在MWD、LWD和线缆井下工具组件中的多芯片模块壳体安装的制作方法

文档序号:12285845阅读:419来源:国知局
在MWD、LWD和线缆井下工具组件中的多芯片模块壳体安装的制作方法与工艺

本公开总体上涉及用于为井眼装置提供冲击和振动保护的装置和方法。



背景技术:

碳氢化合物的勘探与生产通常需要使用被降低到井眼中的各种工具,诸如钻探组件、测量工具和生产装置(例如压裂工具)。电子部件可被设置在井下用于各种目的,诸如控制井下工具、与地面进行通信以及存储和分析数据。这类电子部件通常包括被封装以提供保护免受井下条件(包括温度、压力、振动和其他热机械应力)的影响的印刷电路板(PCB)。

在一方面,本公开解决了增强对井眼中使用的电子部件和其他冲击和振动敏感装置的冲击和振动保护的需求。



技术实现要素:

在各个方面,本公开提供了一种用于保护井眼中使用的电子模块的设备。该设备可包括:具有至少一个凹穴形成在其上的外圆周表面的井眼管柱区段;与至少一个凹穴相关联的支架;以及包围井眼管柱区段的套筒。支架可包括壳体、盖,以及偏压构件。壳体接收电子模块并且位于至少一个凹穴的支撑表面上。盖将壳体封闭在至少一个凹穴内。偏压构件定位在盖与壳体之间。套筒可将盖压在偏压构件上并且偏压构件可相应地迫使壳体抵靠在支撑表面上。

在其他方面,本公开还提供了一种用于保护井眼中使用的电子模块的设备,其中所述设备包括:具有多个凹穴沿圆周分布在其上的外圆周表面的井眼管柱区段;与每个凹穴相关联的支架;以及套筒。每个支架可包括:定位在每个凹穴的支撑表面上的传热垫;接收并气密地密封相关联的电子模块的壳体,该壳体位于传热垫上;将壳体封闭在相关联的凹穴内的盖;以及定位在盖与壳体之间的偏压构件。套筒包围井眼管柱区段并将每个支架的每个盖固定在相关联的凹穴内。套筒干涉地接合每个盖以压缩相关联的偏压构件,并且每个偏压构件相应地迫使相关联的壳体抵靠在相关联的传热垫上。另外,每个凹穴可包括将每个凹穴连接到井眼区段中的隔室以便接收电气设备的至少一个通道。

在各个方面,本公开还提供了一种用于保护井眼中使用的模块的方法。该方法可包括:在井眼管柱区段的外圆周表面中形成至少一个凹穴;以及将支架至少部分地设置在至少一个凹穴中。支架可包括:接收电子模块的壳体,该壳体位于至少一个凹穴的支撑表面上;将壳体封闭在至少一个凹穴内的盖;定位在盖与壳体之间的偏压构件;以及包围井眼管柱区段的套筒。该方法还包括通过使用套筒将盖压在偏压构件上来将盖固定在至少一个凹穴内,所述偏压构件相应地迫使壳体抵靠在支撑表面上。

已经对本公开的某些特征的实例进行了相当广泛地概括,以便可以更好地理解本公开的以下详细描述且以便可以认识到它们对本领域的贡献。

附图说明

为了更详细地理解本公开,应该结合附图参考以下各实施例的详细描述,其中相同的元件用相同的数字来表示,其中:

图1示出了根据本公开的可以使用一个或多个支架的井系统的示意图;

图2示出了根据本公开的可以使用支架加以保护的电子模块的一个实施例;

图3示出了根据本公开的一个实施例的具有由支架保护的多个电子器件的BHA的一部分的端视图;

图4示出了根据本公开的一个实施例的包括支架的BHA的一部分的截面视图;以及

图5示出了根据本公开的一个实施例的可以与支架一起使用的锁止装置。

具体实施方式

钻探条件和动力学产生持续且强烈的冲击和振动事件。这些事件可导致钻柱中使用的装置和部件的电子器件失效、疲劳和加速老化。在各个方面,本公开提供了用于保护这些部件免受与这类冲击事件相关联的能量的影响的安装件和相关方法。

现在参照图1,示出了利用井眼管柱12的钻探系统10的一个说明性实施例,该钻探系统10可包括用于定向钻探井眼16的井底钻具组件(BHA)14。尽管示出了陆地钻井装置,但是这些概念和方法同样可应用于海底钻探系统。井眼管柱12可从钻井装置20悬挂下来并且可以包括接续管或连续管。在一种构造中,BHA 14可包括钻头15、传感器接头32、双向通信和电力模块(BCPM)34、地层评估(FE)接头36,以及旋转动力装置(诸如钻探马达38)。传感器接头32可包括用于测量近钻头方向(例如BHA方位和倾斜度、BHA坐标等)的传感器以及用于进行旋转方向勘测的传感器和工具。所述系统还可包括信息处理装置,诸如地面控制器50和/或井下控制器42。地面与BHA 14之间的通信可以使用泥浆驱动的交流发电机、泥浆脉冲发生器和/或使用硬连接线(例如电导体、光纤)传送的声学信号、EM或RF产生的上行链路和/或下行链路。

结合到BHA 14中的一个或多个电子模块24或者井眼管柱12的其他部件可包括提供数据存储和处理、通信和/或BHA 14的控制所需的部件。这些部件可被设置在形成于井眼管柱12中或形成于井眼管柱12上的适当的隔室中。在电子模块中的示例性电子器件包括印刷电路板组件(PCBA)和多芯片模块(MCM)。

参照图2,示出了可以与图1的井眼管柱12一起使用的模块24的一个非限制性实施例。模块24可以为BHA的工具仪器模块,其可以为晶体压力或温度探测装置,或者频率源、声学传感器、陀螺仪、加速计、磁强计等,敏感机械组件、MEM、多芯片模块MCM、印刷电路板组件PCBA、柔性PCB组件、混合PCBA支架、具有层压基板的MCM(MCM-L)、具有陶瓷基板的多芯片模块(例如LCC或HCC)、利用球栅阵列或铜桩互连技术的紧凑型集成电路IC堆叠组件等。所有这些类型的模块24通常由易碎且很脆的部件制成,所述易碎且很脆的部件不能承受弯曲或扭转力并因此得益于下文描述的封装壳体和分层保护装置的保护。

下文描述了用于保护冲击和振动敏感设备(诸如电子模块24)的示例性支架。尽管在电子模块的环境下讨论了本文所描述的实施例,但是所述实施例可以与将受益于具有高阻尼、高热传导和/或低疲劳应力的结构的任何部件结合使用。此外,尽管本文中的实施例是在井下工具、部件和应用的环境下描述的,但实施例并不限于此。

图3示意性地示出了一种用于保护模块24(图2)免受冲击和振动的影响的支架100。支架100可以形成在图1的井眼管柱12的区段102中。例如,区段102可以为钻环、接头、接续管的一部分,或者BHA 14。支架100可被固定在凹穴104内,凹穴104形成在区段102的外圆周表面106上。套筒110包围区段102并将支架100固定在凹穴104内。套筒110可以由非磁性材料(诸如不锈钢)形成。尽管示出四个支架100沿圆周分布在区段102上,但是应该理解的是,可以使用更多或更少数量的支架100。在各个实施例中,一个普通的连续套筒110固定多个沿圆周分布的支架100。

图4以截面形式示出了支架100的一个实施例,该支架100可用于将模块24(图2)弹性地固定在凹穴104内。凹穴104可以预成形或机加工(例如轧制)成区段102并且包括连接到模块24(图2)用于接线和其他设备的通道108。通道108可以将凹穴104与包含诸如传感器的电气设备(未示出)的其他隔室、腔室或空腔连接。支架100可包括壳体120、盖130,以及偏压构件140。

壳体120为模块24(图2)提供了气密密封的环境。壳体120可包括由金属(诸如钛或科瓦铁镍钴合金)形成的密封罩122。这些类型的金属具有与用于包覆模块24(图2)的陶瓷、玻璃、复合材料或其他材料类似的热膨胀。可以使用内部连接件124和外部连接件126进行电连接到模块24。应该理解的是,针对壳体120所示的构造仅仅是可以与根据本公开所述的支架100结合使用的壳体120的一个非限制性实例。

盖130将壳体120封闭在凹穴104内。盖130可包括用于接收偏压构件140和壳体120的凹部132。凹部132可包括接触壳体120以使轴向方向上的运动最小化的肩部134或其他类似特征件。如本文所使用的,术语轴向是指沿着井眼管柱12(图1)的纵向方向。参照图5,盖130可以可选地包括将盖130固定在凹穴104内的锁止件136。锁止件136可定位在盖130的一端138处并且包括接合形成在凹穴104中的适当的构形137的弹簧偏压球或其他锁定机构。盖130可由适当的非磁性材料(诸如不锈钢)形成。此外,盖130可包括在最终安装期间使得套筒110在盖130上方滑动的倾斜或有坡度的部分139。

偏压构件140施加弹簧力,该弹簧力将壳体120压在凹穴104的支撑表面128上。偏压构件140可以为具有足以产生持久弹簧力的弹性变形范围的任何结构。如图所示,偏压构件140可以为具有压缩接触壳体120的一个或多个顶点区142的叶片弹簧。尽管示出了顶点区142在偏压构件140的中间区段,但是应该理解的是,顶点区142可以分布在整个偏压构件140上。例如,顶点区142可以位于偏压构件140的远端144处。可以其他弹簧,诸如螺旋弹簧或弹簧垫圈。此外,可以使用加压流体产生弹簧力。另外,尽管示出了点接触,但是应该理解的是,偏压构件140可被形成为分布相当大的表面区域的压缩力的本体,诸如垫。偏压构件140可以保持在凹部132中的适当的凹槽或狭槽中。

一些实施例可包括定位在壳体120与支撑表面128之间的传热垫160。传热垫160的一个非限制性实施例可以至少部分地由粘弹性材料形成。如本文所使用的,粘弹性材料为当经受变形时具有粘性特征和弹性特征的材料。更一般地说,传热垫160可以由将热量从壳体120传递到区段102和/或提供冲击吸收的任何材料形成。

应该理解的是,根据本公开所述的支架容许进行各种变型。例如,可以使用周向弹簧将支架固定在凹穴内。

不再参照图1-图5,在一种使用模式中,首先将每个模块24插入壳体120中。将内部电连接件124进行组装并且将壳体120气密地密封。接下来,将壳体120设置在凹穴104中,并且将导线(未示出)连接到外部电连接件126。然后将盖130和偏压构件140设置在壳体120上方。压下盖130使得锁止构件136将盖130扣进凹穴104中。在安装了所有模块24之后,套筒110在凹穴104上方滑动。套筒110干涉地接合盖130,因为当盖130搁置在松弛的偏压构件140上时,套筒110的内表面比盖130的外表面更径向向内。该干涉接合迫使盖130径向向内运动,这压缩了偏压构件140。响应于被压缩,偏压构件140将壳体120压在传热垫160上。因此,模块24的横向运动受到限制,即横向于工具的纵向轴线的运动。另外,盖130的肩部134和传热垫160处的摩擦力使壳体130在轴向方向上的运动或者通常为滑动运动最小化。

在井眼16中的钻探或其他活动期间,区段102可能遭遇冲击和振动。有利地,当经受这些运动时,支架100使壳体120和封闭模块24在横向和轴向方向上的运动最小化。另外,传热垫160将热量从壳体120传导到合适的散热器,诸如在井眼管柱12中流动的钻探泥浆。

尽管前述公开内容涉及本公开的一种模式的实施例,但是对本领域的技术人员而言各种修改将是显而易见的。这意味着前述公开内容包含所有变型。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1