混合动力车辆驱动系统及方法以及空闲抑制系统及方法_5

文档序号:8390488阅读:来源:国知局
件输入/输出齿轮从另一组件输入/输出齿轮(该齿轮与用作发电机的原动机50相连)分离。剩余的组件输入/输出齿轮耦合至传动装置30内的其他齿轮,该其他齿轮可将动力传递至驱动轴32,可通过所接入的传动装置内部的其他离合器将动力传递至驱动轴32。剩余的原动机用作马达,且通过机械耦合至输入/输出齿轮的组件给传动装置30提供动力。此布置对于车辆在城市中被开动而言是非常有用的。在此情况下,原动机20可以以最有效的速度和功率范围进行操作(无需考虑车辆速度),或者原动机20可被完全关闭,以进一步减少燃料消耗。如果需要更多的动力,所分离的原动机可在速度上与所分离的一个原动机或多个原动机20同步,并在此之后耦合至传动装置30,以提供所需的额外动力。可在速度上对所接入的原动机或传动装置进行调整,以适应于组件(PTO)的输入输出齿轮比。
[0118]可选地,在第一原动机20保持关闭且车辆操作在其中未接入离合器166的串联混合动力配置中时,可选的APU可对第一可再充电能源70充电。优选地,APU为使用低碳燃料的低排放功率源。此配置在要求低排放的城市地区是非常有用的。如全电动模式中那样,当第一原动机20关闭且车辆行进时,车辆系统(例如,HVAC、制动器、动力转向器等)均电动操作。
[0119]参见图20,在可选实施方式中,系统10可以类似于图1所示的实施方式。然而,第二原动机50 (例如,马达,诸如电动马达/发电机等)可提供比驱动配件60 (例如,液压泵,诸如体积可变的容积式泵等)所需动力更多的动力。因此,提供了第三原动机230,诸如较小的电动马达/发电机。第三原动机230耦合至第一可再充电能源70,并给配件60提供动力。根据一个示例性实施方式,第三原动机230为10-60hp电动马达,更优选为20-40hp电动马达。
[0120]参见图21,在可选实施方式中,系统10可类似于图1所示的实施方式。然而,第四原动机240可通过离合器245耦合至第一原动机20(例如,耦合至内部的内燃机的曲轴)。该耦合可直接耦合至曲轴,或可通过皮带、或通过轴进行耦合。第四原动机240可为例如电动马达,该电动马达可给一个或多个配件250(例如,第一原动机20的冷却风扇、动力转向泵、HVAC系统、制动器等)提供动力。可选地,第四原动机240可为一体形成的启动发电机,可选为能够进行再生制动。
[0121]取决于车辆的需要,图21所示的系统10能够在多种模式下工作。系统10可被配置为组合串联/并联混合动力。例如,在全电动模式中,第一原动机20可被关闭,且经离合器165分离的原动机50和220可提供动力以驱动车轮33。原动机50和220可连接至液压泵。在一种实施方式中,原动机50和220可与液压泵一体形成为共享一轴的单个单元。根据一个示例性实施方式,原动机50和220均能够提供至少lOOhp,从而200hp的动力被传递至传动装置30以驱动车轮33。如果车辆需要更多的动力来驱动轴32,则可开启第一原动机20。第一原动机20输出的速度被同步至期望的RPM。接入离合器165,以除原动机50和220之外,还将第一原动机20耦合至传动装置30。如果车辆要求更多的动力来驱动轴32,离合器245可接入,以使得第四原动机240给第一原动机20的曲轴提供额外的动力。第四原动机240可同时提供动力至一个或多个配件250。使用原动机50、225以及240来补充驱动车轮33的动力可允许在系统10中使用更小、更有效的第一原动机20。
[0122]第四原动机240可经由皮带和/或滑轮和/或轴和/或齿轮来驱动配件240,且可通过离合器245经由皮带、轴、齿轮和/或滑轮耦合至第一原动机20。原动机240可为具有贯通轴的电动马达。所述贯通轴可针对配件(例如,HVAC、风扇、转向器、泵、制动器等)驱动皮带和/或滑轮。离合器165可与传动装置一体形成(如手动传动装置或自动换挡传动装置中那样)。在利用转矩变换器的自动传动装置中,离合器165可位于转矩变换器与ICE之间,或可一体形成到传动装置中且置于转矩变换器与针对PTO (对于那些利用独立于转矩变换器的PTO输入齿轮的传动装置)的输入齿轮之间。所述离合器165的整合和/或位置可用于离合器可置于ICE与传动装置之间的其他图示所示的其他实施方式中。
[0123]如果第一原动机20为相对小的内部内燃机,则其可能不能提供所有动力来驱动车轮并对可再充电能源70进行再生。在此情况下,离合器165分离,离合器245接入,以使得第一原动机20仅驱动配件250,且第三原动机240转而用作发电机来对可再充电能源70进行充电。原动机50和220提供动力来驱动车轮33。该布置允许第一原动机20操作在更有效的区域。离合器245可将第一原动机20与第四原动机240断开连接,且第四原动机可为配件250提供动力。为在第一原动机20关闭时保持发动机模块的热度,发动机冷却剂可循环通过加热元件(未示出)。之后,如果第一可再充电能源具有足够的能量来给其他原动机供电,则所述ICE可被关闭,以避免燃料消耗并减少排放。正如所有所述混合动力机械化过程那样,控制系统可对至系统的各种输入进行评定,并调节各种装置的输出,例如监视诸如能量水平、动力需求、转矩、控制输入、速度、温度的因子以及其他因子,以确定原动机的合适操作、离合器和其他装置的起动,从而实现最优的效率和性能。之后,加热后的冷却剂可循环回第一原动机20。当环境空气很冷时,加热后的冷却剂还可用于温暖可再充电能源70或其他板上电池。发动机模块和/或电池的温热装置还可用于其他实施方式。
[0124]图21有利示出的系统10可在第四原动机240(例如,辅助电动马达)、第一原动机20 (ICE)、第二原动机50以及第三原动机220的帮助下,利用并联混合动力配置。由于可利用来自多个源的动力,系统10的并联属性允许最大加速度。如上所述,传动装置30可包括离合器(例如,内部或外部离合器165)。为减小离合器磨损,可利用组件40和110来启动车辆,且一旦输入轴的速度接近或等于发动机驱动轴的速度,接入离合器以将原动机20耦合至传动装置30。该方法还可用于使用离合器将原动机接入传动装置的其他实施方式中。可选地,可利用一个或多个组件来给第一原动机20 (例如,发动机)提供动力,以助于使内部的内燃机转动(在具有或不具有离合器的情况下)。该实施方式可允许车辆使用来自第一可再充电能源70的能量来启动发动机、或转动发动机和/或同时使车辆移动。可将该方法用于系统10的其他配置中。
[0125]可选地,图21中的系统10可仅被提供作为单PTO系统。两个PTO的使用允许更多动力被提供至传动装置30。
[0126]根据另一实施方式,可布置图21的系统,从而在加速期间,可利用原动机220和原动机50来对并联混合动力配置进行辅助。在仅电动的加速模式中,可在关闭原动机20的情况下,经由原动机50和220通过组件40和110来提供动力。
[0127]第四原动机240可为用于给个别配件提供动力的大量电动马达。离合器245和原动机240可连接至原动机20的前端或其他位置,且可用于参照图1-20所述的其他实施方式中。有利的是,仅电动的加速可使用标准的传动组件,且不会产生排放。使用由用于原动机220和50的源70供电的原动机240可减少排放。
[0128]根据另一实施方式,图21所示的系统还可被配置为提供仅电动的串联加速。原动机20被用于对第一可再充电能源70(例如,电池)进行充电,但并不直接耦合至传动装置30或经由离合器165而与传动装置30断开连接。原动机240给配件250提供动力。有利的是,原动机20可被配置为以更有效的RPM和负荷进行操作。优选地,原动机240具有穿过轴,且可在原动机20给配件提供动力时用作发电机。该系统对于时走时停型(stop andgo type)应用而言是非常有益的,在所述应用中,电动马达可在制动期间存储能量,并可在不需要改变原动机20的操作RPM的情况下对车辆进行加速。
[0129]根据另一实施方式,图21所示的系统10还可在仅ICE的巡航模式中操作。在稳定行驶(诸如公路上行驶)期间,ICE原动机(例如,原动机20)可提供所有的动力,且电动马达(例如,原动机220和50)可从传动系统解耦(经由离合器断开连接),以减少不必要的摩擦和寄生负荷。此模式可在巡航速度下提供最佳恒定动力。在此模式中,当原动机20 (ICE)可操作在稳定状态且处于有效RPM和负荷范围时,原动机20可直接耦合至传动装置30、或通过离合器165耦合至传动装置30,以提供最佳效率。在仅ICE的巡航模式期间,可断开所有非必要的混合动力组件以及任何非必要的负荷。当进行加速或制动时,电动马达(或者液压马达)可临时接入,以提供额外的推进力、或获取制动能量以便重新利用,从而可产生较高的操作效率和较低的燃料消耗。
[0130]根据再一实施方式,图21所示的系统10还可设置于由原动机20保持公路速度且混合动力组件临时接入以对车辆进行加速或减速的模式中。ICE (原动机20)可用于基本巡航动力,且在需要额外加速或对车辆减速时,可接入一个或多个电动或液压马达。在车辆恢复稳定公路巡航之后,组件110和40(例如,PTO)可被分离,以移除非必要混合动力组件的非必需阻力。有利的是,此配置允许较小马力的发动机用于最高效率的最佳范围,且可减小原动机20输出中所需的较大摆幅(例如,当需要提供动力以提供较大瞬时负荷时、或当动力输出远高于或远低于其最佳范围时,发动机会以较低的效率进行操作)。
[0131]根据可选实施方式,原动机50可包括泵,或者泵可置于原动机50与第一组件40之间。在另一可选方式中,液压泵可置于原动机50之后或其后侧。在此实施方式中,针对使用原动机50的液压泵,可利用来自源70的动力来驱动泵。此配置在车辆静止时是很有利的,因为可利用来自电池(例如,源70)的电力来操作电动马达和液压泵。
[0132]根据另一实施方式,图21所示的系统可操作于原动机20被操作的且液压泵的旋转速度是恒定的模式中。可接入组件40从而使原动机20驱动液压泵和原动机50。如果因所需液压流的改变而导致原动机50的旋转需要变化,可在其他电动马达可独立操作以给具有变化旋转速度的泵提供给动力的同时,接入并使用单独的PTO来对电池进行再充电。如上所述,液压泵可置于原动机50与组件40之间、或置于原动机50之后。在没有第二 PTO的实施方式中,泵的旋转速度可保持恒定,且可改变泵的输出,以将流量改变至符合所需的液压流变化。该配置在通过调节流量来改变打孔钻的速度的挖掘起重机应用中是非常有利的。
[0133]参见图22-图29,在可选实施方式中,系统10可类似于图21所示的实施方式。然而,具有离合器255的第五原动机260可设置在第一原动机20与离合器165之间。第五原动机260可用作马达以给传动系统提供动力,或可用作发电机以对第一可再充电能源70进行再充电、或给系统10的其他组件提供电力。图22-图29所示的系统10可有利地操作于多种模式中。
[0134]图22示出了当车辆加速时处于串联操作模式的系统10。第一原动机20转动第五原动机260,该第五原动机260给第一可再充电能源70充电。离合器165分离,以将第五原动机260从传动装置30解耦。第一可再充电能源70给第二原动机50和第三原动机220提供电力,第二原动机50和第三原动机220分别通过第一组件40和第二组件110来驱动传动装置30。根据另一示例性实施方式,仅第二原动机50和第三原动机220中的一者可给传动装置30提供动力。
[0135]图23示出了根据另一示例性实施方式的车辆加速时处于串联操作模式的系统10。第一原动机20转动第五原动机260,该第五原动机260给第一可再充电能源70充电。离合器165分离,以将第五原动机260从传动装置30解耦。第一可再充电能源70给第二原动机50和第三原动机220提供电力,第二原动机50和第三原动机220分别通过第一组件40和第二组件110来驱动传动装置30。根据另一示例性实施方式,仅第二原动机50和第三原动机220中的一者可给传动装置30提供动力。离合器245接入,从而第一原动机20可进一步驱动第四原动机240。可使用第四原动机240来给板上配件250提供动力和/或对第一可再充电能源70进行再充电。
[0136]图24示出了当车辆加速时处于并联操作模式的系统10。使用来自第一原动机20和第一可再充电能源70的动力来给传动系统提供动力。第一原动机20转动第五原动机260和传动装置30。离合器165接入,以将第五原动机260耦合至传动装置30。第一可再充电能源70给第二原动机50和第三原动机220提供电力,第二原动机50和第三原动机220分别通过第一组件40和第二组件110来驱动传动装置30。根据另一示例性实施方式,仅第二原动机50和第三原动机220中的一者可给传动装置30提供动力。第一可再充电能源70进一步给第四原动机240提供电力。离合器255接入,以将第四原动机240耦合至第一原动机20,从而有助于驱动传动系统。为减小离合器磨损,可分离离合器165,且第二原动机50和第三原动机220 (经由组件40和110)可提供初始动力,以对车辆进行加速。该方法还可减少或消除对转矩变换器的需求。一旦输入轴的速度靠近或等于发动机驱动轴的速度,则接入离合器165以耦合第一原动机20和传动装置30。
[0137]图25示出了处于巡航模式的系统10,在巡航模式中,第一原动机20提供动力以使车辆保持相对恒定的速度(例如,在公路行驶期间)。断开了非必要的负荷,诸如未使用的混合动力组件。当第一原动机20在处于有效rpm和负荷范围内的稳定状态下操作时,直接将第一原动机20耦合至驱动轴32可提供最佳的效率。
[0138]如图26所示,当车辆处于巡航模式时(图25),系统10的混合动力组件可临时接入,以对车辆进行减速或加速。第一可再充电能源70可通过一个或多个原动机来给传动系统提供额外的动力,以对车辆进行加速。在车辆恢复稳定的公路巡航之后,可分离额外的原动机(例如,通过分离组件40和110),以移除非必要混合动力组件的
当前第5页1 2 3 4 5 6 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1