车辆的制作方法

文档序号:10695643阅读:239来源:国知局
车辆的制作方法
【专利摘要】本发明涉及一种车辆。在开始供电之后一直继续到仅执行其中发动机被停止的供电的时段(时刻ts到t1),也就是,在没有产生SOC恢复历史的时段,控制装置使用基于燃料剩余量检测值FLV#的发电可能时间Tgs以及基于SOC的放电可能时间Tel的和来计算供电可能时间Tsp。在由于发动机启动而产生SOC恢复历史之后的时段(时刻t0之后),根据发电可能时间Tgs来计算供电可能时间Tsp而不反映SOC。
【专利说明】
车辆
技术领域
[0001]本发明涉及车辆,并且更具体地说,涉及具有其中执行涉及发动机运行的供电的模式的车辆。
【背景技术】
[0002]近年来,如在关于其中装载了具有相对大容量的蓄电装置的车辆(诸如混合动力车辆和电动车辆)的智能电网等中所见,已经对从车辆到车辆外部的一般电气设备的供电的概念进行了研究,其中车辆被视为电力供应源。在一些情况下,车辆被用作在露营、户外作业等期间使用电气设备的情况下的电源。
[0003]例如,日本专利申请公开号N0.2007-236023(JP 2007-236023A)和日本专利申请公开号N0.2013-051772(JP 2013-051772A)公开了通过使用由驱动发动机产生的电力以及蓄电装置的电力来长期向混合动力车辆外部供应电力的配置。特别在JP 2007-236023A中,公开了在从车辆供电期间通过电负载对电力的当前使用继续进行的情况下的供电可能时间的计算及显示。
[0004]此外,日本专利申请公开号N0.2001-231103公开了根据基于燃料剩余量的可发电电力量以及基于电池充电水平的放电电力量来对混合动力车辆的可行驶距离和可行驶时间的计算。
[0005]如在JP 2007-236023A和JP 2013-051772A中,在具有其中执行涉及发动机运行的供电的模式的车辆中,基于发动机燃料剩余量以及蓄电装置的剩余容量(即,充电状态(SOC))来计算供电可能时间。
[0006]然而,在涉及发动机运行的供电期间,当涉及燃料消耗而产生的电力超过供应的电力时,蓄电装置的SOC上升。因此,在供电可能时间的计算期间燃料剩余量被识别为离散数值的情况下,可能出现蓄电装置的SOC识别值上升而燃料剩余值的识别值取决于离散数值的分辨率保持恒定的情况。在该情况下,获得随着供电的进行,以供电可能时间增加的形式出现的不合理的计算结果,用户可能对该结果感到不安。此外,在基于利用计算出的供电可能时间来控制用于来自车辆的供电操作的情况下,可能导致不方便的控制操作。

【发明内容】

[0007]本发明提出一种车辆,其具有其中执行涉及发动机运行的供电的模式,并且允许适当计算在供电模式下的供电可能时间。
[0008]根据本发明的一方面,具有供电模式的车辆包括蓄电装置、内燃机、燃料箱、燃料计、发电机构、电力转换器、电力节点以及控制装置。将内燃机配置成通过燃料的燃烧来产生动力。将燃料箱配置成存储燃料。将燃料计配置成检测在燃料箱中剩余的燃料量。将电力转换器配置成在供电模式下将来自蓄电装置和发电机构中的至少一者的电力转换成供电电力。将电力节点配置成输出来自电力转换器的供电电力。将控制装置配置成在供电模式下,一旦蓄电装置的SOC在其中内燃机被停止的供电期间下降到第一基准值,则使内燃机投入运行并且控制内燃机的运行以使供电继续。此外,将控制装置配置成在供电模式下,在供电的开始与由于内燃机的运行而使用来自发电机构的电力对蓄电装置充电所导致的SOC中的恢复历史的产生之间的第一时段,根据被识别为基于燃料计的输出的离散数值的剩余量值和SOC来计算供电可能时间。在产生恢复历史之后,控制装置基于剩余量来计算供电可能时间而不考虑S0C。
[0009]根据上述车辆,可以从继产生SOC恢复历史之后的第二时段中的供电可能时间排除反映由燃料消耗造成的SOC变化的放电可能时间。因此,即使在通过控制装置识别的燃料剩余量的值的分辨率为粗的情况下,也可解决供电可能时间波动的不便。结果是,供电可能时间可被适当计算,以便当供电继续时供电可能时间的计算值不增加。
[0010]优选地,可将控制装置配置成一旦在涉及内燃机运行的供电期间,蓄电装置的SOC上升到高于第一基准值的第二基准值,则控制内燃机的运行以使供电在内燃机被停止的情况下继续。
[0011]然后,在供电模式下可选择涉及运行内燃机的供电(HV供电)或其中停止内燃机的供电(EV供电),以使得不对蓄电装置过度放电或过度充电。
[0012]更优选地,控制装置可基于内燃机的始于供电的开始的运行历史来检测恢复历史。
[0013]然后,可根据内燃机的运行历史以简化的方式设定用于从供电可能时间中排除基于SOC的放电可能时间的开始时机。
[0014]更优选地,可将控制装置配置成在供电模式下基于SOC从下降变为上升的历史的有无来检测恢复历史。或者,可将控制装置配置成在供电模式下基于SOC被降低到与第一基准值相关联地确定的预定值的历史的有无来检测恢复历史。
[0015]然后,可根据实际SOC的历史适当设定从供电可能时间排除基于SOC的放电可能时间的开始时机。
[0016]优选地,车辆进一步包括指示器。可将指示器配置成以用户能够查看供电可能时间的方式来显示通过控制装置计算的供电可能时间。
[0017]然后,可通过由指示器显示的供电可能时间来避免用户的不安。
[0018]根据本发明,可在具有其中执行涉及发动机运行的供电的模式的车辆中适当计算在供电期间的供电可能时间。
【附图说明】
[0019]将参考附图在下文中描述本发明示例性实施例的特征、优点以及技术和工业显著性,其中相同的标号表示相同的元件,以及其中:
[0020]图1是根据本实施例的车辆的整体框图;
[0021]图2是示出用于在根据本实施例的车辆的供电模式下选择HV供电或EV供电的控制的流程图;
[0022]图3是示出在根据本实施例的车辆的供电模式下的燃料剩余量和SOC的转变以及关于其的供电可能时间计算结果的转变的一个示例的概念波形图;
[0023]图4是示出根据本实施例的供电可能时间计算处理的流程图;
[0024]图5是示出发电可能时间计算处理的细节的流程图;
[0025]图6是示出放电可能时间计算处理的细节的流程图;
[0026]图7是示出用于判定SOC恢复历史的控制处理的另一示例的流程图;
[0027]图8是示出用于判定SOC恢复历史的控制处理的又一示例的流程图。
【具体实施方式】
[0028]在下文中,将参考附图详细描述本发明的实施例。将使用相同的参考标号来涉及在附图中相同或相应的部分,并且原则上将不重复对其的描述。
[0029](车辆的配置与运行)图1是根据本实施例的车辆100的整体框图。
[0030]参考图1,车辆100具有蓄电装置110、系统主继电器(SMR)115、电力控制单元(P⑶)120、电动发电机130、135、动力传输齿轮140、驱动轮150、是内燃机的发动机160、通信单元170和是控制装置的电子控制单元(E⑶)3004⑶120包括转换器121、逆变器122、123和电容器C1、C2。
[0031]蓄电装置110是被配置成可再充电的电力存储元件。例如,将蓄电装置110配置成包括诸如锂离子电池、镍氢电池和铅蓄电池的二次电池或者诸如双电层电容器的电力存储元件。
[0032]蓄电装置110连接到电力线PLO和接地线NLO JMR 115包括连接在电力线PLO与电力线PLl之间的继电器以及连接在接地线NLO与接地线NLl之间的继电器。SMR 115基于来自E⑶300的控制信号SEl在蓄电装置110与P⑶120之间在供电与中断之间切换。
[0033]蓄电装置110向PCU120供应电力以产生用于车辆100的驱动力。此外,蓄电装置110存储由电动发电机130、135产生的电力。如上所述,将蓄电装置110配置成与是用于驱动车辆的电动机的电动发电机130、135交换电力。因此,蓄电装置110具有相对大的电容。例如,蓄电装置110的输出为大约200V。蓄电装置110包括电压传感器(未示出)与电流传感器(未示出)。蓄电装置110向ECU 300输出由这些传感器检测的蓄电装置110的电压VB和电流IB0
[0034]转换器121基于来自E⑶300的控制信号PWC来执行在电力线PLl和接地线NLl与电力线PL2和接地线NLl之间的电压转换。
[0035]逆变器122、123并联连接到电力线PL2和接地线NLl。逆变器122、123基于来自ECU300的控制信号PWIUPWI2将从转换器121供应的DC电力转换为AC电力并且相应驱动电动发电机 130、135。
[0036]电容器Cl设置于电力线PLl与接地线NLl之间。电容器Cl降低在电力线PLl与接地线NLl之间的电压波动。电容器C2设置于电力线PL2与接地线NLl之间。电容器C2降低在电力线PL2与接地线NLl之间的电压波动。
[0037]电动发电机130、135是AC旋转电机。例如,电动发电机130、135是具有嵌入永久磁体的转子的永磁型同步电动机。
[0038]发动机160是内燃机。例如,汽油发动机、柴油发动机等组成发动机160。发动机160通过将由燃烧存储在燃料箱165中的燃料而产生的热能转换为诸如活塞或转子的原动机(mover)的动能来输出动力。检测燃料剩余量的燃料计195设置于燃料箱165中。
[0039]将从电动发电机130、135输出的动力(转矩)经由动力传输齿轮140传递到驱动轮150,该动力传输齿轮被配置为包括减速器和动力分配机构并且使车辆100行驶。在车辆100的再生制动运行期间,电动发电机130、135可采用驱动轮150的旋转力产生电力。通过PCU120将所产生的电力转换为蓄电装置110的充电电力。
[0040]此外,电动发电机130、135通过动力传输齿轮140与发动机160耦接。通过由ECU300来相互合作运行的电动发电机130、135以及发动机160来产生车辆100的驱动力。
[0041]电动发电机130可采用发动机160的旋转发电,并且可通过PCU120将所产生的电力转换为蓄电装置110的充电电力。换句话说,电动发电机130和PCU 120可组成采用来自发动机160的动力发电的“发电机构”。
[0042]车辆100包括电力转换器200、充电继电器(CHR)210以及入口 220,它们作为用于采用来自车辆100外部的电源500(在下文中,同样被称为“外部电源”)的电力在外部向蓄电装置充电的配置。
[0043]电力电缆400的电缆连接器410连接到入口220。入口 220可用作当连接电力电缆400时到车辆外部的电触点。
[0044]电力电缆400不仅包括电缆连接器410还同样包括用于连接到外部电源500的插座510的插头420,以及用于连接电缆连接器410与插头420的电力线440。在电力线440中插入用于在来自外部电源500的电力的供应与中断之间切换的充电电路中断装置(在下文中,同样被称为CCID)430。
[0045]电力转换器200执行在传输AC电力的电力线ACLl、ACL2与传输DC电力的电力线PL2和接地线NL2之间的电力转换。电力线ACLl、ACL2连接到入口 220。电力线PL2和接地线NL2经由CHR 210连接到电力线PL0,并且接地线NLl连接到蓄电装置110。
[0046]电力转换器200受来自ECU300的控制信号PWD控制并且将从入口220供应的AC电力转换为蓄电装置110的充电电力。此外,如下所描述,电力转换器200可将来自蓄电装置110的DC电力或者由电动发电机130、135产生并且通过PCU 120转换的DC电力转换为AC电力,并且向车辆的外部供应电力。电力转换器200可以是能够进行充电与供电的双向电力转换的单个装置或者可包括单独的充电装置与供电装置。
[0047]CHR 210受来自ECU 300的控制信号SE2控制并且在电力转换器200与蓄电装置110之间的供电与中断之间切换。
[0048]E⑶300包括中央处理单元(CPU)、存储装置以及I/O缓冲器(都未示出)JCU 300执行来自相应传感器等的信号输入并控制向相应设备的信号输出,以及控制蓄电装置110的相应设备与车辆100。这些控制不限于基于软件的处理并且可使用专用硬件(电子电路)来处理。
[0049]将指示器310配置成能够基于来自ECU300的指令,以用户可以查看信息的方式来显示信息。例如,将指示器310配置成具有液晶点阵屏。
[0050]ECU 300基于来自蓄电装置110的电压VB与电流IB的检测值来计算蓄电装置110的充电状态(SOC)。如已知的,SOC是作为百分比显示的相对于满充电状态中的蓄电量的当前蓄电量。可通过任何已知方法来计算S0C。
[0051 ] E⑶300从电缆连接器410接收显示电力电缆400的连接状态的信号PISW。此外,ECU 300从电力电缆400的CCID 430接收导频信号CPLTACU 300可检测电力电缆400的连接状态,是否采用信号PISW和导频信号CPLT特别形成到车辆外部(诸如插座510)的正常电连接。
[0052]根据如图1所示的配置,将单个控制装置设置为ECU300。然而,例如,也可采用另一配置,其中为不同功能或者受控的不同设备设置单独的控制装置,其示例包括用于PCU120的控制装置与用于蓄电装置110的控制装置。
[0053]将由燃料计195检测的值同样输入E⑶300。在本实施例中,E⑶300通过离散数值来识别在燃料箱165中剩余的燃料量。在下列描述中,将通过ECU 300识别的燃料剩余量的值称为燃料剩余量检测值FLV。换句话说,燃料剩余量检测值FLV不反映小于离散数值分辨率的燃料剩余量波动。燃料剩余量检测值FLV可以是从燃料计195输出的数字值或者通过E⑶300对来自燃料计195的模拟值执行A/D转换而获得。
[0054]车辆100具有其中在入口220通过电力电缆400电连接到外部电源500的状态下,采用来自外部电源500的电力向蓄电装置110充电的充电模式。在充电模式下,ECU 300接通CHR 210并且通过控制信号PWD控制电路转换器200的运行,以使得将从外部电源500到入口220的AC电力输入转换为蓄电装置110的充电电力。
[0055]关于能够通过使用电力电缆400来形成到车辆外部并且来自车辆外部的电力路径的车辆100,如在智能电网等中所见,已经对基于用作电力供应源的车辆从车辆向车辆外部的一般电气设备供电的概念进行了研究。在一些情况下,车辆被用作在露营、户外作业等期间使用电气设备的情况下的电源。因此,将根据本实施例的车辆100配置成具有用于供应相当于外部电源500的AC电力源的附加供电模式。稍后将描述该供电模式的细节。
[0056]在供电模式与发电模式下,E⑶300禁止车辆100行驶。在车辆100的行驶期间,ECU300通过接通SMR 115形成可通过蓄电装置110的电力来驱动电动发电机130、135的状态。此外,E⑶300通过使得电动发电机130、135以及发动机160相互合作运行来产生用于行驶的车辆驱动力。
[0057](在供电模式下的控制)在供电模式下,车辆100通常在入口220通过电力电缆400电连接到插座510的状态下向车辆的外部供应AC电力。然后,可从车辆100向电连接到插座510的电负载600供应电力。通常,外部电源500、电负载600以及插座510经由配电板(未示出)电连接,尽管为了简化该配电板在图1中未示出。因此,可通过由受控的配电板使用相同的插座510来执行用于从外部电源500向车辆100传输电力的操作以及从车辆100向电负载600传输电力的操作。
[0058]在供电模式下,E⑶300接通CHR 210并且通过控制信号PWD控制电力转换器200的DC/AC转换操作以使得将从电力线PLO和接地线NLO向电力线PL2和接地线NL2传输的DC电力转换为相当于外部电源500的AC电力。以这种方式,车辆100可从入口 220向车辆外部供应AC电力。换句话说,入口 220对应于“电力节点”的一个示例。
[0059]或者,可将车辆100配置成具有用于在电力线ACLl、ACL2上输出AC电力的插座520。插座520可设置于乘客车厢中或者可设置于乘客车厢(体)外。然后,同样可在供电模式下向连接到插座520的电气设备供应来自电力转换器200的AC电力。换句话说,插座520可组成输出供应电力的“电力节点”。
[0060]在发生诸如地震的灾害并且作为生命线的电力变得不可用的情况下,具有供电模式的车辆100可用作独立电源。在车辆是电动车辆的情况下,在这种情况下,仅可将蓄电装置110的电力用于供电,从而确保在供电模式下的供电可能时间是有限的。同时,如同在图1中所示的车辆100的情况,其中安装了蓄电装置110和发动机160 二者的混合动力车辆可通过更多地使用由投入运行的发动机160产生的电力来供电。因此,能够期待较长时段的供电。
[0061]因此,在车辆100的供电模式下,选择在发动机160停止的情况下仅基于从蓄电装置110放电的供电(在下文中,同样被称为“EV供电”)或者涉及由于发动机160的运行而发电的供电(在下文中,同样被称为“HV供电”)。在供电模式下,SMR 115与CHR 210二者都接通。
[0062]在HV供电期间,E⑶300产生操作指令DRV以便使发动机160投入运行。此外,关于PCU 120,ECU 300产生控制信号PWC、PWI1、PWI2,以使得电动发电机130采用来自发动机160的动力发电,并且该产生的电力被转换为蓄电装置110的充电电力。
[0063]在EV供电期间,ECU 300产生操作指令01^、?¥(:、?¥11、?¥12以使得发动机160和?0]120停止。
[0064]在HV供电期间,发动机160选择高效工作点,并且基本上采用恒定输出运行。因此,通常在HV供电期间,不管从入口 220和/或插座250供应的电力如何,由发动机160产生的电力基本上恒定。
[0065]因此,在由发动机160产生的电力超过从车辆100供应的电力的情况下,采用多余电力向蓄电装置110充电。换句话说,在供电模式下的HV供电期间,蓄电装置110的SOC可能上升。
[0066]图2是示出用于选择在车辆100的供电模式下的HV供电或者EV供电的控制的流程图。
[0067]参考图2,在步骤SlOO中ECU300确定当前模式是否为供电模式。倘若当前模式是供电模式,则ECU 300重复执行接下来的步骤SI 10到S160的操作。例如,在电力电缆400处于正常连接状态并且由用户指定供电模式的情况下,在步骤SlOO中做出是(YES)判定。然而,在由于蓄电装置110的SOC和在燃料箱165中剩余的燃料量短缺而使得供电是不可能的情况下,以及在由于在用于供电的设备中发生异常而使得供电是不可能的情况下,在步骤SlOO中做出否(NO)判定。
[0068]在当前模式是供电模式时(当在SlOO中做出是判定时),ECU300允许处理推进到步骤SllO并且检查发动机160是否停止。在发动机停止的EV供电期间(当在SllO中做出是判定时),ECU 300允许处理推进到步骤S120并且将蓄电装置110的SOC与基准值SI相比较。基准值SI对应于“第一基准值”。
[0069]当SOC没有达到SI时(当在S120中做出是判定时),在步骤S130中,ECU 300指示发动机160投入运行。然后,通过启动在停止状态下的发动机160来执行从EV供电到HV供电的切换。
[0070]当SOC至少为SI时(当在S120中做出否判定时),在步骤S150中,ECU 300指示发动机160停止。然后,发动机160保持停止并且继续EV供电。
[0071]相比之下,在发动机160的运行期间(当在SllO中做出否判定时),即,在HV供电期间,E⑶300允许处理推进到步骤S140并且将SOC推定值与基准值Su相比较。基准值Su对应于“第二基准值”并且将Su设定为超过SI。
[0072]当SOC超过Su时(当在S140中做出是判定时),在步骤S150中,ECU 300指示发动机160停止。然后,通过停止在运行中的发动机160来执行从HV供电到EV供电的切换。
[0073]当Su至少为SOC时(当在S140中做出否判定时),在步骤S130中,ECU 300指示发动机160投入运行。然后,发动机160保持运行并且继续HV供电。
[0074]此外,在发动机160的运行期间,在步骤S170中,ECT300存储发动机160在供电模式下的运行历史。然后,ECU 300可检测在供电模式下开始供电之后,发动机160是否一直运行到当前时间点,也就是,HV供电的选择的历史的有无。
[0075]图3是示出在供电模式下的燃料剩余量和SOC的转变以及关于其的供电可能时间计算结果的转变的一个示例的概念波形图。在图3所示的运行示例中,将在供电模式下的供应电力(也就是,通过图1的电负载600消耗的电力)固定为常数值以便简化描述。
[0076]参考图3,在时刻ts处,供电开始时SOC超过SI,从而执行其中发动机160停止的EV供电。继续EV供电直到在时刻t0处SOC达到基准值SI (第一基准值)。在EV供电期间,SOC根据供应电力单调递减。
[0077]在时刻t0处,通过使发动机160投入运行来执行从EV供电到HV供电的切换。在图3所示的示例中,在HV供电期间从发动机160的输出导致的所产生的电力也具有固定值,并且所产生的电力超过供应电力。
[0078]因此,在时刻t0之后的HV供电期间SOC上升。HV供电一直持续到在时刻tl处SOC达到基准值Su(第二基准值)。在时刻tl处,执行从HV供电到EV供电的切换。然后,在时刻t2之后SOC再次下降。
[0079]如上所述,根据SOC的转变来执行在EV供电与HV供电之间的切换。在图3所示的运行示例中,从时刻t2到t3以及从时刻t4到t5选择HV供电,并且从时刻t3到t4以及从时刻t5到t6选择EV供电。可通过根据如上所述在图2中所示的流程图来选择EV供电或者HV供电而在供电模式下避免蓄电装置110的过度充电和过度放电。
[0080]在图3中还示出在供电模式下的燃料剩余量的变化。在图3中,相互一同示出通过ECU 300识别的燃料剩余量检测值FLV(离散值)与实际燃料剩余量FLV#。
[0081]在HV供电期间,实际燃料剩余量FLV#由于发动机160的运行而降低。同时,在EV供电期间,燃料剩余量FLV#不变。如上所述,可在发动机160被固定到在HV供电期间的高效运行点时运行发动机160,从而不显著增加燃料消耗。
[0082]因此,即使其中重复EV供电和HV供电的供电模式继续,也可能发生SOC重复上升和下降而通过E⑶300识别的燃料剩余量检测值FLV保持恒定的情况。
[0083]ECU 300具有计算供电可能时间Tsp的功能,该供电可能时间Tsp是在供电模式下供电是可能的的剩余时间。可通过由图1中示出的指示器310显示的计算出的供电可能时间Tsp来通知用户该计算出的供电可能时间Tsp。根据图3,例如,每小时显示供电可能时间Tsp0
[0084]根据一个比较例,例如,ECU300可根据使用燃料箱165中的燃料的发电可能时间Tgs(h)以及使用蓄电装置110的电力的放电可能时间Tel(h)的总和来计算贯穿供电模式的供电可能时间Tsp(h)。
[0085]可通过可发电电力量(kWh)来计算发电可能时间Tgs(h),该可发电电力量与燃料剩余量检测值FLV除以当前供应电力(kW)成正比。同样,可通过可放电电力量(kWh)来计算放电可能时间Tel(h),该可放电电力量与蓄电装置110的SOC除以当前供应电力(kW)成正比。
[0086]在图3示出的示例中,供应电力为常数,因此,放电可能时间Tel根据SOC的转变而改变,并且发电可能时间Tgs根据燃料剩余量检测值FLV的转变而改变。
[0087]此时,在上述SOC重复上升和下降而燃料剩余量检测值FLV保持恒定的情况下,发生这样的现象:其中计算出的供电可能时间Tsp上升,尽管初始供电可能时间因为燃料消耗而缩短。
[0088]在如图3所示通过指示器310每小时显示供电可能时间Tsp的情况下,例如,因为在供电持续期间显示值重复上升和下降(在10小时和11小时之间波动),用户可能感觉不安。或者,在通过使用在电网中的车辆的供电可能时间Tsp来控制供电路径选择等的情况下,控制操作可能由于供电可能时间Tsp的计算结果的波动而变得不合理。
[0089]因此,在根据本实施例的车辆中,根据下文所述的控制流来适当计算在供电模式下的供电可能时间。
[0090]图4是示出根据本实施例的供电可能时间计算处理的流程图。
[0091]参考图4,在步骤S210中,E⑶300基于燃料剩余量检测值FLV来计算基于发动机的发电可能时间Tgs。此外,在步骤S220中,E⑶300基于蓄电装置110的SOC来计算放电可能时间 Te 10
[0092]图5和图6是示出如图4所示的发电可能时间和放电可能时间计算处理的细节的流程图。换句话说,图5是示出与在图4中的步骤S210相关的控制处理的细节的流程图,并且图6是示出与在图4中的步骤S220相关的控制处理的细节的流程图。
[0093]参考图5,在步骤S212中ECU300判定当前状态是否为禁止通过发动机160来发电的状态。在发动机160、电动发电机130、135以及PCU 120中的任何一个中出现异常的情况下,例如禁止通过发动机160的运行来发电,从而在步骤S212中做出是判定。当禁止基于发动机的发电时(当在S212中做出是判定时),ECU 300允许处理推进到步骤S218并且将发电可能时间Tgs设定为O。
[0094]在通过运行发动机160的发电是可用的情况下(当在S212中做出NO判定时),ECU300允许处理推进到步骤S214并且基于燃料计195的输出来识别燃料剩余量检测值FLV。以这种方式,取得作为离散数值的燃料剩余量检测值FLV。
[0095]在步骤S216中,ECT300从在步骤S214中取得的燃料剩余量检测值FLV来计算发电可能时间Tgs。可根据例如基于在HV供电模式下的发动机160的热效率、在电动发电机130中的发电效率以及通过PCU 120和电力转换器200转换电力的效率而预先设定的系数,从燃料剩余量检测值FLV来计算可发电电力量(kWh)。此外,可通过获得的可发电电力量除以当前供应电力来计算发电可能时间Tgs。
[0096]参考图6,在步骤S222中,E⑶300判定是否禁止从蓄电装置110放电。在因为蓄电装置110的异常而禁止从电池放电的情况下(当在S222中做出是判定时),ECU 300允许处理推进到步骤S228并且将放电可能时间Tel设定为O。
[0097]在蓄电装置110的放电是可能的情况下(当在S222中做出否判定时),ECU300允许处理推进到步骤S224并且根据基于蓄电装置110的电压VB与电流IB的SOC估算取得当前SOC AOC估算也可反映蓄电装置110的温度。
[0098]在步骤S226中,ECU 300从在步骤S224中取得的SOC计算放电可能时间Tel。在EV供电模式下,可根据例如基于通过电力转换器200转换电力的效率而预先设定的系数,从SOC来计算放电电力量(kWh)。此外,可通过获得的可充电电力量除以当前供应电力来计算放电可能时间Tel。
[0099]返回参考图4,在步骤S210和S220中计算发电可能时间Tgs和放电可能时间Tel之后,在步骤S230中E⑶300判定SOC恢复历史的有无。
[0100]简单来说,可基于继开始供电模式之后的发动机160的运行历史的有无来做出步骤S230的判定。换句话说,在开始供电之后直到当前时间点未运行发动机160并且仅选择EV供电模式的情况下,在步骤S230中可做出否判定。反之,倘若在开始供电之后直到当前时间点,具有发动机160运行的至少一个时段,并且保留选择HV供电模式的历史,则在步骤S230中可做出是判定。因此,可基于在图2中所示的在步骤S160中存储的发动机运行历史来执行根据步骤S230的判定。
[0101]当SOC恢复历史不存在时(在S230中做出否判定时),E⑶300允许处理推进到步骤S250,并且根据发电可能时间Tgs与放电可能时间Te I的总和来设定供电可能时间Tsp (Tsp= Tgs+Tel) ο
[0102]当SOC恢复历史存在时(在S230中做出是判定时),ECU300允许处理推进到步骤S240,并且将T sp设定为等于Tgs。换句话说,仅基于燃料剩余量检测值FLV来计算供电可能时间Tsp,而不考虑基于SOC的放电可能时间Tel。
[0103]返回参考图3,在根据本实施例的供电可能时间计算处理中,在当开始供电时的时刻ts与时刻t0之间,发动机160的运行历史不存在并且仅选择EV供电,从而以与比较例相似的方式计算供电可能时间Tsp。
[0104]反之,在继时刻t0(当随着发动机160的运行开始第一HV供电时)之后的供电期间,基于燃料剩余量检测值FLV在不包括基于SOC的放电可能时间Tel的情况下计算供电可能时间Tsp(Tsp = Tgs)。换句话说,在图3示出的运行示例中,时刻ts到t0的时段对应于“第一时段”并且继时刻to之后的时段对应于“第二时段”。
[0105]结果是,应了解,在继t0(当开始选择HV供电模式时)之后的时段,解决了如在比较例中的供电可能时间Tsp的波动的不便。特别应了解,尽管供电可能时间Tsp每小时显示,但是用户可免于感到不安。在图3示出的运行示例中,供电(包括HV供电)的进一步延续导致每次燃料剩余量的减少超过燃料剩余量检测值FLV的分辨率时,供电可能时间Tsp减少。以这种方式,可适当通知用户由供电的继续所造成的供电可能时间Tsp的减少。
[0106]如上所述,根据本实施例的车辆,即使在基于燃料计195的燃料剩余量识别值的分辨率在车辆100(该车辆具有其中执行涉及发动机160的运行的供电的模式)中为粗的情况下,也可适当计算供电可能时间,以使供电可能时间的计算值在继续供电期间不增加。
[0107]由于在HV供电模式(其中燃料剩余量检测值FLV为常数)中SOC上升,发生了其中供电可能时间增加的不合理计算,已经基于图3中的比较例对该不合理计算做出描述。相应地,即使在HV供电模式下,在供应电力超过所产生电力并且SOC没有上升的情况下,上述不便也未发生。
[0108]因此,同样可基于实际SOC的转变,执行根据图4中的步骤S230的SOC恢复历史的判定。
[0109]图7是示出用于判定SOC恢复历史的控制处理的另一示例的流程图。
[0110]参考图7,在开始供电模式之后,在步骤S310中,EOT 300将标志FLGsup初始化为O。
[0111]在步骤S120中,ECU 300判定FLGsup是否为I。当FLGsup为O时(当在S320中做出否判定时),在步骤S330中,ECT 300将前一周期的SOC与当前SOC相比较。
[0112]在当前SOC超过前一周期的SOC时(当在S330中做出是判定时),ECU 300允许处理推进到步骤S340并且将FLGsup设定为I。当FLGsup已经为I时(当在S320中做出是判定时),保持FLGsup为I的状态,而不实施步骤S330的处理的执行。
[0113]在当前SOC等于或者小于前一周期的SOC时(当在S330中做出否判定时),ECU 300跳过步骤S340的处理。换句话说,保持FLGsup为O的状态。
[0114]此外,在步骤S350中ECU 300判定是否终止供电模式。周期性地执行步骤S320到S340的处理直到终止供电模式(当在S350中做出否判定时)。
[0115]根据图7,当开始供电并且FLGsup保持在O处而SOC单调递减时,将标志FLGsup初始设定为O。一旦选择HV供电模式并且SOC由于供应电力超过所产生电力而至少上升一次,则其后将标志FLGsup设定为I。
[0116]因此,基于根据图7所示处理的标志FLGsup的设定,关于图4中步骤S230的判定,当FLGsup为O时可以是否判定,当FLGsup为I时可以是是判定。即便如此,可通过避免在供电继续期间供电可能时间的计算值的增加来适当计算供电可能时间。
[0117]图8示出用于判定SOC恢复历史的控制处理的又一示例。参考图8,ECU300执行步骤S330#的处理而不是图7中示出的步骤S330。步骤S310、S320、S340以及S350的其它处理与在图7中示出的处理相似,因此将不在此对其做重复描述。
[0118]在当FLGsup为O时执行的步骤S330#中,EOT 300判定当前SOC是否没有达到预定值St。与关于从EV供电到HV供电的切换的基准值SI相关联地设定预定值St。换句话说,原则上将St设定为等于SI,但是同样可将St设定为接近SI的值。
[0119]根据图8,当开始供电时将标志FLGsup初始设定为0,并且在一直持续到SOC减少到要求HV供电的水平的时段,FLGsup保持在O处。一旦SOC减少到该水平,则其后将标志FLGsup设定为I。
[0120]因此,也可基于标志FLGsup(根据图8所示的处理),在图4示出的步骤S230中判定SOC恢复历史的有无。即便如此,可通过避免在继续供电期间供电可能时间的计算值的增加来适当计算供电可能时间。
[0121]或者,在图4中示出的步骤S230中,可以简化的方式基于当前SOC而不参考过去历史来判定SOC恢复历史的有无。从图3中显而易见,一旦SOC上升到基准值Su并且然后发生向EV供电的切换,则HV供电终止。因此,在SOC超过Su的区域中,可判定没有执行HV供电并且没有产生SOC恢复历史。同时,在SOC超过Su的区域中,可能已经执行了HV供电。因此,可同样基于当前S0C(通过将其和与基准值Su相关联地设定的预定值进行比较)来判定SOC恢复历史的有无(S230)。具体地,在当前SOC超过预定值(对应于Su)的情况下,可在S230(图4)中做出否判定,否则可做出是判定。然后,可以简化的方式判定SOC恢复历史的有无,而不需要历史累积。
[0122 ]在图4示出的流程图中,在每个周期计算发电可能时间Tgs以及放电可能时间Te I。然而,在产生SOC恢复历史之后,也就是,在步骤S230中做出至少一个是判定之后,也可省略关于在步骤S220中的放电可能时间Tel的计算处理的执行。
[0123]此外,在图1中示出的车辆100的配置仅是示例,用于产生涉及运行发动机160的供应电力的配置不限于在图1中示出的配置。例如,本发明可类似地应用于具有所谓串联式混合动力配置的车辆,在该车辆中设置了基于发动机160输出的专用发电机。
[0124]在图1中,示出其中电力电缆400在外部充电与外部供电两个期间服务的配置作为示例。然而,也可分别配置在充电期间使用的电缆与在供电期间使用的电缆。
[0125]同样地,尽管已经示出用于外部供电的电力节点还用作外部充电入口220的配置作为示例,但是可将用于外部供电的电力节点配置为与入口220分离。此外,尽管已经示出了通过经由电力电缆400的电连接向车辆外部供应电力的配置作为本实施例中的一个示例,但是在发动机运行之后的供电是可能的范围内,即使对于涉及没有相对于外部供电的电连接的方面,本实施例一般也是可应用的,其示例包括通过在电力传送线圈与电力接收线圈之间预定频率的AC电力的非接触传输来执行的系统。
[0126]如上所述,可通过使用在乘客车厢中的插座520来配置“电力节点”,并且根据本实施例的车辆的供电模式下的供电的目的地可以是车辆外部或者车辆内部(在乘客车厢中)。
[0127]应注意在此公开的实施例是示例并且在各个方面不是限制性的。本发明的范围不是通过上述描述而是通过权利要求的范围来阐明,并且包括具有与权利要求的范围相同的意义并且落入与权利要求范围相同的范围的任何修改。
【主权项】
1.一种具有供电模式的车辆,所述车辆包括: 蓄电装置; 内燃机,其被配置成通过燃料的燃烧来产生动力; 燃料箱,其被配置成存储所述燃料; 燃料计,其被配置成检测所述燃料箱中的剩余燃料量; 发电机构,其被配置成使用来自所述内燃机的动力发电; 电力转换器,其被配置成在所述供电模式下将来自所述蓄电装置和所述发电机构中的至少一者的电力转换成供电电力; 电力节点,其被配置成输出来自所述电力转换器的所述供电电力;以及 控制装置,其被配置成在所述供电模式下,一旦所述蓄电装置的SOC在其中所述内燃机被停止的供电期间降低到第一基准值,则使所述内燃机投入运行并且控制所述内燃机的运行以使供电继续, 其中所述控制装置被配置成:i)在所述供电模式下,在供电的开始与由于所述内燃机的运行而使用来自所述发电机构的电力对所述蓄电装置充电所导致的所述SOC中的恢复历史的产生之间的第一时段,根据被识别为基于所述燃料计的输出的离散数值的剩余量值和所述SOC来计算供电可能时间,以及ii)在所述恢复历史的产生之后,基于所述剩余量值来计算所述供电可能时间而不考虑所述S0C。2.根据权利要求1所述的车辆,其中 所述控制装置被配置成在涉及所述内燃机的运行的供电期间,一旦所述蓄电装置的SOC上升到高于所述第一基准值的第二基准值,则控制所述内燃机的运行以使供电在所述内燃机被停止的情况下继续。3.根据权利要求1或2所述的车辆,其中 所述控制装置被配置成基于所述内燃机的始于所述供电的开始的运行历史来检测所述恢复历史。4.根据权利要求1或2所述的车辆,其中 所述控制装置被配置成在所述供电模式下基于所述SOC从下降变为上升的历史的有无来检测所述恢复历史。5.根据权利要求1或2所述的车辆,其中 所述控制装置被配置成在所述供电模式下基于所述SOC被降低到与所述第一基准值相关联地确定的预定值的历史的有无来检测所述恢复历史。6.根据权利要求1至5中任一项所述的车辆,进一步包括: 指示器,其被配置成以用户能够查看所述供电可能时间的方式来显示通过所述控制装置计算的所述供电可能时间。
【文档编号】B60W20/00GK106064619SQ201610248523
【公开日】2016年11月2日
【申请日】2016年4月20日 公开号201610248523.7, CN 106064619 A, CN 106064619A, CN 201610248523, CN-A-106064619, CN106064619 A, CN106064619A, CN201610248523, CN201610248523.7
【发明人】丹羽大和
【申请人】丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1