不确定两阶段机会约束低碳电力优化规划方法与流程

文档序号:14911940发布日期:2018-07-10 23:39阅读:256来源:国知局
本发明属于电力规划
技术领域
,尤其涉及一种不确定两阶段机会约束低碳电力优化规划方法。
背景技术
:CO2排放总量控制是一项复杂的系统工程,具有动态性、不确定性等特点。随着碳交易在中国的全面实施,碳排放重点行业之一的电力企业将面临更多复杂的外部因素。此外,碳排放交易初始配额分配方式也会随着第一阶段启动期过后发生变化,免费配额的比例在碳交易机制迈向成熟期后将有所下降,然而配额分配政策的不同,会对电力企业生产规划将产生深远影响。合理有效的电力系统规划和运行方法,将是保证电力系统在安全稳定运行的前提下实现高效碳减排的有力手段。电力行业是碳排放的重点行业之一,其中,化石燃煤发电是造成大气污染物和温室气体排放的主要来源。如何优化资源配置、合理规划,在满足能源需求、碳排放总量减少的前提下使得电力系统利润最大化是企业和政府共同关心的重要问题。目前,能源模型已成为标准的分析工具,决策者可以从能源模型中有效地处理能源系统中的能源规划、优化和预测问题,这些方法学通过解释能源系统的复杂性,有助于检验和识别各种期望管理战略的效果。如LEAP模型、MARKAL模型、MESSAGE模型等。目前主流的研究工具是采用优化模型的思路,但当面对大量政策变量和技术进步的条件下,既有的单纯模型无法完全反映出能源生产模式、消费技术和政策变量间的相互作用。如LEAP模型难以充分考虑技术进步以及政策的实施成本,不能完全反应市场供需信号。MARKAL模型则需要大量的输入数据,由于受模型运算能力和可获得性的限制,一些数据不得不采用平均值,这会影响不同条件下模型的计算结果。除此之外,研究人员虽已从不同角度对碳交易市场开展了研究,目前少有分析不同碳交易政策情境对电力规划及CO2排放量的影响,并不能预先提供区域低碳电力生产各类资源分配规划方案以及不同碳配额情境下的优化生产情况;也少有将电力需求、超发风险等不确定因素纳入电力生产规划的相关研究。由于中国的碳排放交易体系尚处于起步阶段,交易及配额分配机制尚未完善。因此,研究碳排放政策不同、电力需求变化等多条件下的低碳电力规划优化方法,对碳排放减少及碳交易市场的全面开展有着重要的现实意义。技术实现要素:针对上述问题,本发明提出了本发明提出了一种不确定两阶段机会约束低碳电力优化规划方法,包括:根据智能电网中调度系统和负荷预测系统中得到的历史及预测数据,并结合节能减排的指标和碳排放交易价格数据,以利润最大化为目标,建立低碳电力规划模型;采用机会约束将电力需求、碳排放配额、超发风险纳入规划,并采用两阶段随机规划方法,优化建立两阶段机会约束低碳电力规划模型,将模型中具有不确定性的参数设置成区间形式,得到稳定可行的区间解。所述利润计算方法为:二氧化碳预期产生量所对应的收益加上二氧化碳超预期产生量所对应的收益减去减排二氧化碳所产生成本,再减去超出免费碳排放配额的二氧化碳排放交易成本,如果所述超出免费碳排放配额的二氧化碳排放交易成本为负,则表明还有多余的碳排放权用于交易来转换为利润。所述机会约束包括:发电量与可用发电容量之间的总量约束、发电量与电力需求之间的电力供需平衡约束、二氧化碳排放量约束、发电量与电力需求的非负约束。所述两阶段机会约束低碳电力规划模型包括:Maxf=max(f1+f2-f3-f4)(1a)其中,f表示利润,f1表示二氧化碳预期产生量所对应的收益,f2表示二氧化碳超预期产生量所对应的收益,f3表示减排二氧化碳所产生成本,f4表示超出免费碳排放配额的二氧化碳排放交易成本;i=1,2,3,…,I表示时期序列,j=1,2,3,…,J表示地区序列,k=1,2,3,…,K表示发电企业序列,APijk为i时期j地区k发电企业的预期二氧化碳年产生量来作为第一阶段决策变量,CIijk为i时期j地区k发电企业的单位二氧化碳年产生量所对应的收益,E[]为随机变量的期望值;BQijk为当i时期j地区的电力需求为DMij(kwh/y)时,k发电企业超过APijk发电所产生的二氧化碳产生量来作为第二阶段决策变量;GQijk=APijk+BQijk为i时期j地区k发电企业二氧化碳总产生量;ηijk为i时期j地区k发电企业的减排效率;RCijk为i时期j市k发电企业的单位二氧化碳减排成本;EAijk为i时期j地区k发电企业预发放的免费碳排放配额;BPijk为i时期j地区k发电企业购买二氧化碳排放权的交易价格;约束条件为:(1)总量约束GCijk≤CAijk(1b)GCijk=(GQijk/(DSijkEL))(1b_1)GCijk为i时期j地区k发电企业的发电量;DSijk为单位发电量煤耗;EL为二氧化碳排放系数,单位104ton/kwh;CAijk为i时期j地区k发电企业的可用发电容量;(2)电力供需平衡约束DMij为j地区规划期的总电力需求(3)区域二氧化碳排放约束ERk为i时期j区域电力系统CO2排放量上限Qj为j地区规划期内核证自愿减排量,单位为104ton;(4)非负约束APijk≥BQijk≥0(1f)。本发明的有益效果在于:将电力需求、碳排放配额分配政策、超发风险等不确定因素纳入到不同规划期的区域低碳电力规划中,运用两阶段随机规划,建立了基于低碳电力规划方法,分析研究优化的资源配置方案,以期为电力行业生产规划决策提供支持。所建可以优化不确定条件下区域各企业电力生产资源配置,将不确定性纳入规划过程,可提高规划方案实施效果的科学性和可信度。对不同规划期决策目标所求得的区间解决方案可以帮助决策人员权衡系统效益和环境目标,为电力生产提供更加可靠的方案,不仅有助于提到电力企业的经济效益,而且有助于区域经济的可持续发展。附图说明图1为碳排放配额免费发放情景下各企业的优化发电量示意图图2为第二阶段新增发电所产生的CO2量示意图图3为免费碳排放配额减半情景下二氧化碳产生量示意图图4为不同分配方案下的系统收益图具体实施方式下面结合附图,对实施例作详细说明。本发明提出了一种不确定两阶段机会约束低碳电力优化规划方法,包括:根据智能电网中调度系统和负荷预测系统中得到的历史及预测数据,并结合节能减排的指标和碳排放交易价格数据,以利润最大化为目标,建立低碳电力规划模型;采用机会约束将电力需求、碳排放配额、超发风险纳入规划,并采用两阶段随机规划方法,优化建立两阶段机会约束低碳电力规划模型,将模型中具有不确定性的参数设置成区间形式,得到稳定可行的区间解。所述利润计算方法为:二氧化碳预期产生量所对应的收益加上二氧化碳超预期产生量所对应的收益减去减排二氧化碳所产生成本,再减去超出免费碳排放配额的二氧化碳排放交易成本,如果所述超出免费碳排放配额的二氧化碳排放交易成本为负,则表明还有多余的碳排放权用于交易来转换为利润。所述机会约束包括:发电量与可用发电容量之间的总量约束、发电量与电力需求之间的电力供需平衡约束、二氧化碳排放量约束、发电量与电力需求的非负约束。所述两阶段机会约束低碳电力规划模型包括:Maxf=max(f1+f2-f3-f4)(1a)其中,f表示利润,f1表示二氧化碳预期产生量所对应的收益,f2表示二氧化碳超预期产生量所对应的收益,f3表示减排二氧化碳所产生成本,f4表示超出免费碳排放配额的二氧化碳排放交易成本;i=1,2,3,…,I表示时期序列,j=1,2,3,…,J表示地区序列,k=1,2,3,…,K表示发电企业序列,APijk为i时期j地区k发电企业的预期二氧化碳年产生量来作为第一阶段决策变量,CIijk为i时期j地区k发电企业的单位二氧化碳年产生量所对应的收益,E[]为随机变量的期望值;BQijk为当i时期j地区的电力需求为DMij(kwh/y)时,k发电企业超过APijk发电所产生的二氧化碳产生量来作为第二阶段决策变量;GQijk=APijk+BQijk为i时期j地区k发电企业二氧化碳总产生量;ηijk为i时期j地区k发电企业的减排效率;RCijk为i时期j市k发电企业的单位二氧化碳减排成本;EAijk为i时期j地区k发电企业预发放的免费碳排放配额;BPijk为i时期j地区k发电企业购买二氧化碳排放权的交易价格;约束条件为:(5)总量约束GCijk≤CAijk(1b)GCijk=(GQijk/(DSijkEL))(1b_1)GCijk为i时期j地区k发电企业的发电量;DSijk为单位发电量煤耗;EL为二氧化碳排放系数,单位104ton/kwh;CAijk为i时期j地区k发电企业的可用发电容量;(6)电力供需平衡约束DMij为j地区规划期的总电力需求(7)区域二氧化碳排放约束ERk为i时期j区域电力系统CO2排放量上限Qj为j地区规划期内核证自愿减排量,单位为104ton;(8)非负约束APijk≥BQijk≥0(1f)。电力需求是影响我国二氧化碳排放的重要不确定因素。在稳定增长的条件下,一个地区的电力需求量仍然是不确定的,可能随时间而变化,可以被视为一个随机变量,当这个随机变量实现之前,需要对区域内允许的电力生产水平进行规划。随机规划可以用于解决那些约束条件中含有随机变量,而且在随机变量实现之前必须做出决策的优化问题。许多传统规划方法将随机变量预先转化处理为若干确定性场景,然后分别验证各求解方案在这些确定性场景下对模型约束的满足程度。一旦规划方案不满足规定场景的约束要求时,就会被划为不可行的方案而舍弃。因此,这样的约束实为“刚性约束”,由此得来的最优方案在某些方面是需要付出“代价”的,并不能很好地适应实际电力生产规划决策的需要。本发明中采用不同的处理原则,允许所作决策在某些情况下不满足约束条件,但需要约束条件成立的概率不小于特定置信水平。这是因为,对于发电设备来讲,长时间满发、超发所引起机组意外事故的风险就越大。通常情况下,发电机组的发电量可以通过装机容量进行衡量。然而,装机容量是一个满载理论数据,发电机组的功率通常得不到充分利用,因此,可以先根据平均功率利用水平来设定发电容量约束。这个数值通常会低于装机容量(如容量因子为93%)。另一方面,在应对用电负荷高峰时,有时却需要机组满发甚至超发才能勉强满足用户需求,但这样会影响设备的使用寿命,一旦机组发生意外事故,还会给电网安全运行带来风险。因此,虽然允许所作决策在某些特定情况下(用电高峰,出现电力缺口时)不满足约束条件,但需要约束条件成立的概率不小于特定的置信水。因此,为应对迎峰度夏期间,遇高温、高湿等极端天气情况出现电力缺口时,需要采取电力平衡预案措施,针对不同的缺口等级,允许选择风险概率不同的发电方案。这将有助于决策者根据违反约束的可能性做出决定。因此,使用机会约束可以将设备超出额定出力最大限度的能力及所带来的风险两个不确定因素纳入规划,而且还能将优化过程中模型的约束条件由“刚性满足”转为适度的“灵活响应”,因此所得方案能够在满足优化目标的同时,兼具灵活性与可操作性,保证电力系统的安全运行的同时,提高规划方案实施效果的科学性和可信度。在机会约束的基础上,采用两阶段随机规划方法,当不确定性表现为随机性的事件发生之后,可以采取追索补偿机制来减少随机事件带来的影响。传统的低碳技术研究中,两阶段法常单独应用于投入产出效率分析,来研究企业低碳研发投入和产量的决策,以及技术溢出效应对制造企业低碳技术创新模式选择的影响。结合了机会约束的两阶段随机规划法,弥补了模型单独使用时产生的偏差,获得具有现实意义的分析结果,更适合复杂的能源电力企业。除此之外,低碳电力生产规划过程中煤耗、交易价格、减排成本等对规划方案有重要影响,而这些影响规划的参数同样具有不确定性,并且其概率分布及隶属度函数不易获得或数据量巨大。许多传统处理方法,会将历史平均值作为参数,方便规划的同时,却忽略了这些参数的不确定性所带来的影响。因此,本专利采用将这些不确定信息处理成区间形式的方法,依靠专家和利益相关者的专业知识和经验,置参数为已知区间上下限但不知其概率分布的区间参数,不仅降低了数据量的要求,而且对无法获取变量概率分布和隶属度函数时,可以有效解决目标函数和约束中系数的不确定性,得到稳定可行的区间解。另一方面,决策目标通常是一个经济目标(成本最小或利润最大),然而,最有利的经济目标有可能对能源和环境带来一定的负面影响。因此,提供基于经济目标的最好最优方案和最差最优方案区间,使决策者可以根据实际情况,在区间内调整决策变量的值,从而得到满意的规划方案,为决策支持提供科学依据。但是,当区间过大时,会产生不可行解或由于解的范围太大而丧失决策意义。因此,将区间规划结合机会约束、随机规划、两阶段规划等不确定性优化方法,一起处理复杂系统规划问题可行度及实施效果更佳。分情境分析碳排放交易对电力生产规划产生的影响,将排放量转换成一种合理的成本,它将有效平衡追求利润最大化的过程中实现成本控制和最小排放目标。另一方面,能源互联网的运行管理聚焦多行业协同优化调控,模型将企业收益转化为CO2年产生量对应的收益,方便碳排放配额将来在不同行业企业之间流动和重新配置,因而能够更加有效的发挥资源优化配置作用。综上,中长期的能源政策评价工作包含预测、平衡和优化三方面内容,需要对较长时间尺度上的且具有很大不确定性的变化做出反应,这不仅需要考虑未来最可能的能源发展趋势,更要研究改变这种趋势各种可能性和实现不同可能性所需要的前提条件。建立混合低碳电力模型,模型以不同规划期内,区域电力生产净收益最大为目标函数。在兼顾电力企业利润的同时,实现碳排放总量的控制。在区域内的由发电产生的二氧化碳排放量是不确定的(表示为一个随机变量),必须在获得该随机变量的值之前制定发电计划。具体计算过程包括:将目标函数中ph为某种电力需求的概率水平,h为电力需求水平。目标函数变为约束条件为Pr[{GCijk≤CAijk}]≥1-qn(2)APijk≥BQijk≥0(2f)qn表示违反此约束所允许的概率。其次,可以通过如下方式,将机会约束转化为确定性的和线性的约束(i)对于约束n,确定一个概率水平qn(ii)使得约束条件n至少在1-qn上满足约束条件。因此,约束条件(1)变为:(1)为逆累积分布函数(2)每个DMij的分布可以转化为与其等价的离散值的集合。让每个DMij取概率ph的值Wh。因此约束条件(2c)转化为:APijk≥BQijkh≥0(3f)碳交易价格、减排成本等参数的不确定性,模型以区间数来表示,可以有效解决目标函数和约束中系数的不确定性,得到稳定可行的区间解。重构后的模型如下:APijk±≥BQijkh±≥0(4f)根据两步法来求解区间规划。对应于上限的子模型如下APijk+≥BQijkh+≥0(5f)再求解对应于下限的子模型APijk-≥BQijkh-≥0(6f)将规划模型应用于碳交易市场下碳配额不同分配情境下的电力规划,分别在某区域选取A、B两个市规模相近的3家发电企业,它们各自减排水平不同,研究其在t1、t2、t3规划期内的电力生产情况。目前碳交易试点省市对纳入碳排放交易体系的各企业实施免费发放配额制。各企业年度初始配额见表1。第二种分配情境以免费配额下降到50%为例。CO2交易价格也会随着免费配额的减少而发生变化,参见表2。各企业减排成本见表3。模型中的减排效率,按照行业平均水平估算。目标发电量参见表4。各企业目前煤耗情况参见表5。S1为配额免费发放的情境;S2为免费配额下降为50%的情境。表1各企业CO2年度初始配额表2各企业购买CO2配额成本表3各企业减排成本表4目标发电量表5各企业煤耗Cityk=1k=2k=3j=A0.4580.3560.626j=B0.4040.3120.591表6S1情境下新增发电所产生的CO2量表6为S1情境下电力需求发生变化时,超过第一阶段目标发电量后新增发电所产生的CO2量。从表中可以看出,其中第二、第三规划期CO2总量较第一规划期有下降,下降的原因除了各企业减排效率提高这一因素外,碳交易市场中鼓励可再生能源企业通过中国核证资源减排量用于交易是另一重要影响因素。可再生能源通过碳交易的实施在能源供应网中将以更高的比例接入,更好的解决电力增长与碳排放量下降这一矛盾。通过模型给出的方案可知,三种电力需求水平对煤耗最低的两个企业(A市的企业2和B市的企业2)的影响不大,表现为这两家企业在同一规划期、同一风险水平时三种电力需求水平下新增发电量基本保持不变(产生稳定的碳排放),所占市场份额稳定。如,第一规划期时,A市的企业2在Pn=0.01时高、中、低三种电力水平下,值都为[21.1,23.0],Pn=0.05时都为[14.4,16.3],Pn=0.1时都为[11.5,12.5];B市的企业2在Pn=0.01时都为[20.2,22.1],Pn=0.05时都为[14.4,15.4],Pn=0.1时都为[10.6,11.5]。也就是说,在不同规划期,当电力需求水平发生变化时,这两家企业所受影响最小。煤耗最低的企业(B市的企业2)在不同规划期、风险度和电力需求对其都没有造成影响,对其都有稳定的发电需求,所占市场份额稳定。这说明了,经济环保的电厂在减排力度加大,电力需求变化,风险因素不定的各种情况下,仍可保持稳定发展,形成可持续发展的良性循环。模型提供的决策方案,可以激发企业调整结构和技术改造的积极性,引导鼓励高耗能企业从企业设备、工艺、管理等方面积极进行变革,适应市场需求,进而达到进一步促进碳排放总量下降的目标。图1为S1情境下,当区间参数设为上限时,不同风险、不同电力需求及规划期的第二阶段优化发电方案。通过模型求解所得的优化方案表明,在S1情境下,即使初期排放配额免费,但随着减排力度增加,在第二第三规划期,发电将转向更经济环保的电厂,规划模型将超出计划的电力需求优先分配给煤耗较低的四家企业,分别为A市的企业1和企业2,B市的企业1和企业2。与此相反,煤耗最高的两家企业仅在中、高电力需求水平时有少量分配甚至没有分配,这两家企业分别为A市的企业3和B市的企业3。在即将启动全国碳排放交易体系及减排力度不断加大的双重背景下,相对污染的企业将逐渐被市场淘汰。受影响最小的企业为煤耗最低的B市的企业2,在不同时期,不同风险,不同电力需求情形下,优先为其分配增发需求。这说明了,经济环保的电厂在减排力度加大,电力需求变化,风险因素不定的各种情况下,仍可保持稳定发展,形成可持续发展的良性循环。模型可以辨识不同碳排放分配方案下的电力生产的最优解,从而达到区域内配额分配、电力生产和经济目标之间的平衡。从图2可知,当免费配额下降到50%时,只有煤耗最低的两家电力企业所受影响最小,当有增发需求时,始终有稳定的份额被安排给这两家企业(分别为A市的企业2,B市的企业2);而煤耗最高的两家企业(分别为A市的企业3,B市的企业3)所受影响最大,在各个时期,几乎不被分配任何增发量。图3表示了S2情境下,当电力需求为中等水平时,3个规划期的CO2产生量。由图可见,在保证目标发电量在各个规划期稳定增长百分之五的前提下,二氧化碳排放量呈下降趋势。可见模型可以适用于碳交易市场机制下的电力规划问题,并可以在满足电力需求的同时实现减排目标。图4为A、B两市在不同pn水平下不同情境时的利润下限。可以看出,B市在各个时期的总利润均高于A市,这是由于B市3家企业的煤耗更低,节能环保水平更高。此外,A、B两市的净效益随着免费配额比重下降(S2情境下)而下降(以Pn=0.01,period=2为例,A市从254.8下降到226.3;B市从306.3下降到277.1)。因此,电力企业应该从多方面应对碳交易市场的实施对企业带来的影响,加大节能减排技术及设备的投入,积极提高能源效率,优化能源结构。此实施例仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本
技术领域
的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1