用于收集稀释的单核细胞的系统和方法

文档序号:5013328阅读:242来源:国知局
专利名称:用于收集稀释的单核细胞的系统和方法
技术领域
本发明领域本发明涉及离心处理系统和装置。
本发明背景目前,血液收集组织通常通过离心将全血分离成其各种治疗性成分,如红血细胞、血小板、和血浆。
常规血液处理系统和方法将耐用的离心设备与一次性使用的无菌处理室(通常由塑料制成)结合使用。所述离心装置将全血导入所述室中,同时转动这些室,以产生离心力场。
在所述离心力场的作用下,全血在旋转的室中分离成高密度的红血细胞和富含血小板的血浆。由白细胞的中间层在红血细胞和富含血小板的血浆之间形成界面。单核细胞(MNC)存在于该界面中。
本发明概述本发明提供了用于从全血中收集单核细胞的系统和方法。该系统和方法转动一个室,其中,通过离心方法将全血分离成堆积的红血细胞,血浆成分,和在堆积的红血细胞和血浆成分之间的界面。该界面带有血小板和单核细胞。该系统和方法包括一个界面控制装置。该控制装置可以在三种状态下工作,在第一种状态下,将血小板和单核细胞保留在所述室中,以便使缺少血小板的血浆能够从所述室中排入通向第一容器的通道,缺少血小板的血浆被收集在该容器中用作稀释液体。在第二种状态下,单核细胞保留在所述室中,而富含血小板的血浆能够从所述室中排入另一个通道,该通道绕过所述缺少血小板的收集容器,以便保持其缺少血小板的特征。第三种状态能够将单核细胞从所述室中排入一个通向第二容器的通道,所述单核细胞被收集在该容器中。该系统和方法将缺少血小板的血浆从第一容器导入第二容器,以便在第二容器中稀释排出的单核细胞。在处理期间分离富含血小板血浆的能力可以提供一种纯浓度的单核细胞。选择性地提供缺少血小板的血浆作为稀释液体的附加能力确保所述单核细胞产物在稀释之后保持纯净。
在一种优选实施方案中,所述界面控制装置包括一个传感元件,后者在所述室中通过光学方式确定所述界面的位置,并提供一个检测的输出,以便帮助进行界面控制。
通过阅读以下说明书、附图和所附权利要求书,可以了解本发明的其它特征和优点。
附图的简要说明

图1是具有分离室的血液离心机的侧面剖视图,该分离室具有本发明的特征;图2表示与图1所示离心机结合的筒状元件,具有一个相关的处理容器包围着它以便利用;图3A是图1所示离心机的透视图,具有旋转到其进入位置的盘状和筒状元件;图3B是所述盘状和筒状元件的透视图,其处于相互分离的状态,以便将图2所示处理容器固定在所述筒状元件周围;图4是图2所示处理容器的平面图;图5是与所述处理容器相关的流体回路的透视图,它包括与所述离心机上的泵站结合安装的盒;图6是图5所示流体回路的示意图;图7是构成图6所示流体回路的一部分的盒的背面透视图;图8是图7所示盒的正面透视图;图9是设置在图7所示盒中的流体通道和阀站的示意图;图10是用于容纳图7所示类型的盒的泵站的示意图;图11是安装在图10所示泵站上的图9所示盒的示意图;图12是构成图6所示流体回路的一部分的盒和泵站的透视图;图13是构成图6所示流体回路的一部分的蠕动泵的上视图,泵的转子处于收缩状态;图14是构成图6所示流体回路的一部分的蠕动泵的上视图,泵的转子处于接合泵管的伸展状态;
图15是图1所示离心机的分离室的示意图,将其剖开了,以显示高-G和低-G壁的径向轮廓;图16A和16B示意性地表示所述分离室中富含血小板的血浆收集区的一部分,其中,所述高-G壁表面形成一个锥形楔,用于容纳和控制位于红血细胞和富含血小板血浆之间的界面的位置;图17是在全血进入所述处理室以便分离成红血细胞和富含血小板的血浆的部位,以及富含血小板的血浆在所述处理室中积累的部位,从低-G壁向高-G壁看过去的所述处理室的内部的示意图;图18是所建立的动态流动状态的示意图,由该状态将MNC限制并“堆积”在图17所示的血液分离室中;图19是控制图6所示流体回路的处理控制器的示意图,用于执行预定的MNC收集方法;图20是表示由图19所示控制器控制的MNC收集方法的各种循环和阶段的流程图;图21是表示在图20所示方法的初级处理循环期间在图6所示回路中血液成分和流体输送的示意图;图22是表示在图20所示方法的MNC积累阶段在图6所示回路中血液成分和流体输送的示意图;图23表示在图20所示方法的PRBC收集阶段在图6所示回路中血液成分和流体输送的示意图;图24A表示在图20所示方法的MNC排出阶段的开始时在图6所示回路中血液成分和流体输送的示意图;图24B表示在图20所示方法的MNC排出阶段期间在图6所示回路中血液成分和流体输送的示意图;图24C表示在图20所示方法的MNC排出阶段结束时在图6所示回路中血液成分和流体输送的示意图;图25是表示在图20所示方法的PRP冲洗阶段在图6所示回路中血液成分和流体输送的示意图;图26表示在图20所示方法的MNC悬浮阶段在图6所示回路中血液成分和流体输送的示意图;图27表示在图20所示方法的净化阶段在图6所示回路中血液成分和流体输送的示意图28是与图6所示回路结合使用的、用于检测和定量用于收获的MNC区域的光学传感器的示意图;图29是适用于收集和收获MNC的流体回路的另一种实施方案;图30表示在图20所示方法的PRBC收集阶段在图29所示回路中血液成分和流体输送的示意图;图31表示在图20所示方法的MNC排出阶段在图29所示回路中血液成分和流体输送的示意图。
本发明在不脱离其构思或实质特征的前提下,可以用若干种方式实施。本发明的范围由所附权利要求书限定,而不是由权利要求书前面的具体说明来限定。因此,落入所述权利要求书的等同含义和范围之内的所有实施方案,都被视为由所述权利要求书包括。
优选实施方案的说明I.离心机图1表示适用于从全血中收获单核细胞(MNC)的具有血液处理室12的血液离心机10。室12的边界由一个柔性处理容器14形成,该容器安装在旋转筒状元件18和盘状元件20之间的环形间隙16中。在所示的优选实施方案中,所述处理容器14是取长形管的形式(参见图2),在使用之前它包围着筒状元件18。
有关离心机10的进一步细节,披露于题为“高产血小板系统和方法”的US5,370,802中,该专利被收作本文的参考文献。
盘状元件和筒状元件18和20在一个轴22上转动,在图3A和3B所示的直立位置和图1所示的悬挂位置之间转动。
当直立时,使用者可以接近盘状和筒状元件18和20。如图3B所示,用一种机构将盘状和筒状元件18和20打开,以便操作者可以将容器14套在筒状元件20上,如图2所示。筒状元件20上的销150接合容器14上的切口,以便将容器14固定在筒状元件20上。
当关闭时,盘状和筒状元件18和20可以旋转到图1所示的悬挂位置。在工作时,离心机10绕轴线28转动悬挂的盘状和筒状元件18和20,在所述处理室12中产生一个离心力场。
有关导致上文所述的盘状和筒状元件18和20的相对运动的机构的其它细节披露于题为“提供进入分离室的入口的、具有可分离的盘状和筒状元件的离心机”的US5,360,542中,该专利被收作本文的参考文献。
所述离心力场的径向边界(参见图1)是由盘状元件18的内壁24和筒状元件20的外壁26形成的。盘状元件的内壁24限定了高-G壁。由筒状元件的外壁26限定了低-G壁。
II.处理容器在所述实施方案中(参见图4),由第一个周向密封件42形成容器14的外缘。第二个内部密封件44大体上平行于转动轴线28延伸,将容器14划分成两个腔室38和40。
在使用时,在腔室38中离心分离全血。在使用时,腔室40装有一种诸如盐水的液体,以便平衡腔室38。在图4所示实施方案中,腔室38大于腔室40,其体积比为大约1∶1.2。
有三个口46、48和50与处理腔室38相通,以便输送全血及其成分。另外两个口52和54与平衡腔室40相通,以便输送平衡流体。
III.流体处理回路流体回路200(参见图4)与容器14连接。图5表示流体回路200的一般排列,表现为柔性管、液体源和收集容器、串联的泵和夹具的一个阵列,随后将对上述所有装置作更详细地说明。图6示意性地表示流体回路200的细节。
在所示实施方案中,左侧盒23L、中间盒23M、和右侧盒23R集中了流体回路200的众多阀控和泵送功能。左侧盒23L、中间盒23M、和右侧盒23R与离心机10上的左侧泵站、中间泵站、和右侧泵站配合,这些泵站分别被称为PSL、PSM和PSR。
A.盒每一个盒23L、23M和23R被作的相同,因此,对一个盒23L所作的说明适用于所有盒。图7和8表示盒23L的结构细节。
盒23L包括一个模制的塑料体202。将液体流通通道208整体模制在塑料体202的正面204上。由一个刚性板214覆盖并密封所述塑料体的正面204。
将阀站210模制到盒体202的背面206上,由一个柔性隔膜212覆盖并密封盒体202的背面206。
图9示意性地表示每一个盒的流通通道208和阀站210的代表性阵列。如图所示,通道C1-C6相交,构成一种星形排列,由一个中央轮毂H向外辐射。通道C7与通道C5相交;通道C8与通道C6相交;通道C9与通道C3相交;而通道C10与通道C2相交。当然可以采用其它通道形式。
在该结构中,阀站VS1、VS2、VS9和VS10分别位于通道C2、C3、C5和C6上,紧挨着它们在轮毂H上的相交点。阀站VS3、VS4、VS5、VS6、VS7、和VS8分别位于通道C8、C1、C2、C5、C4和C3的外侧末端。
每一个盒23L载有一个上部柔性管状回路UL,该回路延伸到通道C7和C6之间的盒23L的外面;以及一个下部管状回路LL,该回路延伸到通道C3和C10之间的盒外面。在使用时,管状回路UL和LL接合相关泵站上的泵的蠕动泵转子。
B.泵送站泵站PSL、PSM和PSR与盒23L、23M和23R相似,被做的相同,所以对一个装置PSL的说明可应用于所有的装置。图12表示左侧泵站PSL的结构细节。图10表示左侧泵站PSL的进一步示意性形式。
装置PSL包括两个蠕动泵,在回路200上一共有6个泵,这些泵被称为P1-P6(参见图6)。泵站PSL还包括10个阀动器的阵列(如图10所示),在回路200中一共有30个阀动器,这些阀动器被命名为VA1-VA30(参见图6)。
在使用时(参见图11),盒23L的管状回路UL和LL接合左侧泵站PSL的泵P1和P2。中间盒23M的管状回路UL和LL以类似方式(如图6所示)接合泵P3和P4。右侧盒23L的管状回路UL和LL接合泵P5和P6。
如图11所示,盒23L的阀站VS1和VS10与左侧泵站PSL的阀动器V1-V10对齐。如图6所示,中间盒23M和右侧盒23R的阀站同样分别与中间泵站PSM和右侧泵PSR的阀动器对齐。
下面的表1归纳了图6所示的泵站阀动器V1和V30与盒的阀站VS1和VS10的工作关系。
表1盒的阀站与阀动器的排列
盒23L、23M和23R安装在其相应的泵站PSL、PSM和PSR上,使其背面206向下,以便隔膜212朝向并接合阀动器。阀动器Vn是电磁致动的活塞215(参见图12),该活塞向着阀关闭位置偏压。阀动器Vn被设计成以表1所述方式与盒的阀站VSn对齐。当一个特定的活塞215受到激励时,相关的盒的阀站被打开,允许液体通过。当活塞215未受到激励时,它将隔膜212移动到相关的阀站中,阻止液体通过相关的阀站。
在图12所示的实施方案中,位于每一个泵站PSL、PSM和PSR上的泵P1-P6包括旋转蠕动泵转子216。转子216可以在与相应的管状回路分离的一收缩状态(如图13所示)和一工作状态(如图14所示)之间运动,在此工作状态下,转子216抵着泵槽218与相应的管状回路啮合。
因此,泵P1和P6可以在三种状态下工作(i)在泵送状态下,泵的转子216在此期间转动,并处于其工作位置,抵着泵槽218与泵管啮合(如图14所示)。因此,旋转的泵转子216通过所述管状回路以蠕动形式输送流体。
(ii)在开放的泵关闭状态下,泵转子216在此期间不转动,并处于其收缩状态,从而不与所述泵管回路啮合(如图13所示)。因此,所述开放的泵关闭状态允许流体在泵转子不转动的条件下流过所述泵管回路。
(iii)在闭合的泵关闭状态下,泵转子216在此期间不转动,而所述泵转子处于其工作状态。因此,静止的泵转子216与泵管回路啮合,并起着堵塞流体流过所述泵管回路的夹具作用。
当然,使用不收缩的蠕动泵转子,通过将夹具和管状通道适当安装在所述泵转子的上游和下游,可以实现泵状态的等同组合。
有关盒23L、23M、23R,蠕动泵P1-P6,和阀动器V1-V30的进一步结构细节,对本发明来说不是必须的。这些细节披露于题为“具有倾斜出口管接头的蠕动泵管盒”的美国专利US5,427,509中,该专利被收作本文的参考文献。
C.流体流通管流体回路200还包括数段柔性塑料管,在图6中被称为T1-T20。柔性管T1-T20将盒23L、23M和23R连接到处理容器14上,连接到外部来源和收集袋或容器上,并连接到血液捐献者/患者身体上。
下面将说明管T1-T20与收集和收获MNC相关的流体流动功能。下面从结构角度归纳管T1-T20的连接,如图6所示管T1从捐献者/患者(通过常规静脉针头,未示出)通过一个外部夹具C2延伸到左侧盒23L的管道C4。
管T2从管T1通过一个外部夹具C4延伸到中间盒23LM的管道C5。
管T3从空气检测室D1延伸到左侧盒23L的管道C9。
管T4从点滴室D1延伸到处理容器14的口48。
管T5从处理容器14的口50延伸到中间盒23M的管道C4。
管T6从中间盒23M的管道C9延伸到室D1下游的管T4。
管T7从右侧盒23R的管道C8延伸到左侧盒23L的管道C8。
管T8从中间盒23M的管道C1延伸到连接管T7。
管T9从左侧盒23L的管道C5通过一个空气检测室D2和一个外部夹具C3延伸到捐献者/患者(通过一个常规静脉针头,未示出)。
管T10从处理容器14的口46的通过一个串联的光学传感器OS延伸到右侧盒23R的管道C4。
管T11从右侧盒23R的管道C9延伸到室D1。
管T12从右侧盒23R的管道C2延伸到被称为PPP的用于接收缺少血小板的血浆的容器。由一个称重仪(未示出)检测容器PPP的重量,以便推导出流体体积的变化。
管T13由右侧盒23R的管道C1延伸到用于接收单核细胞的容器,该容器被称为MNC。
管T14由中间盒23M的管道C2延伸到用于接收堆积的红血细胞的容器,该容器被称PRBC。由一个称重仪WS检测容器PRBC的重量,以便推导出流体体积的变化。
管T15由一个被称为ACD的抗凝固剂容器延伸到中间盒23M的管道C8。由一个称重仪(未示出)检测容器ACD的重量,以便推导出流体体积的变化。
管T16和T17从一个被称为PRIME的诸如盐水的启动液体容器延伸,绕过所有盒23L、23M、和23R,通过外部夹具C1,并分别与管T9(位于空气检测室D2和夹具C3之间)和管T1(夹具C3的上游)相交。由一个称重仪(未示出)检测容器PRIME的重量,以便推导出流体体积的变化。
管T18由处理容器14的口52延伸到右侧盒23R的管道C5。
管T19由处理容器14的口54延伸到交叉的管T18。
管T20由左侧盒23L的管道C2延伸到用于接收废启动流体的容器,该容器被称为WASTE。由一个称重仪(未示出)检测容器WASTE的重量,以便推导出流体体积的变化。
一部分所述管连接到脐管30上(参见图1)。脐管30在位于离心力场中的处理容器14的内部和位于离心力场外部的回路200的其它静止元件之间提供流体流动连通。由一个不转动的(0Ω)支架32保持脐管30的上部处于非转动位置,该位置在悬挂的筒状和盘状元件18和20上方。位于轴22上的支架34以第一(1Ω)速度绕悬挂的筒状和盘状元件18和20转动脐管30的中间部分。另一个支架36以二倍于1Ω速度的第二速度(2Ω速度)转动脐管30的下端,悬挂的筒状和盘状元件18和20也以该速度转动。脐管30的这种已知的相对转动保持其不会缠绕,由此避免对旋转密封的需要。
IV.在血液处理室中进行分离(概要)在说明利用容器14和流体回路200收集MNC的方法的细节之前,首先将主要结合图4和15-17对在处理腔室38中进行的全血分离的流体动力学进行一般性说明。
首先参见图4,从捐献者/患者体内抽取抗凝固的全血(WB),并通过口48输送到所述处理腔室中。血液处理腔室38包括一个内部密封件60和66,由所述密封件形成一个WB入口通道72,该通道通向WB入口区74。
WB沿着腔室38中的周向流通通道绕旋转轴线28流动。容器14的侧壁膨胀以便与筒状元件18的外(低-G)壁26和盘状元件20的内(高-G)壁24的形状一致。
如图17所示,WB在血液处理腔室38中的离心力场中分离成堆积的红血细胞(PRBC,用编号96表示),所述细胞向着高-G壁24运动,和富含血小板的血浆(PRP,用编号98表示),由于PRBC96的运动将其移动到低-G壁26。在PRBC96和PRP98之间形成一个被称为界面(用编号58表示)的中间层。
再参见图4,内部密封件60还在血液处理室38中形成一个PRP收集区76。如图17进一步表明的,PRP收集区76靠近WB入口区74。在离心力的作用下PRBC96向着高-G壁24沉降的速度在WB入口区74处高于血液处理室38中其它部位的速度。另外,在WB入口区74处,有较大的血浆体积向低-G壁26移动。其结果是,在WB入口区74处,出现朝低-G壁26的较大的径向血浆速度。这些向着低-G壁26的较大的径向速度将大量的血小板从PRBC96中洗脱到邻近的PRP收集区76。
如图4所示,内部密封件66还形成一个折弯70,该折弯限定了一个PRBC收集通道78。一个升高的挡板115(参见图15)沿着高-G壁24延伸到PRBC体中,在它和与它相对的等径高-G壁24之间形成一个限流通道114。限流通道114允许沿着高-G壁24存在的PRBC96移动超过挡板115,进入PRBC收集区50,以便通过PRBC收集通道78输送到PRBC口50。与此同时,升高的挡板115阻止PRP98超出它通过。
如图15、16A和16B所示,高-G壁24还伸向低-G壁26,以便在PRP收集区76形成一个锥形弯道84。弯道84形成一个沿着低-G壁26的收缩的通道90。PRP98层沿着该通道分布。由弯道84保持界面58和PRBC96与PRP收集口46分离,同时允许PRP98到达PRP收集口46。
在所示出的优选实施方案中(参见图16A),弯道84相对PRP口46的轴线以非平行的小于45°(优选大约30°)的角α取向,角α调解通过收缩通道90的界面和PRBC的溢流。
如图16A和16B所示,弯道84还显示界面26,以便通过一个相关的界面控制器220(参见图19)从容器14的侧壁进行观察。界面控制器220通过相应的口48、50、和46控制WB、PRBC、和PRP的相对流量。这样,控制器220可以将所述界面58保持在弯道上的预定位置,或者接近收缩的通道90(如图16A所示),或者离开收缩的通道90(如图16B所示)。
通过控制界面58在弯道84上相对收缩的通道90的位置,控制器220还可以控制通过口46收集的血浆的血小板含量。血浆中血小板的浓度随着接近界面58而增加。通过将界面58保持在弯道84上的较低位置(如图16B所示),保持富含血小板的区域远离口46,而通过口46输送的血浆具有较低的血小板含量。通过保持界面58在弯道84上处于较高位置(如图16A所示),更接近口46,通过口46输送的血浆是富含血小板的。
作为一种替代方案,或者与上述方案组合,所述控制器可以通过改变将WB导入血液处理腔室38中的速度,或者从血液处理腔室134中输出PRBC的速度,或者改变两者来控制界面58的位置。
有关界面控制器的优选实施方案的其它细节披露于US5,316,667中,该专利被收作本文的参考文献。
如图15所示,由径向相对的表面88和104沿着WB入口区74的高-G壁24形成一个限流区108。同样如图17所示,限流区108限制WB入口区74中的WB流入一个变小的通道,以便导致WB沿着低-G壁26更均匀地灌注到血液处理腔室38中。WB的这种均匀的灌注发生在靠近PRP收集区76处,以及大体上与界面58所在的优选的受控位置所在的平面相同的平面上。一旦超过区域挡板104的收缩区108,PRBC96就在离心力的作用下快速向高-G壁24移动。
收缩区108以接近界面58的优选控制高度将WB输送到入口区74。如果输送到入口区74的WB低于或高于界面58的控制高度,会马上追随所述界面高度,并且在这一过程中,绕它的震荡会导致不希望的二次流动和沿着界面58的扰动。通过将WB大体上以界面高度输送到入口区74,区域108可以减少二次流动和沿着界面58扰动的现象。
如图15所示,低-G壁26沿着WB的流动方向从旋转轴线28朝向高-G壁24向外逐渐收窄,而面对的高-G壁24保持一恒定的半径。所述收窄可以是连续的(如图15所示),或者为阶梯形式。这种沿着高-G和低-G壁24和26的轮廓产生一种动态周向血浆流动状态,大体上沿PRP收集区76的方向垂直于所述离心力场。如图18所示,沿该方向(箭头214)的周向血浆流动状态,连续将界面58吸回PRP收集区76,在这里存在业已说明过的较高的径向血浆流动条件,以便从界面58中清除更多的血小板。与此同时,反向流动模式起着将界面58的其它较重的成分(淋巴细胞、单核细胞、和粒细胞)由PRP流送回到PRBC体。
在这种动态周向血浆流动条件下,MNC(如图18所示)开始沿着高-G壁24沉降,但最终漂浮到界面58的表面,接近高血细胞比容PRBC收集区50。由锥形低-G壁形成图18中的箭头214所示的血浆逆流形式。这种逆流形式214将MNC吸回到低血细胞比容PRP收集区76。MNC再次朝向高-G壁24重新沉降在接近低血细胞比容PRP收集区76处,。
MNC在图18中所示的通道216中循环,而WB被分离成PRBC和PRP。由此收集MNC,并“堆积”在腔室38中的狭窄的通道216中,远离PRBC收集区50和PRP收集区76。
有关在处理腔室38中的分离动力学的进一步细节披露于US5,573,678中,该专利被收作本文的参考文献。
V.单核细胞处理方法离心机10包括一个处理控制器222(参见图19),该控制器指示流体回路200工作,以便用容器14完成预定的MNC收集和收获方法224。
如图20所示,方法224包括一个初级处理启动循环226,由它启动流体回路200。接着方法224包括一个初级处理循环228,由它处理来自全血的PPP,该全血获自捐献者/患者,随后将其用作方法224的用于收获MNC的悬浮介质。然后,方法224包括至少一个主要处理循环230,该主要处理循环230包括一个收集阶段232,随后是收获阶段234。
收集阶段232包括一系列收集阶段236和238,在此期间,对全血进行处理,以便以上述方式将单核细胞积累在第一腔室38中。
收获阶段同样包括一系列收获阶段240、242、244、和246,在此期间,将积累的单核细胞从第一腔室38转移到与回路200连接的收集容器MNC。将在初级处理循环228中收集的悬浮介质加入MNC中。
通常,在特定的方法224中,主要处理循环230要进行一次以上。在特定方法224中,进行处理循环230的次数取决于希望收集的MNC的总体积。
例如,在一种代表性的方法224中,重复进行主要处理循环230五次,一次接着一次地进行。在每一个主要处理循环230中,可以处理大约1500-大约3000ml的全血,以便每一个循环获得大约3ml的MNC。在5次处理循环230结束时,可以收集大约15ml的MNC体积,将其悬浮在大约200ml的最终稀释PPP中。
A.初级处理启动/平衡过程在捐献者/患者与流体回路200连接之前(通过管T1-T9),由控制器222进行一个启动循环228。在启动循环228中,控制器222指示离心机10绕轴线28转动筒状和盘状元件18和20,同时指示泵P1-P6将诸如盐水的无菌启动液体从容器PRIME中输出,并将抗凝固剂从容器ACD中输出,使其通过整个流体回路15和容器14。由所述启动液体排出回路15和容器14中的空气。
第二腔室40由一个管T18侍服,因此,实际上仅有一个入口。为了完成启动,将腔室40与启动液体的流通连接隔离,而泵P5工作将空气从腔室40中抽出,以便在腔室40中形成负压(真空)状态。在从腔室40中排出空气时,与启动液体流的联系又被打开,通过真空将启动液体吸入腔室40中。泵P5还起着协助将液体输送到腔室40中,并在腔室40中形成正压状态的作用。由控制器222将启动液体保留在第二腔室40中,以便在血液处理期间平衡第一腔室38。
当然,应当理解的是,这种真空启动方法可应用于实际上由任何一个入口侍服的容器或其等同物。
B.初级处理循环在容器MNC中收获的MNC,优选悬浮在由MNC捐献者/患者获得的缺少血小板的血浆(PPP)介质中。在初级处理循环228中,由控制器222指示流体回路222收集预定体积的来自捐献者/患者的PPP,用于保存在容器PPP中。该体积随后被用作处理期间MNC的悬浮介质,并在处理之后添加到MNC中,以获得期望的最终稀释体积。
一旦对捐献者/患者进行静脉抽血,由控制器222启动泵站PSL、PSM、和PSR,以便开始初级处理循环228。在循环228中,在腔室38中将全血离心分离成堆积的红血细胞(PRBC)和富含血小板的血浆(PRP),如上文所述。将PRBC送回捐献者/患者体内,而单核细胞积累在腔室38中。
随着MNC积累在腔室38中,将一部分分离的血浆成分取出,并收集起来用作MNC悬浮介质。在循环228中,由控制器222将界面58保持在弯道84上的较低位置(如图16B所示)。其结果是,从腔室38中输出、并储存在容器PPP中的血浆含有较少的血小板,并因此被称为PPP。在该循环228期间,来自腔室38的其余PPP被送回到捐献者/患者体内。
在初级处理循环228期间流体回路200的结构如图21所示,并进一步归纳在表2中。
表2初级处理循环
其中●表示管闭合或关闭状态。
○表示管非闭合或开启状态。
表示泵送状态,在此期间,该泵的转子转动并接合所述泵管,以便以蠕动形式输送流体。
○表示打开的、泵关闭状态,在此期间,泵转子不转动,并且,泵转子不与泵管回路接合,因此,允许流体流过泵管回路。
●表示闭合的、泵关闭状态,在此期间,泵转子不转动,并且,泵转子接合泵管回路,因此,不允许流体流过泵管回路。
在初级循环228中,泵P2通过管T1将全血(WB)从捐献者/患者体内吸入左侧盒23L,进入管T3,通过室D1,并通过管T4进入血液处理腔室38。泵P3通过管T15将抗凝固剂ACD吸入中间盒23M,并进入管T2,以便与全血混合。
通过口48将所述抗凝固的全血输送到腔室38中。将所述全血分离成PRP、PRBC、和界面(包含MNC),如上文所述。
口50通过管T5将PRBC96由血液处理腔室38输送到中间盒23M。PRBC通过管T8进入管T7,以便通过左侧盒23L和管T9送回捐献者/患者体内。
由口46输送来自血液处理腔室38的PPP。PPP通过管T10进入右侧盒23R。泵P5将一部分PPP输送到管T7中,与PRBC一起送回捐献者/患者体内。由界面控制器220设定泵P5的流量,以便保持所述界面位于弯道84上的较低位置上(如图16B所示),降低该循环中从腔室38输出的血小板的浓度。泵P6通过管T12将一部分PPP输入容器PPP,直到收集到预定体积的MNC悬浮液和最终的稀释度。该体积被称为VOLSUS。
C.主要处理循环1.单核细胞(MNC)收集阶段(i)MNC积累阶段现在,将控制器222切换到主要处理循环230的MNC收集阶段232。首先由控制器222指示流体回路222实施MNC积累阶段236。
对积累阶段236来说,控制器222改变泵站PSR的结构,以便终止收集PPP。控制器222还指示界面控制器220使泵P5保持一定流量,保持所述界面位于弯道84的较高部位(如图16A所示),以便能够分离PRP。
由于改变了的结构,泵P6还能将一部分PRP循环到血液处理室38中,以提高血小板分离效率,正如下文将要进一步讲述的。
MNC收集阶段232的MNC积累阶段236的结构如图22所示,并进一步归纳于表3中。
表3单核细胞收集条件(MNC积累阶段)
其中●表示管闭合或关闭状态。
○表示管非闭合或开启状态。
表示泵送状态,在此期间,该泵的转子转动并接合所述泵管,以便以蠕动形式输送流体。
○表示打开的、泵关闭状态,在此期间,泵转子不转动,并且,泵转子不与泵管回路接合,因此,允许流体流过泵管回路。
●表示闭合的、泵关闭状态,在此期间,泵转子不转动,并且,泵转子接合泵管回路,因此,不允许流体流过泵管回路。
1.通过再循环PRP提高血小板分离效率通常,在MNC过程中,不收集血小板。相反,人们相信将其送回捐献者/患者体内是理想的。希望分离的血小板具有高的平均血小板体积MPV(用毫微微升fl,或立方微米表示),因为它表示具有较高的血小板分离效率。可以通过常规技术由PRP样品测定MPV。较大的血小板(即,大于大约20毫微微升)最有可能夹带在界面58中,而不是进入PRP送回捐献者/患者体内。这会导致PRP中较大血小板的数量降低,因此,较低的MPV被送回捐献者/患者体内。
如上文所述的足以将较大的血小板从界面58上浮起的径向血浆流动状态的形成,在很大程度上取决于进入血液处理腔室38的WB的入口血细胞比容Hi。因此,将在管T10中流动的一部分PRP再循环送回WB入口48。再循环的PRP流过右侧盒23R,进入管T11,管T11将管T4连接在入口48上。再循环的PRP与进入血液处理腔室38的WB混合,以便降低入口血细胞比容Hi。
由控制器设定泵P6的PRP再循环流量QRecirc,以便获得需要的入口血细胞比容Hi。在一种优选实施方案中,Hi不超过大约40%,最优选大约为32%,这样可以取得高的MPV。
入口血细胞比容Hi可以通过管T4上的一个联机传感器(未示出)方便地测定。入口血细胞比容Hi还可以根据检测到的流动状态通过经验测定,如在待批美国专利申请流水号08/471,883中所披露的,该专利被收作本文的参考文献。
2.通过PRBC的再循环提高MNC浓度和纯度如图18所示,可将在腔室38中的反向流动(箭头214),将界面58带回到PRP收集区76,在这里,增强的径向血浆流动条件将血小板从界面58上清除,以便送回捐献者/患者体内。逆流方式214还将诸如淋巴细胞、单核细胞、和粒细胞的界面58的较重的成分循环送回,以便循环到PRBC体中。
同时,由于PRBC收集区80的血细胞比容较高,在靠近收集区80的MNC漂浮到界面58的表面。在这里,MNC被血浆逆流214带到低血细胞比容RPR收集区76。由于在收集区76的血细胞比容较低,MNC再次向高-G壁24沉降。图18中的箭头216表示当MNC积累到腔室38中时的理想的MNC的循环流动。
在PRBC收集区50保持理想的PRBC出口血细胞比容Ho是重要的。如果PRBC的出口血细胞比容Ho降低到特定的下限阈值(如,低于大约60%),大部分MNC将不能作为细胞体循环,如图18中的箭头216所示。在遇到低的Ho时,全部或部分MNC将不能向着界面58漂浮。相反,MNC将保持沿着高-G壁聚集,并将被PRBC带出腔室38。将会导致MNC的产量不足。
另一方面,如果Ho超过特定的上限阈值(例如,大约85%),较大数量的较重的粒细胞将会漂浮到界面58上。其结果是,较少的粒细胞被从界面58上带走,以便与PRBC一起送回捐献者/患者体内。相反,更多的粒细胞会占据界面58,并污染MNC。
由于上述原因,在MNC收集阶段232,由处理控制器222指示泵P4将在管T5中流动的一部分PRBC再循环送回到WB入口48。如图21和22所示,再循环的PRBC流过中间盒23M,进入管T6,管T6将管T4连接在入口48上。再循环的PRBC与进入血液处理腔室38的WB混合。
一般来说,出口血细胞比容Ho的大小与PRBC再循环流量Qr成反比例地变化,所述流量是由泵P4(PRBC)和P2(WB)控制的。测定由泵P2确定的WB流量,可以通过降低Qr提高出口血细胞比容Ho,相反,通过提高Qr以降低出口血细胞比容Ho。Qr和Ho的密切关系取决于流体在腔室38中的离心加速度(由腔室38中的离心力的大小决定),腔室38的面积,以及全血流入腔室38的流量(Qb)(由泵P2控制),和流出腔室38的PRP的流量(Qp)(由界面控制泵P5控制)。
存在多种表达这种关系的方式,以便根据希望的Ho定量Qr。在上述实施方案中,由控制器222定期取样Qb、Qp、和Qr。还要考虑在腔室38中起作用的离心力因素,由控制器根据目标Ho为泵P4推导出一个新的PRBC循环泵量Qr,如下所述(i)在取样时间n=0开始(ii)用如下方法计算现有QrQr=[Qp-Qb]+[kHo-1][a*Am]]]>其中Ho是目标出口血细胞比容值,以小数形式表示(例如用0.75表示75%)。
a是流体的加速度,由离心力决定,按如下方法计算a=rΩ2g]]>其中Ω是腔室38的旋转速度,以每秒钟的弧度表示。
r是旋转半径。
g是单位重力,等于981cm/s2。
A是腔室38的面积。
k是血细胞比容常数,而m是分离性能常数,它们是根据经验数据和/或理论模型推导出来的。在所述优选实施方案中,采用以下理论模型Ho(1-Ho)k*1=βQbHjaACR]]>其中CR=1.08Sr其中β是具有如下定义的剪切敏感性β=1+bτn]]>其中根据经验数据,b=6.0s-n,而n=0.75,剪切速度的定义如下τ=du/dy其中,(u)是流体速度,而(y)是空间尺寸。
其中Sr是根据经验推导的红血细胞沉降系数,其中,根据经验数据,可以设定为95×10-9s。
该模型基于Brown的公式(19),“连续流动离心细胞分离的物理学”,人工器官;13(1)4-20,Raven出版公司,纽约(1989)(“Brown的文章”),该文献被收作本文的参考文献。该模型的曲线在Brown的文章中的图9中示出。
在血液处理条件的预期的、实际工作范围内,用简单的线性回归将上述模型线性化。根据以下公式进行代数取代HiQb=HoQo其中Qo是通过出口管T5的PRBC的流量,该流量可以表示如下Qo=Qb-Qp所述线性化产生一个简化的曲线,其中,数字(m)是斜率值,数值(k)是y-截距。
在所述简化的曲线中,斜率(m)用以下公式表示m=338.3(βSr)]]>其中β/Sr可以根据经验数据表达成恒定的值1.57/μs。
因此,在该简化的曲线中,m的值为531.13。一般大约为500和大约600之间的m值被认为可应用于离心的、连续流动的全血细胞分离方法。
对所述简化的曲线来说,y-截距值(k)=0.9489。一般大约为0.85-大约1.0的k值被认为可应用于离心的、连续流动的全血方法。
(iii)计算平均Qr以特定的间隔测定Qr,将处理期间的瞬时测定值加以平均,如下所示Qr(AVG)=
+
(iv)按如下方法计算新的QrQr(NEW)=Qr(AVG)*F其中F是选择的控制因素,它能够控制Qr(当F=1时)或者不能够控制Qr(当F=0时),或能够根据系统方差衡量Qr(当F是用0-1之间的分数表示时)。F可以包括一个常数,或者也可以作为处理时间的函数变化,例如,在特定的方法开始时由第一个值开始,将方法的进行改变成第二个值或更多的值。
(v)将Qr保持在预定范围内(例如0ml/分钟-20ml/分钟之间),如果Qr(NEW)>20ml/分钟,则Qr(NEW)=20ml/分钟ENDIF如果Qr(NEW)<0ml/分钟,则Qr(NEW)=0ml/分钟ENDIFn=n+1在MNC收集阶段232(图22),由控制器222同时设定并保持多个泵的流量,以便在腔室38中获得适于积累高纯度的高产量MNC的处理条件。由该控制器设定并保持WB的输入流量Qb(通过泵P2),PRP输出流量Qp(通过泵P5),PRP再循环流量QRecirc(通过泵P6),以及PRBC再循环流量Qr(通过泵P4)。测定一个WB输入流量Qb,该流量通常是为捐献者/患者设定的,以便符合并获得可接受的处理时间,控制器222(i)指示泵P5保持一个Qp设定值,用于保持在弯道84上的理想界面位置,并因此在血浆中获得理想的血小板浓度(PPP或PRP);(ii)指示泵P6保持一个QRecirc设定值,用于保持希望的入口血细胞比容Hi(例如,在大约32-34%之间),并因此获得高的血小板分离效率;和(iii)指示泵P4保持一个Qr设定值,用于保持需要的出口血细胞比容Ho(例如,在大约75-85%之间),并因此防止粒细胞污染和提高MNC产量。
(ii).第二阶段(PRBC收集)当对预定体积的全血(例如,1500-3000ml)进行了处理之后,由控制器222终止MNC积累阶段236。或者,当收集到期望体积的MNC时,终止MNC积累阶段。
控制器22然后进入MNC收集阶段232的PRBC收集阶段238。在收集阶段238中,泵站PSM的结构发生改变,以便终止将PRBC送回捐献者/患者(通过关闭V14),终止PRBC的再循环(通过关闭阀V18,并关闭泵P4,关闭泵送状态,取而代之的是将PRBC输送到容器PRBC(通过开启V15)。这种新的结构如图23所示,并进一步归纳于表4中。
表4单核细胞收集阶段(收集PRBC期)
其中●表示管闭合或关闭状态。
○表示管非闭合或开启状态。
表示泵送状态,在此期间,该泵的转子转动并接合所述泵管,以便以蠕动形式输送流体。
○表示打开的、泵关闭状态,在此期间,泵转子不转动,并且,泵转子不与泵管回路接合,因此,允许流体流过泵管回路.
●表示闭合的、泵关闭状态,在此期间,泵转子不转动,并且,泵转子接合泵管回路,因此,不允许流体流过泵管回路。
在阶段238中,管T5中的PRBC通过中间盒23M输送到管T14,并进入容器PRBC。控制器222在阶段238中起作用,直到在容器PRBC中收集到所需体积的PRBC(例如,35-50ml)。该体积的PRBC随后被用于MNC收获阶段234的MNC清除阶段240,如在下文将要进一步说明的。
在检测到(用称重仪WS进行重量测定)容器PRBC装有所需体积的PRBC时,由控制器222结束PRBC收集阶段238。
主要处理循环230的MNC收集阶段232结束。
2.单核细胞收获阶段(i)第一阶段(MNC清除)控制器222进入主要处理循环230的收获阶段234。在该阶段234的第一阶段240,全血被吸走,并再循环回到捐献者/患者体内,而不通过血液处理腔室38。在上述PRBC收集阶段238在容器PRBC中收集到的PRBC通过WB入口管T4返回处理腔室38,同时腔室38继续转动。在MNC收集阶段232在腔室38中积累的MNC与PRP一起通过管T10输出腔室38。
在MNC收获阶段234的MNC清除阶段240,流体回路15的结构如图24A所示,并进一步归纳于表5中表5单核细胞(MNC清除阶段)
其中●表示管闭合或关闭状态。
○表示管非闭合或开启状态。
表示泵送状态,在此期间,该泵的转子转动并接合所述泵管,以便以蠕动形式输送流体。
○表示打开的、泵关闭状态,在此期间,泵转子不转动,并且,泵转子不与泵管回路接合,因此,允许流体流过泵管回路。
●表示闭合的、泵关闭状态,在此期间,泵转子不转动,并且,泵转子接合泵管回路,因此,不允许流体流过泵管回路。
如图24A所示,控制器222关闭PRBC出口管T5,而PRBC通过泵P4从容器PRBC中输出,通过管T14和T6进入管T4。以便通过WB入口48导入腔室38。控制器222在TCYCSTART处开始循环时间计数。
通过WB入口48从容器PRBC流入的PRBC提高了PRP收集区76的血细胞比容。相应地,在腔室38中积累的MNC的浓缩区(如图18所示)漂浮到界面58的表面。输入的PRBC体积通过PRP出口46将PRP排出。界面58以及与界面58一起的浓缩的MNC区(在图24A中被称为MNC区)也通过PRP出口46排出腔室38。所述MNC区沿着PRP管T10向光学传感器OS移动。
如图28所示,在管T10中,PRP的区112位于浓缩MNC区域的前面。位于112区的PRP通过右侧盒23R和管T12输入容器PPP(如图24A所示)。PRBC的一部分也跟随管T10中的浓缩MNC区。
第一个过渡区116存在于PRP区112和浓缩MNC区之间。第一过渡区116包括一个稳定下降的浓度的血小板(如图28中的方形图案所示),和一个稳定增加的数量的MNC’s(如图28中的有结构的图案所示)。
第二个过渡区118存在于浓缩MNC区和PRBC区114之间。第二过渡区118包括一个稳定下降的浓度的MNC’s(如图28中的有结构的图案所示),以及一个稳定增加的数量的PRBC’s(如图28中的波浪形图案所示)。
通过光学传感器OS观察,位于MNC区前面的112区和116区以及位于MNC区后面的118区和114区具有一个过渡的光学密度,其中,MNC区是可以辨认的。由光学传感器OS检测通过位于PRP出口46和右侧盒23R之间的管T10输送的液体的光学密度的变化。如图28所示,当MNC区逐渐通过光学传感器OS时,光学密度将从表示高透光性的低的值(即在PRP的112区)变化到表示高的光吸收性的高的值(即PRBC的114区)。
在图28中所示的实施方案中,光学传感器OS是一种常规的血红素检测仪,例如,用于由Baxter保健公司的Fenwal分部销售的Autophersis-C血液处理装置上的检测仪。该光学传感器OS包括一个红色光线发射二极管102,它能通过管T10发射光线。当然,其它波长,如绿色或红外线光也可以使用。光学传感器OS还包括一个位于管T10的相反一侧的PIN二极管检测仪106。
控制器222包括一个处理元件100,由它分析从发射器102和检测仪106接收到的电压信号,以计算管T10中的液体的透光性,该透光性被称为OPTTRANS。
处理元件100可以采用各种算法,以计算OPTTRANS。
例如,当红色光线发射二极管102启动,并且液体流过管T10时(RED),OPTTRANS可以等于二极管检测仪106的输出。
可以从RED中将背景光学干扰过滤掉,如下列公式所示OPTTRANS=COR(REDSPILL)CORRREF]]>其中COR(REDSPILL)是按如下公式计算的COR(RED SPILL)=RED-REDBKGRD其中RED是当红色光线发射二极管106启动,并且液体流过管T10时,二极管检测仪106的输出;REDBKGRD是当红色光线发射二极管106关闭,并且液体流过管T10时二极管检测仪106的输出;而且,CORREF是按以下公式计算的CORREF=REF-REFBKGRD其中REF是当二极管启动时的红色光线发射二极管102的输出;和REDBKGRD是当二极管关闭时红色光线发射二极管102的输出。
当捐献者/患者的PRP通过管T10输送时,在MNC收集阶段232之前的阶段通过由传感器OS获得数据由处理元件100将传感器OS对捐献者/患者的PRP的光学密度进行规范化。该数据形成了所述管和捐献者/患者的PRP的基础透光值(OPTRANSBASE)。例如,OPTRANSBASE可以在收集阶段232的特定时间测定,例如在阶段232的中间使用上文所述的过滤的或非过滤的检测方法测定。另外,在MNC收集阶段232期间,使用过滤的或非过滤的检测方法计算一组透光值。将这一组值在整个收集阶段上加以平均,以便得到OPTRANSBASE。
在后续的MNC清除阶段240,处理元件100继续检测管T10和流过该管的液体的一个或几个透光值(OPTRANSHARVEST)。OPTRANSHARVEST可以包括在MNC清除阶段240的特定时间检测到的单一的读数(例如,在阶段240的中间),或者可以包括在MNC清除阶段240中取得的多个读数的平均值。
处理元件100通过以下方法推导出规范化值DENSITY确定OPTRANSBASE为0.0,确定光学饱和值为1.0,并将OPTRANSHARVEST的值成比例的带入规范化的0.0-1.0值范围。
如图28所示,处理元件100保留两个预定的阈值THRESH(1)和THRESH(2)。THRESH(1)值相当于DENSITY的特定的小数值(例如,0.0-1.0的规范化范围的0.45),当第一过渡区116中的MNC的浓度达到预定处理目标时,根据经验确定其发生。THRESH(2)值相当于DENSITY的另一个特定的小数值(例如,0.0-1.0的规范化范围的0.85),当第二过渡区116中的PRBC的浓度超过预定的处理目标时,通过经验确定其发生。
在右侧盒23R中的位于光学传感器OS和阀站V24之间的管T10的液体体积构成一个已知的值,将其作为第一分支体积VOLOFF(1)输入控制器222。由控制器222根据VOLOFF(1)和泵P4的泵送量(QP4)计算第一控制时间值Time1,如下所述Time1=VOLOFF(1)QP4×60]]>在所述优选实施方案中,操作者可指定第二个分支体积VOLOFF(2),并将其输入控制器222,该体积相当于增加总的MNC收获体积VOLMNC的少量增加的体积(如图28所示)。VOLOFF(2)的量受系统和处理差异的影响,并且受捐献者/患者之间MNC纯度差别的影响。由控制器222根据VOLOFF(2)和泵P4的泵送量(QP4)计算第二控制时间值Time2,如下所述Time2=VOLOFF(2)QP4×60]]>
当操纵泵P4通过WB入口48输送PRBC时,界面58和MNC区通过PRP管T10向光学传感器OS运动。MNC区前面的PRP向前超过光学传感器OD,通过管T12,并进入容器PPP。
当MNC区到达光学传感器OS时,光学传感器OS将检测到DENSITY=THRESH(1)。此时,由控制器222开始第一时间计数TC2。当光学传感器OS将检测到DENSITY=THRESH(2)。此时,由控制器222开始第二时间计数TC2。检测到的MNC体积可以根据TC1和TC2之间的间隔对特定QP4进行推导。
随着时间的推移,由控制器222比较TC1和第一控制时间T1的大小,以及比较TC2和第二控制时间T2的大小。当TC1=T1时,目标MNC区的前缘业已到达阀站V24,如图24B所示。由控制器222指示阀站V24打开,并指示阀站V25关闭。控制器222将该过程作为TCYCSWITCH记录在循环时间计数上。目标MNC区被输送到通向容器MNC的管T13中。当TC2=T2时,第二分支体积VOLOFF(2)也已被输送到管T13,如图24C所示。因此,在管T13中存在为了用特定的循环收获选择的总的MNC体积(VOLMNC)。当TC2=T2时,控制器222指示泵P4停机。VOLMNC在管T13中的进一步运动停止。
由控制器222推导在前面的MNC清除阶段输送到容器PPP中的PRP的体积。PRP体积(被称为VOLPRP)的计算方式如下VOLPRP=TCYCSWITCH-TCYCSTARTQ4]]>在一种优选实施方案中,控制器222独立于TC1和TC2结束MNC清除阶段,此时在TCYCSTART之后由泵P4输送多于规定体积的PRBC流体(例如,多于60ml)。例如,如果光学传感器OS未能检测到THRESH(1),会发生这种暂停情况。在这种体积时间暂停情况下,VOLPRP=60-VOLOFF(1)。
另外,或者与体积暂停组合,当容器PRBC的称重仪WS检测到的重量低于预定值时(例如,低于4克,或者该重量相当的流体体积低于4ml)时,控制器222可以独立于TC1和TC2结束MNC清除阶段。
(ii)第二阶段(PRP冲洗)一旦MNC区位于图24C所示位置,由控制器222进入MNC收获阶段234的PRP冲洗阶段242。在该阶段242,由控制器222指示回路200将VOLPRP移出容器PPP,和管T12,并进入血液处理腔室38。
在PRP冲洗阶段242,流体回路200的结构如图25所示,并进一步归纳于表6中。
表6单核细胞收获阶段(PRP冲洗阶段)
其中●表示管闭合或关闭状态。
○表示管非闭合或开启状态。
表示泵送状态,在此期间,该泵的转子转动并接合所述泵管,以便以蠕动形式输送流体。
○表示打开的、泵关闭状态,在此期间,泵转子不转动,并且,泵转子不与泵管回路接合,因此,允许流体流过泵管回路。
●表示闭合的、泵关闭状态,在此期间,泵转子不转动,并且,泵转子接合泵管回路,因此,不允许流体流过泵管回路。
在PRP冲洗阶段242,控制器222指示泵站PSL、PSM、和PSR,以便终止全血的再循环,同时,继续转动腔室38,以便通过管T11将VOLPRP泵送到处理腔室38。VOLPRP是泵P6通过管T12输送到右侧盒23R中的,然后到达管T11,以便通过管T4和口48进入处理腔室38。通过口50和管T5将PRBC从处理腔室38输送到中间盒23M,然后进入管T8和T7,进入左侧盒23L。PRBC被输送到管T9,以便送回捐献者/患者体内。在该阶段242中,没有其它流体在流体同路15中输送。
VOLPRP的返回,将容器PPP中液体的体积恢复到VOLSUS,该体积是在上述初级处理循环228中收集的。VOLPRP的返回还能在容器PPP中的VOLSUS中保持低的血小板量,该溶液是指MNC的悬浮液。VOLPRP的返回还能将在TC1=T1之前存在于第一过渡区116中的残留MNC(因此不是VOLMNC的一部分)送回处理腔室38,以便在随后的主要处理循环230中进一步收集。
(iii)第三阶段(MNC悬浮液)随着VOLPRP返回到腔室38中,控制器222进入MNC收获阶段234的MNC悬浮阶段244。在该阶段244,容器PPP中的一部分VOLSUS与VOLMNC一起输送到容器MNC中。
在MNC悬浮阶段244中,流体回路200的结构如图26所示,并进一步归纳于表7中。
表7单核细胞收获阶段(MNC悬浮阶段)
其中●表示管闭合或关闭状态。
○表示管非闭合或开启状态。
表示泵送状态,在此期间,该泵的转子转动并接合所述泵管,以便以蠕动形式输送流体。
○表示打开的、泵关闭状态,在此期间,泵转子不转动,并且,泵转子不与泵管回路接合,因此,允许流体流过泵管回路。
●表示闭合的、泵关闭状态,在此期间,泵转子不转动,并且,泵转子接合泵管回路,因此,不允许流体流过泵管回路。
在MNC悬浮阶段244,由所述控制器关闭C3,以便停止将PRBC送回捐献者/患者体内。由泵P6通过管T12将预定量的VOLSUS(例如,5-10ml)输送到右侧盒23L中,然后送入管T13。如图26所示,所述量的VOLSUS通过管T13进一步推进VOLMNC进入容器MNC。
(iii)第四阶段(清理)此时,控制器222进入MNC收获阶段234的最终的清理阶段246。在该阶段246,控制器222将存在于管T10中的PRBC送回处理腔室38。
在清理阶段246中流体回路200的结构如图27所示,并进一步归纳于表7中。
表7单核细胞收获阶段(清理阶段)
其中●表示管闭合或关闭状态。
○表示管非闭合或开启状态。
表示泵送状态,在此期间,该泵的转子转动并接合所述泵管,以便以蠕动形式输送流体。
○表示打开的、泵关闭状态,在此期间,泵转子不转动,并且,泵转子不与泵管回路接合,因此,允许流体流过泵管回路。
●表示闭合的、泵关闭状态,在此期间,泵转子不转动,并且,泵转子接合泵管回路,因此,不允许流体流过泵管回路。
TC2=T2之后,清理阶段246将存在于第二过渡区118中的所有残留MNC(因此不是VOLSen的一部分)送回到处理腔室38,以便在随后的处理循环中进一步收集(参见图28)。
在清理阶段246,控制器222关闭左侧盒23L和中间盒23M中的所有阀站,并指示右侧泵站PSR通过管T11和T4将PRBC从管T10循环送回处理腔室38。在此期间不从捐献者/患者体内抽取成分或者将成分送回其体内。
在清理阶段246结束时,控制器222开始一个新的主要处理循环230。控制器222重复一系列的主要处理循环230,直到达到整个方法所需要收集体积的MNC。
在最后一个主要处理循环230结束时,操作者可能需要额外的VOLSUS来进一步稀释在该方法中收集的MNC。在这种情况下,控制器222可以指示流体回路200进行一个如上文所述的初级处理循环228,以便在容器PPP中收集更多的VOLSUS。然后控制器222指示流体回路200执行MNC悬浮阶段244,以便将额外的VOLSUS输送到容器MNC中,以便实现对VOLMNC的需要的稀释。
IV.其它单核细胞处理方法图29表示流体回路300的另一种实施方案,该实施方案适于收集和收获MNC。回路300在很多方面与图6所示回路200相同,因此,相同的部分采用相同的编号。
回路300与回路200的差别在于容器14的第二腔室310与腔室38相同,因此,它本身包括一个具有与腔室38相同特征的第二血液处理腔室。腔室310包括如图4所示腔室38的内部密封件,形成PRP和PRBC的相同的血液收集区,其细节在图29中不再示出。腔室310包括一个用于将全血输入腔室310的口304,一个用于从腔室310中输出PRP的口306,以及一个用于从腔室310中输出PRBC的口302。腔室310还包括一个如图16A和16B所示的锥形弯道84,该弯道如上文结合腔室38所述。
流体回路300与流体回路200的差别还在于,不包括管T14、T18、和T19。另外,不包括容器PRBC。相反,流体回路300包括若干新的管道和夹具,如下文所述从腔室310的PRP出口306上伸出的管道T21,通过一个新的夹具C5连接到管道T10上。
从腔室310的入口306伸出的管道T22,通过一个新的空气检测仪D3和一个新的夹具C6连接到管道T3上。
从腔室310的PRBC出口302上伸出的管道T33,通过一个新的夹具C8连接到管T4上。
在空气检测仪D1上游的管T3上也要设置新的夹具C7。
在光学传感器OS和新的管T21的接头之间的管T10上也要设置新的夹具C9。
如上文结合回路200所述,使用回路300,控制器222向前通过上文所述的启动循环226,初级处理循环228,和主要处理循环230,直到通过MNC积累阶段236。在使用回路300时,PRBC收集阶段238的不同在于,用于随后从腔室38中除去MNC的PRBC是在第二腔室310中处理和收集的。
更具体地讲,如图30所示,在PRBC收集阶段238,由控制器222将一定体积的全血从捐献者/患者体内输送到第二腔室310。所述体积的全血是由泵P2吸出的,通过管T1进入管T3,然后通过开启的夹具C6进入管T22,管T22通向腔室310。夹具C7是关闭的,以便阻止全血输送到腔室38中,在腔室38中业已积累了用于收获的MNC。夹具C9也是关闭的,以便阻止PRP从腔室38中输出,从而保证在腔室38中进行的MNC积累不受干扰。
在腔室310中,所述体积的全血被分离成PRBC和PRP,其分离形式与在腔室38中这些成分的分离形式相同。通过管T23将PRP从腔室310中输出,并通过操纵泵P5打开夹具C5,以便将其送回捐献者/患者体内。夹具C8关闭,以便将PRBC保留在腔室310中。
控制器222还利用回路300进行一个不同的MNC清除阶段240。如图31所示,在MNC清除阶段240,控制器222将所吸出的全血的一部分再循环到捐献者/患者体内,同时,沿着上文结合图30所述的相同途径将其余部分的全血导入腔室310。控制器222打开夹具C8和C9,同时关闭夹具C5。进入腔室310的全血通过PRBC出口302将PRBC排入管T23。来自腔室310的PRBC进入腔室38的WB入口48。如上文所述,来自腔室38外部的输入PRBC流,提高了腔室38中PRBC的血细胞比容,导致所积累的MNC漂浮到界面58上。如上文所述,从腔室38外面输入的PRBC通过PRP口46以及MNC区排出PRP,如图31所示。该MNC区是通过光学传感器OS检测的,并在随后的处理242、244、和246中以结合回路200所述相同方式收获。
本发明的各种特征在下面的权利要求书中提出。
权利要求
1.一种血液分离系统,包括一个用于绕一个转动轴线转动的室,该室包括一个入口区,全血从这里进入,以便分离成堆积的红血细胞,血浆成分,和在所述堆积的红血细胞和血浆成分之间载有血小板和单核细胞的界面,一个第一收集容器,一个第二收集容器,一个控制器,该控制器可操作以便将全血输送到所述入口区,同时从所述室中排出堆积的红血细胞和血浆成分,该控制器包括一个界面控制装置,该控制装置可以(i)在第一种状态下工作,将血小板和单核细胞保留在所述室中,以便使缺少血小板的血浆能排入通向所述第一容器而不是第二容器的通道;(ii)在第二种状态下工作,将单核细胞保留在所述室中,同时使富含血小板的血浆能排入绕过所述第一和第二容器的通道;和(iii)在第三种状态下工作,使单核细胞能从所述室中排入通向所述第二容器而不是第一容器的通道,和所述控制器还可操作以便将缺少血小板的血浆从所述第一容器导入所述第二容器,以便在第二容器中稀释排出的单核细胞。
2.如权利要求1的系统其中,所述界面控制装置包括一个传感元件,用于在所述室中确所述界面的位置,并提供一个检测的输出。
3.如权利要求2的系统其中,所述传感元件在所述室中以光学方式确定所述界面的位置。
4.一种用于收集稀释的单核细胞的方法,包括以下步骤绕一个转动轴线转动一个室,将全血输入所述室的入口区,以便分离成堆积的红血细胞,血浆成分,和在堆积的红血细胞和血浆成分之间带有血小板和单核细胞的界面,在所述室中保持所述界面在第一种状态,以便将血小板和单核细胞保留在该室中,以使缺少血小板的血浆能排入通向第一容器而不是第二容器的通道,在所述室中保持所述界面在第二种状态,以便将单核细胞保留在该室中,同时,使富含血小板的血浆能排入绕过所述第一和第二容器的通道,在所述室中保持所述界面在第三种状态,以便使单核细胞能从所述室中排入通向所述第二容器而不是第一容器的通道,和将缺少血小板的血浆从第一容器导入第二容器,以便在第二容器中稀释排出的单核细胞。
5.如权利要求4的方法其中,保持所述界面处于第一、第二、和第三种状态的至少其中一个步骤,包括检测所述界面在所述室中的位置的步骤。
6.如权利要求5的方法其中,所述检测步骤包括在所述室中以光学方式确定所述界面的位置。
全文摘要
转动室(14)的系统和方法,其中,将全血分离成位于堆积的红血细胞和血浆成分之间的界面。所述界面带有血小板和单核细胞。该系统和方法包括一个界面控制装置,该控制装置在第一种状态下工作,能够将缺少血小板的血浆(PPP)排入第一容器,将其用作稀释液体,在第二种状态下,将单核细胞(MNC)保留在室(14)中,同时将富含血小板的血浆(PRP)从室(14)中排出,绕过所述缺少血小板的收集容器,以便保持其缺少血小板的特征,而在第三种状态下,能够将单核细胞(MNC)从室(14)中排入通道(T13),该通道通向第二容器,单核细胞收集在该容器中。
文档编号B01D21/26GK1261815SQ98806734
公开日2000年8月2日 申请日期1998年6月22日 优先权日1997年7月1日
发明者K·明, R·I·布朗, R·J·坎图 申请人:巴克斯特国际有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1