一种多壁碳纳米管修饰碳纤维微电极及其制备方法与流程

文档序号:12452315阅读:486来源:国知局
一种多壁碳纳米管修饰碳纤维微电极及其制备方法与流程

本发明属于电化学传感器领域,具体涉及一种多壁碳纳米管修饰碳纤维微电极的制备工艺。



背景技术:

超微电极是指尺寸在μm级或纳米级范围的电极,当电极的一维尺寸从毫米级降低至μm级时, 表现出许多优良的电化学特性,在理论上比常规电极更适用于电化学反应过程中的热力学和动力学研究。由于具有很小的尺寸,能插入活体组织的细胞中进行有关成分的测量,而不对其造成损害,因此作为特殊微型生物化学传感器而备受瞩目,在微观电化学分析和生物活体组织分析等领域具有广阔的应用前景。碳纤维单丝的直径只有几μm,可以直接制成微电极,而且有着很高的比强度和杨氏模量、良好的导电性能、耐高温、抗腐蚀等优异的性能,制成电极后稳定性和重现性好,能够适用于各种场合,是近年来备受关注的微电极材料。

但碳纤维的表面是石墨乱层结构,比表面积小而且活性低,导致碳纤维微电极的响应电流很小,难以被传统仪器准确测量,限制了碳纤维微电极在生物化学分析领域的广泛应用。碳纳米管由呈六边形排列的碳原子组成,长度是μm级的,直径是纳米级的,拥有独特的中空结构和极大的比表面积,具有优异的电性能。用碳纳米管修饰碳纤维电极,可以在保留碳纤维微小直径的基础上有效增加电极表面积,提高电催化活性和响应灵敏度,而且碳纳米管和碳纤维同属碳材料,兼容性较好,保证了微电极良好的稳定性和重现性。



技术实现要素:

本发明的目的解决碳纤维微电极比表面积小、响应灵敏度低以及制备工艺复杂的问题,提出一种基于化学气相沉积法制备多壁碳纳米管修饰碳纤维微电极的工艺方法,用于批量生产电化学性能优异、可靠性强、应用范围广的碳纤维微电极。

为解决上述技术问题,本发明所采用的技术方案为:

一种多壁碳纳米管修饰碳纤维微电极,包括绝缘铜导线、碳纤维单丝,所述碳纤维单丝一端通过导电性粘胶与绝缘铜导线的铜芯一端相连接,所述碳纤维单丝与绝缘铜导线的连接处的裸露部分包裹有锥形的环氧树脂,所述碳纤维单丝另一端延伸并裸露于环氧树脂外100 ~ 500μm。

进一步地,所述的导电性粘胶为导电银胶。

进一步地,所述的环氧树脂为快速固化环氧树脂。

进一步地,所述碳纤维单丝的直径为5 μm ~7 μm (具体直径根据所用的碳纤维型号而定)。

一种如所述多壁碳纳米管修饰碳纤维微电极的制备方法,包括步骤:

步骤一,对碳纤维丝束进行去浆料和敏化活化处理;之所以要先进行去浆处理是因为出厂的碳纤维丝束一般都涂上了浆料用以集束和保护;敏化活化处理是为了在碳纤维表面镀上一层具有催化活性的贵金属,形成化学镀的催化中心,使后续的化学镀镍过程顺利进行;

步骤二,在活化后的碳纤维表面进行化学镀镍沉积纳米金属镍颗粒;化学镀镍相比其他镀镍方法更迅速高效,而且得到的镀层更均匀、颗粒直径更小;通过控制化学镀镍的速率和时间可以获得不同的颗粒大小和厚度的镀镍层。

步骤三,通过化学气相沉积法在碳纤维表面修饰多壁碳纳米管;采用金属镍作为催化剂,乙炔作为碳源,氩气作为载体气;乙炔在高温和镍的催化作用下裂解出碳原子,吸附在镍颗粒表面扩散沉积形成碳纳米管。

步骤四,从修饰后的碳纤维丝束中分离碳纤维单丝制备成多壁碳纳米管修饰碳纤维微电极,选用高刚性的绝缘铜导线,加上环氧树脂密封连接处的制备方法,相比传统毛细玻璃管封装的方法操作更加便捷而且不容易损坏碳纤维单丝。

进一步地,所述步骤一具备包括:

将碳纤维丝束放到丙酮中浸泡约20 ~ 40分钟去除表面浆料;

超声波震荡分散清洗后,分别放进敏化液和活化液中浸泡5 ~ 10分钟行敏化活化,所述敏化液为10g/L的SnCl2·2H2O和40 ml/L的盐酸,所述的活化液为0.5g/L的PdCl2和20 ml/L的盐酸;

取出后用去离子水清洗。

进一步地,所述的步骤二具体包括:

将所需质量比的次亚磷酸钠、六水硫酸镍、柠檬酸钠、氯化铵依次溶于去离子水配成镀镍溶液,水浴加热到70 ~ 80 ℃,加入氨水调节pH值为8~9;然后加入步骤一中敏化活化后的碳纤维进行镀镍反应,5~10分钟后取出,以获得较薄的镍催化剂层;

最后用去离子水清洗干净,最后放到真空干燥箱中烘干。

进一步地,所述的步骤三具体包括:

将镀镍后的碳纤维放到管式炉中,抽真空后通入氩气,流速为50~80 sccm;

加热到680~700℃后同时通入乙炔气体,流速为20~50 sccm,持续反应5~20分钟后停止加热,同时停止乙炔气体的通入;

继续通入氩气直到炉子冷却到室温,得到具有合适厚度修饰多壁碳纳米管修饰层的碳纤维。

进一步地,所述的步骤四具体包括:

从修饰了多壁碳纳米管的碳纤维中分离出碳纤维单丝,用导电银胶将其与高刚度的绝缘铜导线的铜芯粘连起来;

然后用环氧树脂对连接处的裸露部分导线进行涂覆密封,制备成多壁碳纳米管修饰碳纤维微电极。

进一步地,所述的步骤四还包括步骤:根据实际需要在显微镜下将所制备的多壁碳纳米管修饰碳纤维微电极的碳纤维单丝裸露长度修剪为100~500μm。

相比现有技术,本发明有益效果包括:

(1)本发明基于化学气相沉积法对碳纤维微电极表面进行多壁碳纳米管的修饰,获得的碳纳米管层分布均匀、附着性强,而且容易根据实际需要获得不同的碳纳米管分布厚度和密度,有效地提高了碳纳米管修饰碳纤维微电极的可靠性,拓宽了其使用场合。

(2)本发明制备微电极时采用高刚性的绝缘铜导线,并用环氧树脂对连接处进行密封,操作便捷,可靠性强,避免了传统毛细玻璃管封装的高难度和容易损坏碳纤维单丝的缺点。

(3)本发明的基于化学气相沉积法的多壁碳纳米管修饰碳纤维微电极的制备工艺,可以实现快速、便捷的批量生产高灵敏度、高稳定性的碳纤维微电极,促进碳纤维微电极在生物化学分析领域的广泛应用。

附图说明

图1为本发明实施例的多壁碳纳米管修饰碳纤维微电极的结构示意图;

图2为未经处理的碳纤维原丝的SEM图;

图3为本发明实施例的多壁碳纳米管修饰碳纤维的SEM图;

图4为图3中的多壁碳纳米管修饰碳纤维局部放大SEM图;

图5为本发明实施例的多壁碳纳米管修饰碳纤维微电极在5.0 mM K3[Fe(CN)6](支持电解质为1.0 mol/L KCl)溶液中的循环伏安特性曲线图,扫描速率为10 mV。

图中所示:1-碳纤维单丝;2-导电银胶;3-环氧树脂;4-绝缘铜导线。

具体实施方式

下面结合附图和实施例,对本发明的技术方案进行进一步详细说明。此处所描述的具体实施例仅以解释本发明,并不用于限定本发明。此外下面描述的具体实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

实施例一

一种多壁碳纳米管修饰碳纤维微电极,包括绝缘铜导线4、碳纤维单丝1,所述碳纤维单丝1一端通过导电银胶2与绝缘铜导线4的铜芯一端相连接,所述碳纤维单丝1与绝缘铜导线4的连接处的裸露部分包裹有锥形的环氧树脂3,所述碳纤维单丝1另一端延伸并裸露于环氧树脂3外100μm ~500μm。

所述的环氧树脂3为快速固化环氧树脂,所述碳纤维单丝1的直径为5 μm~ 7 μm。

本实施例提供的微电极时采用高刚性的绝缘铜导线,并用环氧树脂对连接处进行密封,操作便捷,可靠性强,避免了传统毛细玻璃管封装的高难度和容易损坏碳纤维单丝1的缺点。

实施例二

一种多壁碳纳米管修饰碳纤维微电极的制备方法,具体包括以下步骤:

步骤一,剪一段5cm长的碳纤维丝束,单丝直径为7 μm(见图2),置于丙酮中浸泡40分钟,然后依次用无水乙醇和去离子水超声清洗5 分钟,去除碳纤维表面的浆料和杂质;分别配制100 ml的敏化液(10g/L的SnCl2·2H2O和40 ml/L的盐酸)和活化液(0.5g/L的PdCl2和20 ml/L的盐酸),把碳纤维放到敏化液中浸渍10分钟进行敏化,取出后直接置于活化液中浸渍10分钟进行活化,取出后用去离子水清洗。

步骤二,分别将4.0g次亚磷酸钠、6.0g六水硫酸镍、20.0g柠檬酸钠、10.0g氯化铵溶于200 ml去离子水中,磁力搅拌10分钟得到镀镍溶液;然后置于70 ℃水浴锅中加热,加热到70 ℃后往溶液里滴入氨水调节pH值为8;把活化后的碳纤维样品放进镀镍溶液中进行化学镀镍,10分钟后取出,用去离子水清洗,然后放到真空干燥箱中干燥6小时。

步骤三,将镀镍后的碳纤维样品放进FWL(ZK)-08/70/3管式炉中,关闭进出气口阀门后,打开抽真空开关,待管内压强低于几帕时停止抽真空;打开进气口阀门,通入氩气,流速为50 sccm,10分钟后等管内完全充满氩气时,打开出气口阀门并按下加热开关进行加热;等温度升到680 ℃时通入乙炔,流速为20 sccm,同时保持氩气继续通入;10分钟后停止通入乙炔,并关闭加热开关,继续通入氩气,直到炉子自然冷却到室温,取出修饰了多壁碳纳米管的碳纤维丝束(见图3和图4)。

步骤四,用镊子从修饰了碳纳米管的碳纤维丝束中挑取单根碳纤维,用导电银胶将其与约8 cm长的高刚度绝缘铜导线粘连起来,碳纤维与导线粘连处的长度约为1~2 cm,碳纤维另一端露出足够长度;待导电银胶凝固后,用快速固化环氧树脂均匀涂在铜导线上与碳纤维连接的裸露端进行密封;待环氧树脂固化后,在显微镜下将碳纤维裸露出来的长度剪裁为所需的长度,本实例中剪裁为约500 μm长,即可得到多壁碳纳米管修饰碳纤维微电极。

采用电化学循环伏安法对所制备的多壁碳纳米管/碳纤维微电极的电化学活性进行表征,利用CHI650D 电化学工作站对电极进行,采用三电极系统。在5.0 mM K3[Fe(CN)6](支持电解质为1.0 mol/L KCl)溶液中,多壁碳纳米管/碳纤维微电极为工作电极,标准Ag/AgCl 电极为参比电极,直径1.0 mm 铂丝为辅助电极,电位窗为-0.2 ~ 0.8V,扫速为10 mV/s。图5所示为本发明的多壁碳纳米管修饰碳纤维微电极的循环伏安曲线示意图,得到标准的“S”型微电极伏安特性曲线,说明具有良好的电化学行活性。

实施例三

一种多壁碳纳米管修饰碳纤维微电极的制备方法,具体包括以下步骤:

步骤一,剪一段5cm长的碳纤维丝束,单丝直径为5 μm,置于丙酮中浸泡30分钟,然后依次用无水乙醇和去离子水超声清洗5 分钟,去除碳纤维表面的浆料和杂质;分别配制100 ml的敏化液(10g/L的SnCl2·2H2O和40 ml/L的盐酸)和活化液(0.5g/L的PdCl2和20 ml/L的盐酸),把碳纤维放到敏化液中浸渍8分钟进行敏化,取出后直接置于活化液中浸渍8分钟进行活化,取出后用去离子水清洗。

步骤二,分别将4.0g次亚磷酸钠、6.0g六水硫酸镍、20.0g柠檬酸钠、10.0g氯化铵溶于200 ml去离子水中,磁力搅拌10分钟得到镀镍溶液;然后置于75 ℃水浴锅中加热,加热到75 ℃后往溶液里滴入氨水调节pH值为9;把活化后的碳纤维样品放进镀镍溶液中进行化学镀镍,8分钟后取出,用去离子水清洗,然后放到真空干燥箱中干燥6小时。

步骤三,将镀镍后的碳纤维样品放进FWL(ZK)-08/70/3管式炉中,关闭进出气口阀门后,打开抽真空开关,待管内压强低于几帕时停止抽真空;打开进气口阀门,通入氩气,流速为70 sccm,10分钟后等管内完全充满氩气时,打开出气口阀门并按下加热开关进行加热;等温度升到700 ℃时通入乙炔,流速为30 sccm,同时保持氩气继续通入;10分钟后停止通入乙炔,并关闭加热开关,继续通入氩气,直到炉子自然冷却到室温,取出修饰了多壁碳纳米管的碳纤维丝束。

步骤四,用镊子从修饰了碳纳米管的碳纤维丝束中挑取单根碳纤维,用导电银胶将其与约8cm长的高刚度绝缘铜导线粘连起来,碳纤维与导线粘连处的长度约为1~2 cm,碳纤维另一端露出足够长度;待导电银胶凝固后,用快速固化环氧树脂均匀涂在铜导线上与碳纤维连接的裸露端进行密封;待环氧树脂固化后,在显微镜下将碳纤维裸露出来的长度剪裁为所需的长度,本实例中剪裁为约300 μm长,即可得到多壁碳纳米管修饰碳纤维微电极。

实施例四

一种多壁碳纳米管修饰碳纤维微电极的制备方法,具体包括以下步骤:

步骤一,剪一段5cm长的碳纤维丝束,单丝直径为7 μm(见图2),置于丙酮中浸泡20分钟,然后依次用无水乙醇和去离子水超声清洗5 分钟,去除碳纤维表面的浆料和杂质;分别配制100 ml的敏化液(10g/L的SnCl2·2H2O和40 ml/L的盐酸)和活化液(0.5g/L的PdCl2和20 ml/L的盐酸),把碳纤维放到敏化液中浸渍5分钟进行敏化,取出后直接置于活化液中浸渍5分钟进行活化,取出后用去离子水清洗。

步骤二,分别将4.0g次亚磷酸钠、6.0g六水硫酸镍、20.0g柠檬酸钠、10.0g氯化铵溶于200 ml去离子水中,磁力搅拌10分钟得到镀镍溶液;然后置于80 ℃水浴锅中加热,加热到80 ℃后往溶液里滴入氨水调节pH值为8;把活化后的碳纤维样品放进镀镍溶液中进行化学镀镍,10分钟后取出,用去离子水清洗,然后放到真空干燥箱中干燥6小时。

步骤三,将镀镍后的碳纤维样品放进FWL(ZK)-08/70/3管式炉中,关闭进出气口阀门后,打开抽真空开关,待管内压强低于几帕时停止抽真空;打开进气口阀门,通入氩气,流速为80 sccm,10分钟后等管内完全充满氩气时,打开出气口阀门并按下加热开关进行加热;等温度升到690 ℃时通入乙炔,流速为50 sccm,同时保持氩气继续通入;20分钟后停止通入乙炔,并关闭加热开关,继续通入氩气,直到炉子自然冷却到室温,取出修饰了多壁碳纳米管的碳纤维丝束。

步骤四,用镊子从修饰了碳纳米管的碳纤维丝束中挑取单根碳纤维,用导电银胶将其与约8 cm长的高刚度绝缘铜导线粘连起来,碳纤维与导线粘连处的长度约为1~2 cm,碳纤维另一端露出足够长度;待导电银胶凝固后,用快速固化环氧树脂均匀涂在铜导线上与碳纤维连接的裸露端进行密封;待环氧树脂固化后,在显微镜下将碳纤维裸露出来的长度剪裁为所需的长度,本实例中剪裁为约100 μm长,即可得到多壁碳纳米管修饰碳纤维微电极。

以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1