓度为1mg/mL的酮康挫水溶液中浸泡24h后取出,通过对比浸泡前后酮康挫水溶液的吸光度变化计算微球载药量。实验结果表明,微球对酮康挫药物的平均载药量为245.33mg/g。

不同pH环境下的释药实验:取50mg粒径为50~150μm的载药微球(微球由实施例1制备获得),分别置于50mL pH为4、6、7、8、10的缓冲液中,随后放入摇床中以150rpm振速振荡,温度为37.5±0.5℃。根据缓冲液前后吸光度变化计算得到药物释放浓度,然后进一步得到累积释放率。结果表明,载药微球在pH为4、6、7、8、10的缓冲液中持续释放12h的平均累积释放率分别为70%、66%、61%、54%、49%,以上结果表明微球对疏水性药物具有良好的缓释能力,且在不同pH刺激响应下的控释能力差异明显。

水处理实验:以质量浓度为30mg/L的甲苯此作为芳香类微污染的废水模拟水样。取50mL模拟废水倒入锥形瓶中,加入50mg由实施例1制备获得的微球样品,于30℃下以150r/min的搅拌速率搅拌一定时间后静置10min。取吸附后的溶液在206nm处测量甲苯的吸光度变化,计算模拟废水中甲苯的去除率。实验表明微球对有机污染物甲苯的平均去除率为87.5%。

实施例2

(1)取11gβ-环糊精于三颈烧瓶中,加入45mL5mol/L的NaOH溶液,60℃水浴下磁力搅拌碱化0.5h;之后加入31g氯乙酸钠,60℃水浴下磁力继续搅拌1h后用6mol/L的盐酸将溶液pH调至7,然后再向溶液中倒入至少5倍体积的无水乙醇并快速搅拌至产生大量白色沉淀,之后将溶液静置冷藏12h,冷藏处理后的溶液进行抽滤,抽滤分离得到的固体用无水乙醇洗涤后再经真空干燥即为羧甲基-β-环糊精。

(2)取10g羧甲基-β-环糊精于烧杯中,加入60.3g质量分数为35%的NaOH溶液,60℃下磁力搅拌至羧甲基-β-环糊精溶解,之后加入12g聚乙二醇600,再逐滴加入14g环氧氯丙烷,先于60℃下搅拌反应2h,之后室温静置12h,最后再于60℃下搅拌反应至溶液变为黏度显著增大的非均匀混合物。

(3)将步骤(2)反应获得的混合物转入截留分子量为6000~8000的透析袋中,在蒸馏水中透析24h,透析后的产物(微球与水的混合物)先用玻璃棒搅拌做机械分散处理,之后再进行抽滤,抽滤分离得到的固体于-65℃的超低温保存箱中冷冻保存12h后再放入冷冻干燥机中冷冻干燥至恒重,即获得羧甲基-β-环糊精聚合物微球。

由实施例2步骤(1)制备获得的羧甲基-β-环糊精的取代度经非水滴定法测定为0.47(羧甲基-β-环糊精的取代度会随氢氧化钠浓度的升高呈现先增大后减小的趋势),最后制备获得的微球粒径为100~200μm。微球的扫描电镜图表明微球表面致密分布有大小及形状不规则的孔隙(图5、6),孔隙结构有利于微球对药物的吸附和承载。

载药实验:实验方法与实施例1相同(但不筛选特定粒径的微球)。实验结果表明,微球对酮康挫药物的平均载药量为318.50mg/g。

不同pH环境下的释药实验:实验方法与实施例1相同(但不筛选特定粒径的微球)。实验结果表明,载药微球在pH为4、6、7、8、10的缓冲液中持续释放12h的平均累积释放率分别为51%、45%、41%、35%、31%,以上结果表明微球对疏水性药物具有良好的缓释能力,且在不同pH刺激响应下的控释能力差异明显。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1