在基体上形成膜的方法和装置的制作方法

文档序号:6837759阅读:147来源:国知局
专利名称:在基体上形成膜的方法和装置的制作方法
技术领域
本发明涉及用于在基体上形成膜的方法和装置,特别是涉及沉积在具有流动性的半导体硅片上并且在固化时保留含碳基团的膜。
已经公开了多种用于在半导体晶片上沉积薄膜的方法,其例子包括US5314724、US489753、US5593741、EP-A-0731982和EP-A-0726599。由这些文献可以看出至今人们是将含硅有机前体进行处理或再处理,其处理方式应使得在所沉积的膜中避免有机成分或者在随后将有机成分从所沉积的膜中除去;例如这种方法被公开在US5314724中。此外,对于某些应用来说,人们已经发现在沉积膜的晶片表面上和凹槽中很难保持良好的膜质量和良好的填缝能力。
根据本发明的第一个方面,它提供了一种在基体上形成膜的方法,它包括(a)将基体定位在室中的载体上;(b)在存在等离子体的条件下,以气体或蒸汽形式向室中供应含硅有机化合物和一种氧化剂,从而在该基体上沉积一种膜;以及(c)固化该膜,从而在膜中保留含碳基团。
本发明提供一种形成未固化的膜的方法。典型地,该膜是可流动的(即具有一定表面移动度的膜)并且由此而在该基体上提供良好的填缝性能。
应当明白当不需要填缝性能时,举例来说,对于半导体上的金属间介电(IMD)层来说,不会影响本发明的普遍性,此时将不需要流动中间膜。但是根据本发明而沉积的中间膜将含有OH,该基团几乎通过“固化”过程而完全除去。
含有OH和CH的中间层(在随后经处理而除去OH但含有CH的)的形成使得可以形成经过改进的介电层。
该基体可以是一种半导体晶片,例如本领域内已知的一种硅半导体晶片。
虽然其它成分如H2O2也可以使用,但优选地,该氧化剂是氧。
举例来说,该含硅有机化合物可以是一种有机硅烷或一种有机硅氧烷。优选地,该含硅有机化合物是一种烷基硅烷,更优选地,是一种四烷基硅烷。在本发明特别优选的一种实施方案中,该含硅有机化合物是四甲基硅烷(TMS)。但是,也可以使用其它有机硅烷或有机硅氧烷,例如可以使用1,1,3,3-四甲基二硅氧烷(TMDS)。
实验指出甲氧基硅烷,特别是甲氧基甲基硅烷产生具有非常低的介电常数的膜并且它是特别优选的。
利用环己基二甲氧基甲基硅烷(CHDMMS)可以获得特别好的结果,该硅烷具有下列结构 实验还表明甲氧基硅烷(如CHDMMS)可以如上述方法中所说进行处理,但无需在等离子体中存在任何氧化剂。据猜测这是因为Si-O键已经作为部分甲氧基而存在。
因此,根据本发明的另一方面,它包括用于在基体上形成膜的方法,该方法包括(a)将基体定位于室中的载体上;(b)以气体或蒸汽形式向该室中供应含有Si-O键的有机化合物,从而在基体上沉积膜;以及(c)固化(如退火)该膜,从而将含碳基团保留在该膜中。
优选地,在等离子体的存在下提供该化合物,但是也可以采用其它能源,从而形成合适的沉积并且可以将这些手段与旋转技术结合起来。
可以将该膜沉积在位于低温载体上的基体上,举例来说,温度约为0℃的载体。确实0-70℃的温度范围已经产生实用的结果,而30-50℃的温度证实是特别适用的。
在一种实施方案中,该方法还包括在膜沉积过程中提供RF能量,优选地,该RF能量施加到喷管或类似物上,气体前体经过该喷管而进入室中。
虽然可以采用任何适用的实验条件,但已经发现典型的条件包括四甲基硅烷流速为210sccm、O2流速为200sccm、室压力为2000mT、载体温度为0℃、喷管温度为100℃、施加到喷管上的RF能量为250-380khz,尽管可以指出这些条件是典型的条件。
通过退火步骤,如在约450℃下退火,可以实现膜的固化,它可以由所沉积的膜中除去水。已经发现对于6000埃厚的膜来说,该固化膜的典型k值约为2.55,上述膜由在没有氧存在下、在大约450℃下退火步骤之后沉积基质层(在沉积该膜之前)或封闭层(在所形成的层上)而成。该k值是介电常数的衡量值,可以看出本发明提供了特别低的介电常数。
另外并且特别优选的是,通过将所沉积的膜向含有H2的等离子体暴露可以实现固化,而无需先前将膜加热。在这方面,优选地,该载体在沉积过程中未加偏压,以避免由于离子轰击而加热。
根据本发明的第三个方面,它提供了在基体上形成膜的方法,包括(a)将基体定位在室中载体上;(b)在等离子和RF能量存在下,以气体或蒸汽形式向室中提供四甲基硅烷和氧,从而在基体上沉积膜;以及(c)固化该膜,使含碳基团保留在该膜中。
固化步骤可以如上面所说的那样进行。
采用等离子体处理而不进行先前加热,已经获得了特别好的结果。
根据本发明的另一个方面,它提供了一种用于在基体上形成膜的装置,该装置包括(a)定位于室中用于基体的载体;(b)用于在等离子体存在下以气体或蒸汽形式向该室中提供含硅有机化合物和氧化剂的装置,从而在该基体上沉积膜;以及(c)用于固化该膜的装置,使得含碳基团保留在该膜中。
在一种实施方案中,该装置还包括用于改善该膜在基体上沉积均匀性的装置。这种装置安装在喷管区域或其周围,尽管申请人不想限于理论约束,但可以认为其在沉积均匀性方面的作用是由于在表面边缘附近提供表面反应位置由此提高了在基体边缘的沉积速度而造成的。
虽然前面对本发明进行了限定,但应当明白它还包括前面所说的或者下面描述中的特征的任何创造性组合。
本发明可以以多种方式实现,下面将参照附图、通过举例来描述一个特定的实施方案,附图中

图1是用于本发明的一个装置的示意图;图2是Fourier Transform红外(ETIR)光谱,表示根据本发明所沉积的和退火的膜;图3(a)和3(b)是扫描电子显微图,表示通过本发明而形成的退火膜;图4是没有氧进行的第一种方法的Fourier Transform红外(ETIR)光谱;图5是用氧进行的方法的相应的ETIR;图6是表示用标准输送系统对CHDMMS进行的起始实验结果的表;图7是表示用注射泵来输送GHDMMS进行的实验结果的表;图8-10是与图7中所示的某些实验有关的FTIR光谱;图11表示在退火(FTM)过程之后和在无退火步骤时进行H2等离子体处理之后由TMS形成的膜的FTIR图;图12表示FTM过程、5分钟H2等离子体和10分钟H2等离子体对TMS基膜的厚度和折射率的影响的图13-15分别表示氧化除去光刻胶对经过FTM、5分钟H2等离子体和10分钟H2等离子体处理的TMS+O2沉积膜的影响的柱形图表;图16表示在各种后膜形成处理方案之后,氧化除去光刻胶前和后的膜应力值;图17给出了在各种后形成方案之后TMS膜的介电常数;图18是比较两块基体经过FTM、5分钟、10分钟和30分钟H2等离子体处理的涂层介电常数的柱形图表;以及图19是已经通过5分钟H2等离子体固化的TMS+O2沉积膜的SIMS图。
参见图1,它表示装置1,包括具有喷管3和晶片载体或平板4的真空室2。喷管3与RF源(未示出)相连,形成一个电极,而载体4优选地接地。另外,RF源与载体4相连。喷管3通过管(未示出)与四甲基硅烷和氧源相连。该装置通常具有在EP-A-0731982中所公开的形式,该文献作为参考而引入本文。但是通常采用标准(非复式的)的喷管。另外图中还显示出在喷管3周围设置一个任何的均匀环5。该环5对于膜均匀沉积在晶片上起着积极的作用并且对于某些过程来说是适用的。
使用时,可以将装置1用来在可流动的晶片上沉积含水和/或OH的中间层并且可以用来形成平面层或用于“填缝”,例如用于半导体装置上的金属前介电、浅槽隔离和金属间介电。该膜是通过向该室中以气体或蒸汽形式导入四甲基硅烷和氧并且在该室中将它们反应而形成的。这样就形成了具有一定表面移动度的中间层,即使是在等离子体存在时。还发现通过本发明的工艺可以填充尺寸非常小的缝隙。这不是要对本发明进行限定,因为常规的工艺条件将产生含有OH、不会流动的但仍然保持本发明的其它特性的中间层。该反应在等离子体的存在下进行。而后将该膜加热退火,优选地是在没有氧存在的情况下,最优选地是在含氢等离子体存在下。实施例用各种其它前体和四甲基硅烷(TMS)前体,平板温度约为0℃,RF功率可低频(如380Khz),可高频(如13.56Khz),以指示为准。其基本结果如下所说TMS+H2O2在不超过5000mT的压力范围内没有沉积TMS+MeSiH3+H2O2碳含量仅比MeSiH3+H2O2稍高些。沉积速度~6000埃/分钟TMS+DiH4+H2O2膜中没有碳,沉积速度~900埃/分钟TMS+H2O2+RF沉积速度~400埃/分钟,高折射率TMS+O2+RF沉积速度在2微米/分钟以上,高碳含量而后研发“优选的”工艺,它包括210sccmTMS(由填充速度值计算)200sccm O22000mT压力0℃平板温度和100℃喷管温度250瓦特380khzRF功率施加到喷头上。
在没有氧存在下、在大约450℃退火以后,对于厚度为6000埃、没有基质层或封闭层的通过沉积而成的膜来说,这样可以产生2.55k值(通过CV技术测定)。
图2表示根据本发明的这一方面沉积和退火而成的膜的FTIR光谱。在相同的图中重叠显示两个光谱以便于比较。所沉积的光谱是两个中较低者并且在6处显示出与水有关的O-H键的特征峰。在3000和2600波数之间,存在与游离水有关的O-H键、分离的O-H和与H相联的O-H。水含有游离水和与H相联的O-H,并且在该区域产生特有的宽峰。在7处是C-H3峰,在8处是Si-CH3峰(Si-C),在9处是Si-O峰。
可以看出已经沉积形成含有水和/或OH的膜,该OH随后通过退火步骤而除去,并且还可以看出存在CH3,它与Si相联并且在退火后保留在该膜中,形成硬膜。
一般说来,表示低k特征的是在FTIR上位于Si-C和Si-O之间的高峰区域比(PAR)。可以认为Si-C键阻塞了Si-O键并且降低了所形成的膜的密度。因此高的峰值区域比Si-C∶Si-O表示低k膜。但是还可以看出对于这些用等离子体沉积和退火的膜来说,所测定的k值不是低到如通过甲基硅烷与过氧化物的反应由非等离子体沉积而成的低k膜所具有的峰值区域比Si-C∶Si-O。
本发明的膜如图3中所示进行退火,结果证实所沉积的膜具有流动特性。
一般说来,改变工艺参数可以看到下列效果
特别采用环己基二甲氧基甲基硅烷(CHDMMS)进行了一项实验。正如下面所说,该实验表现出明显降低的介电常数。可以设想由多种甲氧基硅烷化合物,如四甲氧基硅烷,可以获得好处。
这些实验基本上如图1所示的室中进行,或者在我们的未决英国专利申请9914879.3中所说的室中进行,该室的电极间隔为40mm和20mm,用于非等离子体工艺的均匀环屏蔽被除去。用在我们的未决英国专利申请9922691.2中所说的注射器输送系统将CHDMMS送入室中,以此作为与常规低蒸汽压质流控制器不同,该专利申请作为参考而引入本文。这样做的原因在于如下所说,CHDMMS通过常规手段不能可靠地输送,因为与绝大多数在中请9914879.3中所说的其它前体原料相比,它具有相当高的沸点(大约200℃)。
所有工艺均用施加到喷头上的等离子体进行。所有晶片均通过在大约480℃下退火30分钟而固化。
已经对下列参数范围进行了研究压力500mT~1500mT功率(380khz)50W~750W平板温度0℃~70℃CHDMMS流速 0.5克/分钟~1.5克/分钟氧流速 0~200sccm氮流速 0~400sccm过氧化物流速0~0.75克/分钟可以看出相对流速与本发明特别相关。通常,高流速导致高沉积速度,并且较宽的流速范围可以获得类似的结果。因此超出上述范围的数值可能也是适用的。
下面给出两个特别优选的工艺例子其中一个有氧,另一个无氧。
将所得膜退火,退火后的结果如下所示
可以看出每一种情况下的介电常数均适当低,但是“有氧”工艺明显有利。
图4和5表示退火后的各自FTIR光谱。可以看出它们基本上相似。图5中在2500-2000之间的特性据信是由环境(背景)CO2导致的。
事实上,起初的实验是在加热到150℃的真空铝容器中采用由PTFE缸组成的CHDMMS源进行的。该缸通过气体管线与适用于水的气体质流控制器相通,其转化因子为1.000。RF源加到距离晶片40mm的喷管上。该RF是380khz连续模式。这些实验的结果示于图6中。CHDMMS栏中的数字是标准气体流速,它是通过质流控制器测定的,但是不能获得稳定的流速并且这些结果是针对输送到工艺室中的近乎随机量CHDMMS的。此时,终止实验,直到可以为该前体开发出极佳的输送系统。
CHDMMS的沸点为201.2℃,比重为0.940克/立方厘米。正如在这些实验中可以看到的那样,CHDMMS在不加入氧化剂的情况下沉积形成低k绝缘体,因此可以无需腔室而将其作为液体输送到半导体晶片上(例如通过人们熟知的“喷射”技术)并且随后利用热或通过等离子体进行反应,从而形成低k(k<3)绝缘层,这是可行的。所用的装置可以通过汽化液体前体有效地沉积液体,将其作为蒸汽输送并且随后在该压力下、在低于该前体沸点的温度下将其冷凝在晶片上。尚不清楚前体的反应是否发生在该晶片上或者在其它地方将反应产物沉积在晶片上。
在开发出更为合适的采用注射泵的液体输送系统以后,如图7中所示进行更进一步的实验。由这些实验,如下面所说的那样,可以开发出优选的工艺。用于图6中13、14和16-23操作的FTIR示于图8-10中。
采用下列条件进行更进一步的实验压力2500毫乇在13.56Mhz下的RF功率250瓦/200mm晶片喷头温度100℃TMS流速 100sccm(大约)氧流速 100sccm氮流速 500-600sccmTMS(四甲基硅烷)与氧的比与前面相同(大约等量),但是在一半总流速下。在该优选的工艺中,主要采用氮作为稀释剂。热处理步骤(“固化”或“退火”)时间5分钟压力10乇氮〔无氧〕晶片温度400℃大约在上述工艺中,当改变该工艺平板温度时,结果如下
起初的沉积工艺再次沉积含有水和/或OH的中间膜,该膜需要固化以基本上除去水和/或OH,从而产生低k层。为了进行上述实验,如上所说通过热处理完成固化。但是由下面可以看出,还进行了其它后沉积工艺。该实验的显著特征在于连续获得低于3的介电常数并且可以看到当平板温度为30℃时,折射率(被认为是密度的测定数据)和介电常数均下降。这些结果与常规的认识,即介电常数和密度与特定的膜组成有关,是一致的,因此低折射率通常表示低介电常数。
在该实验以后,利用下列工艺参数形成一系列膜·TMS -100sccm·O2-100sccm·N2-600sccm·压力-2000mT·基体载体-30℃,DC接地电位(无偏压)·功率-250瓦高频13.56MHz到喷头由该工艺形成的膜通过退火工艺(下文中称为FTM处理)和/或用H2等离子体处理该膜而固化。
该FTM工艺如下所说·晶片温度450℃·压力10乇(氮)·时间3-5分钟H2等离子体处理如下所说·氢 1000sccm·压力4000MT·温度400℃·功率2000瓦高频13.56Mhz到与晶片相对的电极·时间取决于厚度,但典型地对于6千埃为3分钟,虽然较长的时间将导致较低的K值可以使用其它RF频率,将其施加到含有晶片的腔室内部或外部的任何电极上,从而在靠近要处理的膜处产生或提供离子化的氢成分。这样就包括远程等离子体源,包括微波和感应耦合RF源,无论放置在何处。
H2等离子体还可以含有其它成分,如有效的惰性稀释剂,如氩、氦或其它不会从该处理分散的气体或蒸汽。
图11表示如上所说制得的并且通过FTM或通过等离子体处理的膜的FTIR图。在每一幅图下方,表示了各种成分之间键合比率。正如熟悉本领域的人员所理解的那样,图的斜率与FTIR图无关,只有峰提供一些信息。峰的相对高度用比值表表示并且可以看出与经过FTM后沉积处理的膜相比,经过等离子体处理的膜中各种成分之间的键合比率明显降低。这表明经过氢等离子体处理的中间膜结构不同于经过FTM处理的中间膜。
在图12中,上曲线表示在各种后处理工艺之间膜厚度没有明显差异,但随着等离子体处理时间延长,折射率会有一个明显升高。在经过10分钟等离子体以后,折射率接近纯氧化硅的。也就是说,正如上面所解释的那样,这将导致介电常数明显增加,但由图17可以看出,在H2等离子体处理期间的增加导致介电常数明显降低,前提是该膜在等离子体处理之前不接受热处理。因此在经过10分钟H2等离子体处理以后,含有OH的膜被固化并且其介电常数低于2.2,该值是一个极低的值,通常通过化学汽相沉积是不能达到。
可以看到非常短的H2等离子体处理(如1分钟)不会使膜完全稳定,也不会明显降低介电常数到低于FTM退火,虽然该膜仍然可以与其它所说的膜相比。湿蚀刻速度试验已经证实氢等离子体处理在膜的顶端开始。等离子体工艺越长,处理的深度越大,经过处理的膜的k值越低。经过氢等离子体处理的膜蚀刻明显(如20或更多倍)慢于经过FTM处理的膜。还可以看出H2等离子体处理在先前的加热或退火步骤以后不能有效地降低介电常数。
现在转到图13、14和15,在图13中可以看出,经过FTM处理的膜表现出非常容易受到氧化过程的影响,例如似乎从材料上除去了带有碳和氢的光刻胶。这不是完全出乎人们意料的,因为在人们认为这些材料对介电常数具有有益作用之前,这种氧化过程以前用来除去膜中的这种材料(特别是来自前体的有机物)。另一方面,图14和15表明经过等离子体处理的膜基本上不受氧化去除光刻胶过程的影响。这一点无疑是重要的,因为它可以非常容易地由介电层表面除去抗蚀物,但不会损坏该层。图16表示经过等离子体处理的膜还具有特别低的应力,不管是在氧化剥离之前还是在此之前。
可以相信利用大部分流动的或者含有水和/OH的膜可以获得相似的结果,所说的膜在最终采用的介电层中保留碳、更进一步地是CH。
因此本发明人已经确定了一种用于沉积可流动的或者至少含有OH的中间膜,该膜随后通过在无氧存在下、特别是在含有H2的等离子体下加热而固化,结果该膜的介电常数低于3,并且在使用氢等离子体时,可以获得较低的介电常数和良好的抗氧化剥离性。可以推测这种组合是由于这样一个意外事实而导致的,即H2处理降低了介电常数,同时增加了折射率以及几乎肯定地密度也增加了,这可以通过大大降低的湿蚀刻速度而得到证实。
对此更进一步的证据示于图18和19中。图18表示持续用H2等离子体进行处理降低了介电常数,经过30分钟处理的样品其k值为1.8。
图19提供了经过氢等离子处理的膜的分析结果,它按照下列方式进行已经经过5分钟氢等离子体处理的TMS+O2沉积膜的SIMS(二次离子质谱)已经产生。[水平轴穿过样品的深度,恰好在表面上方开始、结束于硅片。图中所显示的是掺杂有机物〔高C〕的样品表面(可忽略),而后进行“真实”分析]。
SIMS图表明膜表面由于氢等离子体处理而缺少碳和氢。这是一个意料中的结果并且它与该表面层与膜体的介电常数的可测定差异是一致的。当将该表面蚀刻掉时,余下的膜(因其厚度变小而调整)与包含该表面层的整个膜相比具有较低的介电常数。此外,包含该缺碳表面的整个膜与经过FTM处理的膜相比具有较低的k值。
湿蚀刻速度试验表明氢等离子体处理开始于上表面并且经过该膜。经过氢等离子体处理的膜其蚀刻速度相当慢,低于经过FTM处理的膜,因此提供了明显的证据,证实处理的深度随着等离子体处理时间的增加而增加。
可以推测氢等离子体处理有效地将膜中的Si-CH3取代成Si-CH2-Si(通过氢离子和基团参加的中间反应),增加了导致增加折射率的Si-Si键。
权利要求
1.一种在基体上形成膜的方法,它包括(a)将基体定位在室中的载体上;(b)在存在等离子体的条件下,以气体或蒸汽形式向室中供应含硅有机化合物和一种氧化剂,从而在该基体上沉积一种膜;以及(c)固化该膜,从而在膜中保留含碳基团。
2.根据权利要求1的方法,其中该氧化剂是氧。
3.根据权利要求1或2的方法,其中该含硅有机化合物是一种烷基硅烷。
4.根据前面任意一个权利要求的方法,其中该含硅有机化合物是四烷基硅烷。
5.根据权利要求4的方法,其中该含硅有机化合物是四甲基硅烷。
6.根据权利要求1或2的方法,其中该含硅有机化合物是甲基硅烷。
7.根据权利要求3的方法,其中该含硅有机化合物是环己基二甲氧基甲基硅烷。
8.根据前面任意一个权利要求的方法,其中该膜沉积在位于低温载体上的基体上。
9.根据权利要求6的方法,其中该载体的温度为大约0~60℃。
10.根据权利要求6或7的方法,其中该载体大约30℃。
11.根据前面任意一个权利要求的方法,它还进一步包括在沉积该膜的过程中提供等离子体。
12.根据前面任意一个权利要求的方法,其中该固化膜的介电常数大约为2.55或更低。
13.用于在基体上形成膜的方法,该方法包括(a)将基体定位于室中的载体上;(b)在等离子体存在下,以气体或蒸汽形式向该室中供应四甲基硅烷和氧,从而在基体上沉积膜;以及(c)固化该膜,从而将含碳基团保留在该膜中。
14.根据前面任意一个权利要求的方法,它还包括由RF功率源提供等离子体,该功率源与基体载体相对的电极相连。
15.根据前面任意一个权利要求的方法,其中该基体载体在施加等离子体的过程中处于D.C.接地。
16.根据前面任意一个权利要求的方法,其中该膜是通过将其向含有H2的等离子体暴露而固化的,没有任何先前的退火或加热步骤。
17.根据权利要求16的方法,其中含有H2的等离子体基本上仅仅是H2等离子体。
18.根据权利要求16或17的方法,其中含有H2的等离子体处理持续30秒钟~30分钟。
19.根据权利要求16或17的方法,其中含有H2的等离子体处理持续1~10分钟。
20.根据权利要求16或17的方法,其中含有H2的等离子体处理持续不超过5分钟。
21.根据权利要求16或17的方法,其中含有H2的等离子体处理持续不超过10分钟。
22.根据权利要求16的方法,其中含有H2的等离子体与加热同时施加。
23.根据权利要求22的方法,其中基体被加热到大约400℃。
24.基本上如前所说参照附图和实施例的方法。
25.根据权利要求1的方法,膜的固化基本上由所沉积的膜的FTIR谱中除去水和/或OH峰。
26.一种用于在基体上形成膜的装置,该装置包括(a)定位于室中用于承载基体的载体;(b)用于在等离子体存在下以气体或蒸汽形式向该室中提供含硅有机化合物和氧化剂的装置,从而在该基体上沉积膜;以及(c)用于固化该膜的装置,使得含碳基团保留在该膜中。
27.根据权利要求26的装置,它还进一步包括用于改善基体上膜沉积均匀性的装置。
28.根据权利要求27的装置,其中用于改善均匀性的装置围绕喷管放置。
29.基本上如前所说并且如附图中所示的装置。
全文摘要
本发明涉及在基体上形成膜的方法和装置,该方法包括在存在等离子体的条件下,以气体或蒸汽形式向室中供应含硅有机化合物和一种氧化剂,从而在该基体上沉积一种膜以及固化该膜,从而在膜中保留含碳基团。在特定的实施方案中,该固化是通过将该膜向H
文档编号H01L21/31GK1316099SQ0080120
公开日2001年10月3日 申请日期2000年6月26日 优先权日1999年6月26日
发明者K·格勒斯, K·比克曼, C·D·道普森, J·马克尼尔, A·P·威尔拜 申请人:特利康控股有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1