复合动力车辆的控制装置的制作方法

文档序号:3950098阅读:217来源:国知局
专利名称:复合动力车辆的控制装置的制作方法
技术领域
本发明涉及对具有发动机和电动机二者作为动力源的复合动力车辆进行的控制。
背景技术
在具有将扭矩传递至驱动轮的发动机和电动机二者作为动力源的复合动力车辆中,执行控制操作,用于根据诸如电动机的发热状态、可由电池输出的电力或车速的操作状态改变由发动机产生的驱动动力的比例和由电动机产生的驱动动力的比例。这种装置公开于日本待审专利申请文献No.2004-48866中。
在复合动力车辆中,发动机和电动机可在高效操作点处被操作,从而与相关的只有发动机的车辆相比,复合动力车辆是燃料高效的并且具有高排气性能。
当被传送至驱动轴的扭矩的发动机比例为小值时,也就是,当电动机辅助量比例较大时,可减小(由于发动机燃烧状态的恶化而产生的)冲击扭矩或输出偏差对车辆行为的影响。换句话说,在这种状态下,即使排气性能被设定有优先级以及,例如,出现增加冲击扭矩的点火时刻延迟和稀空气-燃料比,车辆的行为也不太会受到不利的影响。
但是,在相关技术中,即使车辆行为恶化产生的影响较小,也没有根据对车辆行为的影响执行改善排气性能的控制操作。因此,仍然可对排气性能进行改善。

发明内容
因此,本发明的目的是减小复合动力车辆中的车辆排放。
为了实现这一目的,根据本发明,提供一种复合动力车辆的控制装置。复合动力车辆包括发动机和电动机二者作为动力源;发动机和电动机扭矩二者可被传送至驱动轴。该控制装置包括编程以持续计算总扭矩的发动机扭矩比例的控制器。该控制器用作随着发动机扭矩比例的减小而将许用冲击扭矩量值设定为较大值,从而控制发动机,以使得发动机的瞬时冲击扭矩不超过许用冲击扭矩量值。应该理解,总扭矩是发动机扭矩量加上被传送至驱动轴的电动机扭矩量。
根据本发明,可执行有效的控制,从而在将发动机的冲击扭矩限制在许用范围内的同时改善发动机的排放,并且在限制由冲击扭矩造成的车辆行为的恶化的同时改善车辆的排放。


图1是包括根据本发明一项实施例的控制装置的复合动力车辆的结构的示意图;图2是示出计算许用冲击扭矩量值的步骤的流程图;图3是示出发动机扭矩比例和许用冲击扭矩量值之间的关系的曲线图;图4是示出执行改善发动机排放的控制操作的步骤的流程图;图5是示出发动机扭矩比例和点火时刻延迟量(或延迟极值)之间的关系的曲线图;图6是示出发动机扭矩比例和气门重叠量(或者气门的提前角)之间的关系的曲线图;图7是示出发动机扭矩比例和空气-燃料比的稀薄度之间的关系的曲线图;图8是示出预热期间的扭矩分布控制操作的步骤的流程图;图9是示出突然加速时执行的扭矩增加延迟控制操作的步骤的流程图;图10是示出突然加速时的扭矩增加延迟控制操作的性能的时间图。
具体实施例方式
本发明的实施例将参照附图在下文进行说明。
图1是包括根据本发明的控制装置20的复合动力车辆的结构的示意图。该车辆包括发动机1和电动机2二者作为动力源。发动机1的扭矩和电动机2的扭矩通过变速器3、将变速器3的输出旋转朝向左和右轮6分配的传送单元4(或者分配器)、和驱动轴5而被传送至驱动轮6。离合器7夹置在发动机1和电动机2之间。本领域技术人员应该理解,通过转换离合器7的接合状态,可在混合行驶模式(在该模式下,车辆在发动机1和电动机2二者的扭矩作用下行驶)和电动机行驶模式(在该模式下,车辆只在电动机2的扭矩作用下行驶)之间转换。发电机8与发动机1的定子结合并且连接至发动机1的曲柄轴,使得发电机8可与发动机1同步地旋转。
发动机1包括改变气门正时的可变气门正时机构30。通过在进气门的开启/关闭期间内设置提前角,可增加与排气门的气门重叠量(进气门和排气门二者都开启的期间)。当气门重叠量被增加时,排气气体的一部分流入进气歧管并且在下一进气冲程被吸入燃烧室。因此,可实现发动机中的排气气体再循环(内EGR)。
发动机1的排气气体通过排气歧管1和排放管12被导入催化转化器13。催化转化器13是三向催化器。排气气体中的HC、CO和NOx在催化转化器13处被净化,之后被排放进入大气。
将曲轴转角传感器21、车速传感器22、油门操作量传感器23和催化剂温度传感器24的检测信号输入到控制器20。曲轴转角传感器21检测发动机1的曲轴转角和转速Ne。车速传感器22根据变速器3的输出旋转检测车速VSP。油门操作量传感器23检测油门踏板操作量APO。催化剂温度传感器24检测催化转化器13的温度Tmpcat。控制器20根据输入信号确定驱动状态,并且根据所确定的驱动状态以集成的方式控制发动机1、电动机2、发电机8和变速器3。
在冷却期间,控制器20延迟发动机1的点火塞33的点火时间并且提高排气温度,使得催化转化器13的温度升高被加速,从而增加冷却期间的排气性能。另外,提前角在进气门的开启/关闭期间用于增加气门重叠量,使得内EGR被增加从而加速燃料雾化。因此,从发动机1排出的HC和CO的量被减小。另外,通过控制用于控制进气的节流阀32和燃料喷射阀31的燃料喷射量,空气-燃料比的稀薄度被增加从而减小从发动机1排出的HC和CO的量。此外,即使在除了冷却的其他时间期间,当可期待通过执行这些控制操作改善发动机1的排气性能即减少排放时,控制器20在必要时执行这些控制操作。
这里,对冲击扭矩的限制和这些控制操作的执行即改善排气性能处于此消彼涨的关系。因此,为了改善排气性能同时限制许用冲击扭矩的范围,计算从驱动轴5传送的扭矩总和(下文称之为“驱动轴传送扭矩”)的扭矩比例Re(从发动机1传送至驱动轴5的扭矩比例,下文称之为“发动机扭矩比例”)从而根据发动机扭矩比例Re计算发动机1的许用冲击扭矩量值。另外,为了防止发动机1的冲击扭矩变得大于该许用扭矩,发动机1的点火时刻的延迟量(或者延迟极值)被增加,气门重叠量(或者气门提前角量)被增加,并且空气-燃料比的稀薄度被增加。
图2是示出计算许用冲击扭矩量值的步骤的流程图。下面将参照图2说明通过控制器20执行的许用冲击扭矩量值的计算。首先,在步骤S1,确定离合器7是否接合。如果离合器接合,那么程序前进至步骤S2,如果离合器未接合,那么程序前进至步骤S3。
在步骤S2,扭矩总量的发动机扭矩比例Re通过传送至驱动轴的发动机扭矩和电动机扭矩的总量和从发动机传送至驱动轴的扭矩进行计算。
应该理解,传送至驱动轴5的总扭矩可使用下述方程总扭矩=r·(tTe-tTg+tTm)得到;其中发动机1的目标扭矩为tTe,电动机2的目标扭矩为tTm,发电机8的目标扭矩为tTg,从变速器3的输入轴到传送单元4的输出轴的减速比为r(=变速器3的变速器变速比rt×传送单元4的减速比rf),因为发动机1的部分扭矩由发电机8消耗并且被传送至驱动轴5。发动机1的扭矩被传送至驱动轴5的那部分等于r·(tTe-tTg)。
因此,发动机扭矩比例Re[%]可通过下述公式(1)进行计算Re=[r·(tTe-tTg)]/[r·(tTe-tTg+tTm)]×100=(tTe-tTg)/(tTe-tTg+tTm)×100(1)这里,虽然发动机1的目标扭矩tTe、电动机2的目标扭矩tTm和发电机8的目标扭矩tTg用于计算发动机扭矩比例Re,但是发动机1的实际扭矩Te、电动机2的实际扭矩Tm和发电机8的实际扭矩Tg可用于计算发动机扭矩比例Re。
在步骤S3,发动机扭矩比例Re类似地进行计算。但是,当程序前进至步骤S3时,离合器7如上所述解除接合。因此,发动机1的扭矩没有被传送至驱动轴5;使得发动机扭矩比例Re为0%。
在步骤S4,根据在步骤S2或S3中计算的发动机扭矩比例Re,许用冲击扭矩量值参照图3所示的曲线图(实直线)进行计算。许用冲击扭矩量值按比例相对于发动机扭矩比例Re进行变化。发动机扭矩比例Re越小,设定的许用冲击扭矩量值越大。
但是,这里,设定曲线图,使得基于发动机扭矩的许用冲击扭矩量值成比例地相对于发动机扭矩比例Re进行变化,该曲线图可设定为使得许用冲击扭矩量值如图3中的虚线所示相对于发动机扭矩比例Re逐步进行变化,或者使得许用冲击扭矩量值仅在如图3的交替长和短划线所示的发动机扭矩比例Re为0%时被增加。
当许用冲击扭矩量值采用这种方式设定时,控制器20根据图4所示的流程图执行步骤S5至S7。在步骤S5,控制器20计算发动机1的当前冲击扭矩。然后,在步骤S6,控制器使当前冲击扭矩与许用冲击扭矩量值相互比较。在当前冲击扭矩小于许用冲击扭矩时,在步骤S7,发动机1的点火正时的延迟量(或者延迟极值)被增加,气门重叠量(或者气门提前角值)被增加,或者空气-燃料比的稀薄度被增加。重复步骤S5至S7,直到发动机1的扭矩等于许用冲击扭矩量值,使得发动机1的排气性能被最大程度地增加。
当前冲击扭矩可根据发动机的旋转偏差确定,该偏差通过曲轴转角传感器21的检测结果确定;或者通过发动机1的管中的内部压力的偏差确定,并且分离地设置检测该内部压力的传感器。
应该理解,发动机1的冲击扭矩不能直接被检测到。需要根据例如旋转偏差对其进行计算从而确定。因此,在上述控制操作中,不用确定许用冲击扭矩量值、点火正时的延迟量(或者延迟极值)、气门重叠量(或者气门提前角量)和空气-燃料比的稀薄度,冲击扭矩可直接地根据发动机扭矩比例Re参照图5至7所示的图表确定。
在这种情况下,发动机扭矩比例Re越小,这三种类型的值被设定得越大。因此,当发动机扭矩比例小时,每个值都被设定为最大程度地增强排气性能。因此,可见可改善排气性能。
类似于许用冲击扭矩量值图表,这些图表可以例如相对于发动机扭矩比例Re成比例地变化、逐步变化或者只在Re的特定值处变化。
冷却期间的扭矩分配控制为了改善冷却期间的排气性能,控制器20进一步以下述方式控制扭矩分配。
图8是示出冷却时通过控制器20执行的扭矩分配控制操作的步骤的流程图。参照图8,首先,在步骤S11,确定催化转化器13的温度Tmpcat是否小于预定温度Tmph(诸如催化转化器13的激活温度)。如果温度Tmpcat大于预定温度Tmph,那么程序结束,因为预热已经完成。只有在冷却期间、当温度Tmpcat小于预定温度Tmph时,程序前进至步骤S12。
接下来,在步骤S12,根据油门踏板操作量APO和车速VSP,参照预定图表计算要求驱动轴扭矩Td,该扭矩是由司机要求的驱动轴扭矩。油门踏板操作量APO越大,计算所得的要求驱动轴扭矩Td的值越大。类似地,车速VSP越高,计算所得的要求驱动轴扭矩Td的值越大。
在步骤S13,确定是否可进行电动机行驶,也就是车辆仅在电动机2扭矩的作用下行驶。是否可进行电动机行驶可通过在电动机2产生最大扭矩Tmmax时确定电动机2能否产生要求驱动轴扭矩Td而确定。更具体地说,确定下述公式是否成立(2)Tmmax-1/r·Td≤ΔT …(2)其中r是从变速器3的输出轴到传送单元4的输出轴的减速比,ΔT是预定值(接近零的正值)。如果由公式(2)表述的关系成立,那么确定电动机行驶是可行的,反之,如果关系不成立,那么确定电动机行驶是不可行的。
如果确定电动机行驶是不可行的,那么程序前进至步骤S14,在该步骤中,如果离合器7没有接合,那么离合器7被接合。
然后,在步骤S15,电动机2的目标扭矩tTm和发电机8的目标扭矩tTg分别设定为电动机2的最大扭矩Tmmax和发电机8的最大扭矩Tgmax。电动机2的最大扭矩Tmmax和发电机8的最大扭矩Tgmax是根据电动机2和发电机8的额定输出以及电动机2和发电机8所连接的电池(未示出)的充电状态确定的值。
电动机2的目标扭矩tTm被设定为最大扭矩Tmmax,从而减小发动机扭矩比例Re,但是,发电机8的目标扭矩tTg被设定为最大扭矩Tgmax,从而增加发动机1的工作负载,以提供提升催化转化器13的温度所需的排气流率。因此,可快速地提升催化转化器的温度。
在步骤S16,为了通过发动机1产生不能由电动机2产生的扭矩量而获得要求驱动轴扭矩Td,发动机1的目标扭矩tTe通过下述公式(3)计算tTe=1/r·Td-tTm+tTg…(3)如果确定电动机行驶是可行的,那么程序前进至步骤S17,在该步骤中,如果离合器7没有解除接合,那么离合器7被解除接合。然后,在步骤S18,电动机2的目标扭矩tTm被设定为1/r·Td,发电机8的目标扭矩tTg被设定为最大扭矩Tgmax。发电机8的目标扭矩tTg被设定为最大扭矩Tgmax,如步骤S15,从而增加发动机1的工作负载,以提供提升催化转化器13的温度所需的排气流率。
在步骤S19,为了通过发动机1产生用于驱动发电机8的足够扭矩,将发动机1的目标扭矩tTe设定为等于tTg。
在步骤S20,对发动机1的扭矩、电动机2的扭矩和发电机8的扭矩进行控制,从而获得在步骤S16或S19中设定的目标扭矩tTe和在步骤S15或S18中设定的目标扭矩tTm和tTg。然后,程序返回至步骤S11。
因此,在冷却期间,通过发动机1产生的扭矩量由扭矩分配控制操作所限制,由此减小发动机扭矩比例Re。因此,随着发动机扭矩比例Re被减小,许用冲击扭矩量值被设定为一较大值,可将点火正时的延迟量设定为一大值,由此增加催化转化器13的温度的提升率。
代替点火时刻的延迟,或者根据点火时刻的延迟,气门重叠量(或者气门提前角量)被增加,并且空气-燃料比的稀薄度被增加。因此,可在冷却期间减小排出的HC和CO的量并且进一步改善冷却期间的排气性能。
此外,在混合式行驶和电动机行驶二者中,发电机8的扭矩被控制为最大扭矩Tgmax。因此,发动机1的工作负载被增加从而增加提升催化剂12的温度所需的排放流率。这进一步加速了催化剂13的温度升高,使得冷却期间的排气性能被进一步改善。
突然加速期间的扭矩增加延迟控制操作执行上述控制操作从而在冲击扭矩没有超过许用冲击扭矩量值的范围内改善发动机1的排气性能。因此,可在限制由冲击扭矩造成的可驾驶性的减小的同时增加排气性能。但是,由于发动机扭矩比例Re在车辆突然加速时被急剧增加,所以如果冲击扭矩由于执行这些控制操作而保持为大值,那么冲击扭矩对可驾驶性的影响被增加。如果车辆行为由于冲击扭矩而造成的恶化被可靠地限制,那么这一点需要考虑。
因此,当确定车辆被突然加速时,控制器20执行扭矩增加延迟控制操作(如下所述)。在扭矩增加延迟控制操作中,当确定存在突然加速的要求时,首先,发动机1的冲击扭矩被控制为使得冲击扭矩为小值。然后,在等待发动机1的冲击扭矩变得充分小时,发动机1的扭矩被控制从而根据突然加速的要求而增加。这一扭矩增加延迟控制操作在离合器7接合的混合行驶期间被执行。
参照图9,示出一流程图,该流程图示出在突然加速时执行的扭矩增加延迟控制操作。下面将参照图9说明突然加速时执行的扭矩增加延迟控制操作。首先,在步骤S31,根据油门踏板操作量APO和车速VSP,由司机要求的要求驱动轴扭矩Td参照预定图表进行计算。
接下来,在步骤S32,计算要求驱动轴扭矩Td的改变量ΔTd从而确定改变量ΔTd是否大于突然加速确定阈值ΔTdth。如果确定改变量ΔTd大于突然加速确定阈值ΔTdth并且需要突然加速,那么确定扭矩增加延迟控制操作的程序前进至步骤S33。如果不是这样,那么程序结束。是否存在突然加速的要求可通过油门踏板操作量APO的改变量或者改变速度进行确定。
在步骤S33,电动机2的目标扭矩tTm被设定为电动机2的最大扭矩Tmmax,并且发电机8的目标扭矩tTg被设定为发电机8的最小扭矩Tgmin。电动机2的最大扭矩Tmmax是通过电动机2的额定输出和电池(未示出)的充电状态确定的值。发电机8的最小扭矩Tgmin是由电动机2和其他电子元件的动力消耗和电池(未示出)的充电状态确定的值。
电动机2的目标扭矩tTm被设定为最大扭矩Tmmax从而减小发动机扭矩比例Re,以增加许用冲击扭矩。发电机8的目标扭矩tTg被设定为最小扭矩Tgmin,从而通过减小发动机1的工作负载而增加发动机1的燃烧稳定性,使得冲击扭矩被减小。
在步骤S34,为了通过发动机1产生电动机2不能产生的扭矩而获得要求驱动轴扭矩Td,发动机1的目标扭矩tTe通过下述公式(4)计算tTe=1/r·Td-tTm+tTg …(4)在步骤S35,计算当发动机1、电动机2和发电机3分别被控制为目标扭矩tTe、tTm和tTg时所对应的发动机扭矩比例。然后,在步骤S36,根据计算所得的发动机扭矩比例Re,参照图3所示的曲线图计算许用冲击扭矩量值。这里计算的许用冲击扭矩量值并不是对应于当前驱动状态的许用冲击扭矩量值,而是当发动机1、电动机2和发电机8被控制为它们的各个目标扭矩tTe、tTm和tTg时所期待的许用冲击扭矩量值。也就是,计算所得的许用冲击扭矩量值是假设值。
在步骤S37,计算发动机1的当前冲击扭矩。冲击扭矩可通过发动机1的旋转偏差或者发动机1中的管的内部压力中的偏差进行确定,如本领域技术人员所测量的。
在步骤S38,确定当前冲击扭矩是否大于在步骤S36中计算的许用冲击扭矩量值。如果当前冲击扭矩大于所计算的许用冲击扭矩量值,那么程序前进至步骤S39,在该步骤中,执行用于减小发动机冲击扭矩的控制操作(下文称之为“冲击扭矩减小控制操作”)。
在冲击扭矩减小控制操作中,例如,如果催化转化器13被控制为使其温度通过增加点火正时的延迟量而上升,那么发动机1的冲击扭矩通过以最大比率减小点火时刻的延迟量而被减小。如果为了减小HC和CO的量而增加气门重叠量(或者气门提前角值)或者增加空气-燃料比的稀薄度,那么这些值中的任何一个被减小从而减小发动机1的冲击扭矩。
在冲击扭矩减小控制操作之后,程序前进至步骤S37。步骤S39的冲击扭矩减小控制操作被重复,直到发动机1的冲击扭矩变得小于步骤S36中计算的许用冲击扭矩量值。
在当前冲击扭矩变得小于步骤S36中计算的许用冲击扭矩量值时,由于执行冲击扭矩减小控制操作,程序前进至步骤S40,在该步骤中,发动机1的实际扭矩Te被增加至目标扭矩tTe。
参照图10,示出一时间图,该时间图示出当突然加速时扭矩增加延迟控制操作的性能。在当前实例中,当在冷却期间催化转化器13的温度通过延迟发动机1的点火时刻而被提升时,车辆被突然加速。
下面将参照时间图讨论执行扭矩增加延迟控制操作的操作优点。当油门踏板在时刻t1时被突然下压时,发动机1的要求驱动轴扭矩Td和目标扭矩tTe相应地被增加。
当发动机1的扭矩被增加时,被传送至驱动轴5的扭矩的发动机扭矩的比例被增加,使得许用冲击扭矩量值变得更小。由于发动机1的冲击扭矩超过这一值,根据上述控制操作,在增加发动机1的扭矩之前,发动机1的点火正时的延迟量以最大比例被减小。因此,发动机1的冲击扭矩被减小(冲击扭矩减小控制操作)。
冲击扭矩减小控制操作持续进行,直到冲击扭矩在时刻t2变得小于许用冲击扭矩量值。当冲击扭矩变得小于许用冲击扭矩量值时,发动机1的实际扭矩Te被增加至目标扭矩tTe。
因此,根据扭矩增加延迟控制操作,在发动机1的扭矩通过突然加速车辆而被突然增加时,点火时刻的延迟量被减小,并且发电机8的扭矩被控制为最小扭矩Tgmin,使得发动机1的工作负载被减小。因此,发动机1的燃烧稳定性被增加,由此充分地减小发动机1的冲击扭矩。因此,通过利用这里所述的方法,可克服车辆突然加速时由于冲击扭矩的较大影响而造成的车辆行为恶化。
另外,由于发动机2的扭矩在确定车辆已经突然加速之后被控制为最大扭矩Tmmax,所以使发动机1的扭矩比例尽可能地小,从而可限制突然加速期间的许用冲击扭矩量值的减小。因此,可在尽可能的范围内最小化用于减小冲击扭矩的点火正时的延迟量。因此,通过利用这里教导的方法,可克服由于点火时刻的延迟量的减小而造成的排气性能恶化的问题。
虽然本发明如上所述进行说明,但是上述结构仅仅是本发明所应用的复合动力车辆的一种特定结构形式。本发明的应用的范围不局限于上述结构。
尤其,复合动力车辆的结构不局限于图1所示的结构。只要复合动力车辆中的发动机扭矩和电动机扭矩被传送至驱动轴,那么本发明可被广泛地应用。例如,本发明可应用于具有用于扭矩分配的行星齿轮机构的复合动力车辆或者具有包括相互集成的电动机和发电机的电动机-发电机的复合动力车辆,如本领域技术人员可以理解的那样。
权利要求
1.一种复合动力车辆的控制装置,所述复合动力车辆具有能够由发动机和电动机的扭矩驱动的驱动轴,所述控制装置包括控制器,该控制器予以编程以计算从发动机和电动机传送至驱动轴的扭矩总和的发动机扭矩比例;根据所述发动机扭矩比例设定许用冲击扭矩量值,当所述发动机扭矩比例减小时将所述许用冲击扭矩量值设定为增加,并且通过至少一个参数操作所述发动机使得所述发动机的冲击扭矩不超过所述许用冲击扭矩量值。
2.根据权利要求1所述的控制装置,其中,所述至少一个参数是下述参数中的至少一个参数所述发动机的点火正时、气门正时和空-燃比。
3.根据权利要求1所述的控制装置,其中,所述至少一个参数适于在所述发动机的所述冲击扭矩不超过所述许用冲击扭矩量值的范围内改善所述发动机的排放性能。
4.根据权利要求1所述的控制装置,其中,当所述发动机处于冷却操作条件时,所述至少一个参数适于在所述发动机的所述冲击扭矩不超过所述许用冲击扭矩量值的范围内预热催化转化器。
5.根据权利要求1所述的控制装置,其中,所述至少一个参数是所述发动机的点火正时,所述点火正时适于在所述发动机的所述冲击扭矩不超过所述许用冲击扭矩量值的范围内延迟。
6.根据权利要求1所述的控制装置,其中,所述至少一个参数是进气门与排气门的气门重叠度,所述气门重叠度适于在所述发动机的所述冲击扭矩不超过所述许用冲击扭矩量值的范围内增加。
7.根据权利要求1所述的控制装置,其中,所述至少一个参数是所述发动机的空-燃比,所述空-燃比适于在所述发动机的所述冲击扭矩不超过所述许用冲击扭矩量值的范围内增加。
8.根据权利要求2所述的控制装置,其中,当所述发动机扭矩比例减小时,所述至少一个参数中的改变量增加。
9.根据权利要求1所述的控制装置,其中,还包括设置在所述发动机的排气通路中的催化转化器,当所述催化转化器的温度低于预定温度时,所述电动机输出最大扭矩。
10.根据权利要求1所述的控制装置,其中,还包括发电机,该发电机能够由所述发动机以发动机部分扭矩驱动从而发电,当所述催化转化器的温度低于预定温度时使所述发电机的发电量最大化。
11.根据权利要求1所述的控制装置,其中,还包括用于检测所述复合动力汽车的加速请求的加速请求检测部分,当检测到所述加速请求时,所述至少一个参数中的改变量减小,使得所述发动机的所述冲击扭矩减小,并且之后使所述发动机增加所述发动机扭矩。
12.一种控制复合动力车辆的方法,该复合动力车辆具有能够由发动机和电动机的扭矩驱动的驱动轴,所述方法包括下述步骤计算由发动机和发电机传送至驱动轴的扭矩总和的发动机扭矩比例;根据所述发动机扭矩比例计算许用冲击扭矩量值,当所述发动机扭矩比例减小时,将所述许用冲击扭矩量值设定为增加;以及通过至少一个参数操作所述发动机,使得所述发动机的所述冲击扭矩不超过所述许用冲击扭矩量值。
13.根据权利要求12所述的方法,其中,所述至少一个参数是下述参数中的至少一个参数所述发动机的点火正时、气门正时和空-燃比。
14.根据权利要求12所述的方法,其中,所述至少一个参数适于在所述发动机的所述冲击扭矩不超过所述许用冲击扭矩量值的范围内改善所述发动机的排放性能。
15.根据权利要求12所述的方法,其中,当所述发动机处于冷却操作条件时,所述至少一个参数适于在所述发动机的所述冲击扭矩不超过所述许用冲击扭矩量值的范围内预热催化转化器。
16.根据权利要求12所述的方法,其中,所述至少一个参数是所述发动机的点火正时,所述点火正时适于在所述发动机的所述冲击扭矩不超过所述许用冲击扭矩量值的范围内延迟。
17.根据权利要求12所述的方法,其中,所述至少一个参数是进气门与排气门的气门重叠度,所述气门重叠度适于在所述发动机的所述冲击扭矩不超过所述许用冲击扭矩量值的范围内增加。
18.根据权利要求12所述的方法,其中,所述至少一个参数是所述发动机的空-燃比,所述空-燃比适于在所述发动机的所述冲击扭矩不超过所述许用冲击扭矩量值的范围内增加。
19.根据权利要求13所述的方法,其中,当所述发动机扭矩比例减小时,所述至少一个参数中的改变量增加。
20.根据权利要求12所述的方法,其中,当设置在所述发动机的排气通路中的催化转化器的温度低于预定温度时,使所述电动机输出最大扭矩。
21.根据权利要求12所述的方法,其中,发电机能够由所述发动机驱动以发电,当所述催化转化器的温度低于预定温度时使所述发电机的发电量最大化。
22.根据权利要求12所述的方法,其中,当检测到所述车辆的加速请求时,所述至少一个参数中的改变量减小,使得所述发动机的所述冲击扭矩减小,并且之后使所述发动机增加所述发动机扭矩。
全文摘要
本发明涉及一种复合动力车辆控制装置和使用这种装置的方法,其中计算传送至驱动轴的扭矩总和的(从发动机传送至驱动轴)的发动机扭矩比例。许用冲击扭矩量值是允许发动机使用的冲击扭矩的上限,随着发动机扭矩比例被减小而被设定为较大值。然后,发动机的预定参数被改变,使得发动机被控制在发动机的冲击扭矩不超过许用冲击扭矩量值的范围内。
文档编号B60K6/442GK101037963SQ20071008635
公开日2007年9月19日 申请日期2007年3月15日 优先权日2006年3月15日
发明者岸本洋一 申请人:日产自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1