压电元件的制作方法

文档序号:6849788阅读:205来源:国知局
专利名称:压电元件的制作方法
技术领域
本发明涉及具有一种由至少两种陶瓷层和一种布置在两种陶瓷层之间的电极层组成的叠片的压电元件,并涉及一种用于其制造的方法。
这样的压电元件因此包括多种的,尤其许多的层(多层元件);譬如可将它们在压电叠片中用作为执行元件,此时通过电压控制达到一种较高力的、惯性少的机械摆幅,或者可采用为弯曲元件,此时所述的电压控制引起一种较微小力的、高的机械摆幅,或者它们允许生成高的电压,或在相应的装置中用于检测机械振动,或用于生成声音振动。
迄今的技术解决方案主要基于一般分子式ABO3的钙钛矿(Perowskite)结构类型的陶瓷坯料,其中,所述的压电特性在铁电状态下起作用。通过某些添加剂改变的锆钛酸铅陶瓷Pb(Zr1-xTix)O3=PZT已证实为特别有利的,所述陶瓷的组成是按两种共存铁电相的、一种四方和一种菱形相的所谓的变晶相界调定的。借助丝网印刷安置的、譬如70/30克分子比的Ag/Pd贵金属内电极是位于按陶瓷薄膜工艺的典型方法制造的陶瓷层之间。在直至几百个的电极层上,所述的元件因此承担着可观的成本。所述的贵金属电极允许,在空气中通过解聚合作用和氧化而从多层叠片中热清除掉在陶瓷薄膜制造过程中所应用的分散剂和粘合剂、以及其它有机的添加剂、和同样还有丝网印刷金属膏泥的有机组成部分,使得随后在约1100至1150℃下实现烧结压缩,而譬如通过剩下的碳残余物决定的还原效应不起作用,这些碳残余物由于还原反应而负面影响陶瓷性能。
在如下文献中首先记录了对用La2O3或Nd2O3掺杂的Pb(ZrTi)O3陶瓷的分析研究,譬如,杂志American Ceramic Society Bulletin(美国陶瓷学会报告)43(12),113-118(1964)和Journal of the AmericanCeramic Society(美国陶瓷学会杂志)54,1-11(1971)中的G.H.Haertling的著作,以及B.Jaffe,W.R.Cook和H.Jaffe著的专题论文"压电陶瓷",Academic Press(科学出版社),伦敦和纽约(1971),以及Y.Xu.著的"铁电材料及其应用"Elsevier Science Publishers,阿姆斯特丹(1991)中。
La2O3或Nd2O3添加剂在晶体结构的Pb位置上诱发阳离子空位的形成,但此时首先在不充足的氧气分压下同时提高了起施主作用的趋势,这可以导致绝缘电阻的降低和电介损失的提高,即提高陶瓷对于还原的敏感性。它们同时稳定所述的四方相,并在极化时的场方向上促进磁畴定向的动力学,即通过这样的添加剂有利地影响所谓"软压电陶瓷"的对于应用目的所谋求的机电特性。为了促进烧结压缩和为了防止PbO从陶瓷中的蒸发损失,一般在称量组成上考虑一种微小的PbO过余量。在Journal of Electroceramic(电陶瓷学报)2(2),75-84(1998)中,M.Hammer和M.Hoffmann深入报导了,关于在设有3mol-%PbO过余量的Pb(Zr0.47Ti0.53)O3陶瓷中由La2O3掺杂的程度和烧结性能之间的联系,以及在与此相联系的结构形成和象耦合系数及介电常数、包括居里温度、铁电性能和因此甚至压电性能的上极限温度那样的机电特性之间的联系。
也曾考虑了具有氧化铋代替氧化铅的陶瓷坯料,譬如T.Takenaka,H.Nagata在第11届铁电应用国际研讨会的会议汇编,Montreux 1998,IEEE 98CH36245,559-562(1998)中的(Bi0.5Na0.5)TiO3-KNbO3-BiScO3,或已将Pb(TixZr1-x)O3与BiScO3和/或BiInO3组合。所有这些陶瓷以钙钛矿-混晶相为基础,当在存在着空气的条件下进行去粘合、即除去这种或这些粘合剂和烧结压缩时,这些钙钛矿-混晶相在与Ag/Pd内电极的组合中将产生一种对于作为压电叠片的应用目的而比较有利的特性。
在文献US 5 648 012中保护了一种其特征在于高的机电耦合系数的、一般组成式(Pb1-x-α-ySrxNaαMy)a[(NbbYcCrdCoeSbβ)fTigZr1-f-g]O3的压电陶瓷坯料,其中,M为La、Gd、Nd、Sm和Pr中的至少一种稀土金属,并列举了参数范围0.005≤x≤0.08,0.002≤y≤0.05,0.95≤a≤1.05,0.47≤b≤0.70,0.02≤c≤0.31,0.11≤d≤0.42,0.01≤e≤0.12,0.02≤f≤0.15,0.46≤g≤0.52,0≤α≤0.005,0≤β≤0.13,以及b+c+d+e+β=1.00。
同样,文献DE 9700463是基于一种PZT型的压电陶瓷粉以用于制造压电陶瓷多层元件的绿膜(Grünfolien),给这种压电陶瓷粉末添加直至1至5mol-%的不同价稀土金属的化学计算的过余量和附加1-5mol-%的氧化铅化学计算的过余量。在此文献中此外明确说明了,来自Ag/Pd内电极范围中的Ag+离子正好以这样的份额扩散到多层元件的陶瓷层中,使得通过不同价的掺杂形成的阳离子空位被占据,并以此方式产生一种充填的钙钛矿结构,譬如象Pb0.99Ag0.01La0.01[Zr0.30Ti0.36(Ni1/3Nb2/3)0.34]O3或Pb0.96Ag0.02Nd0.02(Zr0.54Ti0.46)O3。在后者的情况下产生一种具有可直至150C用途的比较高居里温度的压电陶瓷。也论证了,通过将银嵌入陶瓷中而有利地影响Ag/Pd内电极(70/30)和陶瓷之间的结合强度,以及烧结时的晶粒生长。
为了在基于PZT型陶瓷的这种压电陶瓷多层元件上避免成本负担的缺点,可以安排应用铜来代替昂贵的Ag/Pd内电极。热力学的数据证实,譬如在1000℃时在<10-7Pa的某种很低的氧气分压下不还原PZT陶瓷,并在这些条件下金属铜同时是稳定的,即不被氧化。
从文献US 5,233,260中公开了具有Cu电极的,可是不以单片结构方式实施的压电执行元件。更确切地说,分开烧结、并随后才堆垛和粘接所述的陶瓷层。所述的制造方法是相应地费事的。这些压电执行元件此外还有以下的缺点,所采用的粘合剂对电性能起着不利的作用。
通过Cao及助手在Journal of the American Ceramic Society(美国陶瓷社会学报)76(12)3019(1993)中的一种分析研究证实,这种论述也符合一种掺杂了施主的陶瓷,此时将Cu薄膜放到预制的陶瓷片Pb0.988(Nb0.024Zr0.528Ti0.473)O3之间,并在真空下使这样的多重的层状装置在1050℃下进行烧结。着重指出在陶瓷和Cu内电极之间的良好结合,并不出现象在空气中的Ag电极上所观察到的迁移效应。这样的方案却不符合如实现薄膜多层工艺那样的合理化制造的要求,并且不适合于批量生产。
Kato及助手在Ceramic Transactions(陶瓷学报)卷8,54-68页(1990)中,在具有Cu内电极的一般分子式(Pba-Cab)(Mg1/3Nb2/3)xTiy(Ni1/2W1/2)zO2+a+b(a+b>1,x+y+z=1)的陶瓷基础上,说明了具有Z5U技术规范的多层电容器的制造,此时它们应用一种氧化铜丝网印刷膏泥。在空气中的去粘合因此是可能的。因此回避了在氮气中在与金属铜相容的氧气分压下不可避免地出现的碳形成,而这种碳形成在随后的烧结压缩时会导致一种具有-其低共熔的熔点位于Ts=954℃的- Cu/Pb合金形成的陶瓷的还原降解作用。在去粘合之后,则在1000℃下在添加氢气的条件下在<10-3Pa的氧气分压下进行所述的烧结压缩,并在这些条件下所述的氧化铜被还原成铜。由于在氧化铜还原成铜时的收缩和由此产生的导致层离的趋势,所述的过程是易受干扰的,并且迄今没有在工艺方面转变成产品。
在文献DE 197 49 858 C1中,以具有一般组成(BaII1-yPby)6-xNd8+2x/3Ti18O54+zm-% TiO2+p m-%玻璃的陶瓷坯料为基础来制造具有Cu内电极的COG多层电容器时,在较微小PbO含量(0.6<x<2.1;0<y<0.6,0<z<5.5和3<p<10)的情况下,通过把水蒸汽馈入到在直至680℃温度时具有<10-2Pa氧气分压的氮气流中,达到有机组成部分的充分消除,并通过合适的玻璃料添加剂达到1000℃时的烧结压缩。在DE 19841487中曾成功地将所述的方法借用到无PbO的陶瓷BaII6-x(SmyNd1-y)8+2x/3Ti8O54+p重量-%玻璃料(1<x<2,0.5<y<1.0和3<p<1)的COG多层电容器上。
根据本发明,基于任意组成的压电陶瓷、尤其是基于PZT型钙钛矿陶瓷安排了以单片多层结构方式的具有含Cu内电极的压电陶瓷元件。此时,由既通过在A位置上嵌入阳离子,也通过由合适的其它阳离子或阳离子组合来置换B阳离子而造成的混晶形成来实现所述的改变,而且可以应用陶瓷薄膜技术的从多层电容器制造中公知的方法,以及具有譬如借助丝网印刷而交替放入的内电极的陶瓷层的共同烧结,所述的内电极由铜、或Cu与陶瓷或其它金属添加剂的混合物所制成。
这种压电陶瓷的多层元件譬如通过一种合适的过程控制可以实现为执行元件,此时在避免含Cu内电极氧化的条件下通过水蒸汽实施绿膜叠片的去粘合。以有利的方式已经在1000℃时,即在铜的熔融温度之下可以实施随后的成为单片多层元件的烧结压缩。
本发明的有利改进方案的特征是被分别给出的。
本发明的优点在于,应用含铜的内电极来代替迄今通常采用的、基于PZT陶瓷坯料的多层薄膜技术的Ag/Pd内电极,此时在惰性的条件下投入烧结压缩之前,如此成功地实现实际上完全的去粘合,即在去粘合时给惰性气氛输送充足的水蒸汽,并只允许使含Cu内电极未受损伤的某种氧气分压。因此创造了以下的前提,即在随后的烧结压缩过程中获得具有陶瓷的最佳特性值的压电执行元件,这些压电执行元件不逊于或甚至于还超过有关组成的、在相似条件下与含Cu内电极分开地或甚至在空气中所烧结的压电陶瓷层的那些压电执行元件。
如下一种元件是有利的,其中,在所述陶瓷的A位置上嵌入了阳离子,并且其中,通过合适的其它阳离子或阳离子的组合替代了B位置上的阳离子。譬如可以在所述陶瓷的A位置上嵌入两价的金属阳离子MII。这些两价的金属阳离子MII譬如可以选自一种含有钡、锶、钙、铜和铋的元素类组。对于所述陶瓷的A位置,考虑来自一种含有钪、铟和镧等元素类组的,或也来自镧系类组的两价金属阳离子MII。
此外可以在所述陶瓷的A位置上嵌入有利地选自一种含有银、铜、钠和钾元素的类组的一价阳离子。
除此之外也可能在A位置上嵌入两价金属阳离子MII和一价阳离子的组合。
此外一种元件是有利的,其中,为了部分置换在铁电钙钛矿陶瓷的B位置上的四价阳离子Zr和Ti,采用了组合具有MI=Na、K和MV=Nb、Ta的一和五价金属阳离子MI1/4MV3/4、或具有MII=Mg、Zn、Ni、Co和MV=Nb、Ta的二和五价金属阳离子MII1/3MV2/3、或具有MIII=Fe、In、Sc、重镧系元素和MV=Nb、Ta的三和五价金属阳离子MIII1/2MV2/3,或采用了组合具有MIII=Fe、In、Sc、重镧系元素和MVI=W的MIII2/3MVI1/3、或具有MII=Mg、Co、Ni和MVI=W的MII1/2MVI1/2。
此外,若所述陶瓷的成份对应于一般分子式Pb1-x-ySExCuyVx/2(Zr0.54-zTi0.46+z)O3,式中0.01<x<0.05和-0.15<z<+0.15以及0<y<0.06时,则是有利的,其中,SE是一种稀土金属,而V是一种空位,并且其中,调定了一种1至最多5mol-%的PbO过余量。
除此之外所述的陶瓷可以含有一种CuO的添加剂。
本发明包括以下的知识,即由于在譬如按组成PbII0.97NdIII0.02V″Pb,0.01(Zr0.54Ti0.46)O3(V″在这里意味着一种空位)的钙钛矿结构的A位置上形成阳离子空位,所以,所述通过譬如一种稀土金属的施主掺杂的基于PZT的压电陶瓷产生某种亲和力,在消除当量PbO份额时从内电极中吸收铜,而不破坏这些内电极,其中,后者的化合物起着烧结辅剂作用,并无论如何单独给所述的陶瓷添加了直至几个百分点的PbO。
通过铜离子的公知的流动性促进了烧结压缩,并通过铜迁移导致在电极层和陶瓷之间的坚固的粘接,使得以此途径有效防止层离。
有利的是,已经给压电叠片的所采用配方的初始混合物添加在界限0<y<0.15之内的少量CuO,这些压电叠片譬如以具有按一般分子式PbII1-x-ySEIIIxCuyVx/2(Zr0.54-zTi0.46+z)O3的Cu内电极的PZT为基础,式中0.005<x<0.05和-0.15<z<+0.15(SE=稀土金属)。在参数z与变晶的相界相应匹配时,象机电耦合系数的高值那样的压电性能特征可以保持不变。
根据以下的实施例和所属的五个附图来详述本发明。
将由TiO2、ZrO2、或一种通过混合沉淀制备的前体(Zr,Ti)O2和PbCO3、或Pb3O4和象La2O3的掺杂物、或稀土金属的一种另外的氧化物、和必要时CuO的添加剂所组成的原料混合物,在它的组成上调节到所述的变晶相界上、以及调节到一种最高5%的用于促进烧结压缩的PbO过余量上,为了组分在水状悬浮液中的均匀分布而进行一种磨碎阶段,并在过滤和干燥之后在900至950℃下焙烧。此时形成所述的压电陶瓷的钙钛矿混晶相。为了已经在铜熔化温度之下的1000℃时在2至4小时后达到烧结压缩,有必要精磨至<0.4μm的平均粒度。粉末的烧结活性则证明足以在同时足够的晶粒生长率和足够的机械强度情况下,在陶瓷组织中保证>96%的理论密度的压缩。
在采用分散剂的条件下将所述的精磨粉末悬浮成一种具有相当于约24容积-%的,约70m-%固体物含量的水状沉积物。此时,在一种试验系列中单独求出对于最佳的分散作用正好必要的分散剂份额,这可以在达到粘度最低值时识别。对于压电陶瓷的绿膜形成,给所述已分散的固体物粉末悬浮液添加约6m-%的热水解可降解的商用粘合剂。一种水状的聚氨酯分散作用已证明是有利的。在分散研磨机中混合,并通过此途径获得一种适合于薄膜拉伸过程的,或适合于制造喷射粒状产物的沉积物。
在含有水蒸汽的惰性气氛中,在一种满足含PbO或Bi2O3的压电陶瓷和铜共存条件的规定氧气分压下,可以将由粒状产物制造的片状压制件、或由40至50μm厚的未用Cu电极膏泥印刷的绿膜通过上下重叠和层压而获得的正方形多层小片"MLP"去粘合,直至300ppm的残余碳含量。
主要在220±50℃的很低的温度下,在大于200毫巴的水蒸汽分压下进行粘合剂的水解分解。将所述的氧气分压调定到一种与含Cu电极相容的值上。这通过在Cu的巨大表面上从气流中除去氧气,或通过加配H2来进行。它在去粘合期间通过在试样上的氧化而下降,但是所述的气流防止了损伤陶瓷。虽然只要通过电极层产生运走粘合剂的优选路径,所述的电极层便有助于去粘合,可是尤其对于具有160个电极(尺寸9.8*9.8*12.7mm3)的执行元件仍然需要可观的去粘合时间。
因此本发明实现具有多于100个内电极的执行元件的制造,这具有可达到的、高的执行元件摆幅的优点。
在表格1中,在说明所获得构件的剩下残余碳含量的情况下可以找到去粘合控制的实例。两种去粘合程序的水蒸汽的露点位于75℃上,水蒸汽的分压相当于405毫巴。
表格1陶瓷试样MLP和执行元件的去粘含
对于具有160个层的执行元件将在220℃时的停顿时间延长到40h(EK 2)。在此之后在所说明的烧结分布中,用300±30ppm的剩下的残余碳成功地实现陶瓷在1000℃时无有害还原降解作用的压缩。


图1展示在去粘合和烧结时的温度控制。同样说明了给氮气流按照75℃的露点输送的水蒸汽分压。
在这样的去粘合的PZT陶瓷试样上成功地实现在1000℃时的烧结压缩,而不导致陶瓷的还原降解作用。在通过Au电极的溅射的电接触之后,在具有约10.10mm2和0.7或2mm厚度尺寸的所获得试样上,测量介电的特性和专门测量压电的特性,并与在空气中去粘合的和在1130℃下烧结的相同几何尺寸的试样进行比较。
对于在空气中和在惰性条件下烧结不带具有成份PbII0.97NdIII0.02V0.01(Zr0.54Ti0.46)O3的内电极的陶瓷试样,其中,惰性条件相当于利用铜的共同烧结的要求,在表格2中汇总了电测量的结果,在表格3至5中汇总了极化试样的结果。附加地列出了在惰性条件下烧结时的CuO掺杂陶瓷坯料的特征值。
表格2正方形陶瓷试样MLP(边长1,厚度h)的特性试样(a)、(b)和(c)具有组成Pb0.97Nd0.02(Zr0.54Ti0.46)O3,试样(d)具有组成Pb0.96Cu0,02Nd0.02(Zr0.54Ti0.46)O3,(a)粉末预磨碎至平均粒度d50%=0.53μm,在1120℃下在空气中烧结;(b)、(c)和(d)粉末精磨至平均粒度d50%=0.33μm,(b)在1000℃下在空气中烧结,或(c)和(d)在1000℃下在N2/H2O蒸汽下烧结,
表格3具有按表格2所示组成的正方形陶瓷试样MLP(边长1,厚度h)在用1200V(a)或1400V((b)和(c)和(d))极化之后的特性。
所述的特性值证明,在排除空气下已去粘合和烧结的PZT陶瓷试样具有可比较的介电特性。
表格4的结果是基于借助阻抗测量桥进行的机电的振动测量,这些振动测量的分析可以从所述MLP试样每一种振动模式的、遵照fs=12π·1C1·L1......fp=12π·C0+C1C0·C1·L1]]>的振荡回路的并联和串联共振频率fp,fs中,并按照keff2=fp2-fs2fp2=C0+C1C0·C1·L1-C0C0·C1·L1C0+C1C0·C1·L1=C1C0+C1]]>计算有效的耦合系数。此时,C1/(C0+C1)说明了机械能量对总能量的比例。
表格4表格3的MLP试样对于两种基本振动的有效的,从每次3个MLP试样的测量中确定的压电耦合系数,在表格2中说明的条件(a)(b)和(c)下烧结。
在试样(c)上的居里温度测量得出一种339±2℃的值。
实际上对于在共同烧结条件下用铜制造的试样,得出位于在空气中所烧结的试样范围中的机电耦合系数。
在表格5中列出了在陶瓷试样MLP上的摆幅测量的结果。已平行于极性方向3-测量电压也沿其进行施加-确定了所述的摆幅Δh。在施加具有2000V/mm场强的电场E时,经感应的位移测量进行所述的摆幅测量。直接在这种测量之前已用在极性方向上的2000V/mm的场强施加在所述的试样上,以便排除由于在极化之后的积聚(Lagerung)而造成的补充极化效应和放大的磁滞。
从所测量的摆幅Δh除以试样厚度h中计算出陶瓷试样MLP的相对应变S。从中得出按定义方程的压电系数d33。
S3=d33*E3d33是一种所分析研究陶瓷的压电大信号特性的不依赖于几何尺寸的特征参数。
表格5具有按表格2成份的在施加2kV/mm电压时的正方形陶瓷试样MLP(边长l,厚度h)的摆幅测量。列出了电测量电压U、摆幅Δh和压电常数d33。
在具有Cu内电极的印刷情况下一种铜丝网印刷膏泥证明为有利的,这种铜丝网印刷膏泥具有一种约75m-%的尽可能高的金属含量,并用一种特别高聚合和因此高粘度的粘合剂来处理,这种粘合剂已经在涉及固体物含量的<2m-%时产生一种>2000mPa·s的尽可能触变的粘度。首先制备具有直至20个内电极的多层试样"VS"用于测试目的。从此出发,在第二步骤中构造具有100至300个Cu内电极的压电叠片,并在规定氧气分压的所述条件下在存在着水蒸汽时去粘合和烧结。
以一种厚度制备所述的压电陶瓷绿膜,在考虑烧结时典型为15%的线性收缩率的条件下,所述的厚度产生一种20至200μm的压电陶瓷厚度。在烧结之后所述的Cu电极具有一种1至3μm的层厚。
附图2以500倍(上部)和1000倍(下部)的放大倍率剖视地展示了一种具有PZT陶瓷薄膜和Cu内电极的交替序列的多层叠片的示意截面图。
附图3展示了在烧结基于所采用初始成份PbII0.97-yNd0.02CuyV″0.01(Zr0.54-zTi0.46+z)O3的压电叠片之后的,一种同样形成的压电陶瓷层的铜含量对层厚的测量曲线。可以看出,陶瓷层中的铜含量从边缘出发下降。在陶瓷层的中心,精整得出最小的数额y=0.001。在边缘上产生一种20倍的更高的值。在扩散入的铜离子的作用下从化合物中排挤出少许氧化铅。因此证实了Cu内电极与陶瓷的良好结合。
在表格6中说明了具有16个Cu内电极的初始成份Pb0.97Nd0.02V0.01(Zr0.54Ti0.46)O3的多层陶瓷构件在1000℃下烧结之后的电特性,和用于与Ag/Pd内电极(70/30)的在1120℃下在空气中烧结之后所进行的比较。
表格6基于初始成份PbII0.97NdIII0.02V″0.01(Zr0.54Ti0.46)O3的PZT多层陶瓷试样VS的电特性(a)粉末预磨碎,平均粒度d50%=0.53μm,20个内电极Ag/Pd(70/30),在1120℃下在空气中烧结,(c)粉末精磨,平均粒度d50%=0.33μm,16个Cu内电极,在1000℃下在N2/H2O蒸汽中在惰性条件下烧结。
由一种具有Cu内电极的PZT型陶瓷制造压电执行元件。
为了首先利用160个Cu内电极制造压电执行元件,按照对于多层陶瓷电容器公知的标准方法进一步处理40至50μm厚度的、按所述方法制造的绿膜。在采用商业Cu电极膏泥的条件下,采用压电执行元件常用的电极设计、并以丝网印刷技术(400网孔)机械式地印刷正方形的PZT陶瓷薄膜。用以下的方式进行堆垛,分别在两个未印刷的薄膜之后跟随一种已印刷的薄膜。在层压之后,通过冲裁或锯削从块中获得处于未成熟(grün)状态下的100个压电执行元件。
按照附图1中所示的温度时间图在加配水蒸汽和氢气条件下在氮气流中进行所述的去粘合,使得在500℃的范围中产生O2分压的5·10-2至2·10-1Pa的预先规定值。在去粘合期间局部出现小得多的氧气分压。所述的陶瓷在去粘合的温度范围中不经受还原的降解作用,因为由热力学决定地同样降低了平衡氧气分压,并在动力学上还足够阻碍了还原过程。在去粘合之后,多层压电执行元件的未成熟部分还具有300ppm碳的残余含量,并可以紧随其后在相同调定的气氛中烧结,而不出现还原的降解作用,所述的降解作用会导致裂纹形成、层离和最后由于形成低熔化的Cu/Pb合金而导致内电极的流出。
给所述的氮气流加配水蒸汽和氮氢混合气(N2+5%H2)。把遵照
的水蒸汽的离解用于调节某种氧气分压。因此,按照质量作用定理KD=p(O2)12·(H2)p(H2O)]]>在给定的温度下针对水蒸汽和氢气的规定分压比例而确定了某种氧气分压。来自热力学数据的计算得出附图5中所展示的不同H2/H2O浓度比例的曲线。
通常如此选择气体成份,使得产生在烧结温度T烧结时所要求的氧气分压。譬如在附图5中通过*来标志这种状态。从这种值出发,p(O2)随着下降的温度平行于其它的曲线。可这意味着,对于T<T烧结,所述的p(O2)值太低,这出于动力学的原因必要时是允许的。按表格7的气体控制曲线Cu1对应于这种方案。此时,取决于窄的热力学窗口,已经从约900℃起就低于Pb/PbO的平衡,由此在足够的动力学活化的情况下形成金属铅。
替代于此,在具有不同氮氢气体剂量的阶段中已按照气体控制Cu2来调节p(O2),氧气分压的实际曲线因此直至400℃还位于热力学窗口中。这种方案对于较低还原稳定性的PZT坯料是有利的。在表格7中说明了气体控制所采用的调节Cu1和Cu2。附图5展示了所述气体不同浓度比例的分压的计算曲线。
表格7气体控制Cu1和Cu2
所述的烧结分布如下最高温度时的仃顿时间位于2和12小时之间。以5K/min驶过加热斜坡段和冷却斜坡段,在执行元件上以1K/min缓慢加热。氧气分压的、以阶段进行匹配的调节与温度曲线一致地实现(附图5),这通过调节氮氢气体流量计来实现。此时,水蒸汽分压(100g/h)为常数。
所获得的陶瓷是密实烧结到>96%的,并表现出在很大程度上均匀的低孔隙度。烧结颗粒生长到一种对于压电特性有利的0.8-5μm的平均粒度。
人们获得完好无损的无裂纹的执行元件。在附图2中的一种剖视图中表示了内电极和PZT陶瓷层的序列。陶瓷组织中的平均粒度为d50=1.6±0.3μm。它因此位于一种有利于形成压电活性磁畴的范围中。
为了收尾,磨削和抛光所述的压电执行元件,并在露出内电极的范围中用一种对于这样的用途为商用的铜膏泥进行电接触,并在935℃下按一种给定的温度时间曲线焙烧。在借助通常的键合工艺安置金属丝之后,所述的压电执行元件可供电测量。
在附图4中再现了具有160个Cu内电极的极性PZT压电执行元件的摆幅曲线图。在70μm的PZT陶瓷层的厚度情况下,在施加相当于2008V/mm场强的140.6伏电压时产生一种0.123%的应变。在所施加场强d33方向上的压电系数为614.610-12m/V。
权利要求
1.以单片多层构造方式的、具有一种由至少两种陶瓷层和一种布置在两种陶瓷层之间的电极层组成的叠片的压电元件,其中,所述的电极层含有铜。
2.按权利要求1的元件,所述的元件由含有一种热水解可降解的粘合剂的陶瓷绿膜制成。
3.按权利要求2的元件,其中,所述粘合剂是一种聚氨酯分散剂。
4.按权利要求1至3之一的元件,其中,所述陶瓷层的密度具有理论上可达到密度的至少96%。
5.按权利要求1至4之一的元件,其中,所述的陶瓷层含有具有一种在0.8和5μm之间的粒度的颗粒。
6.按权利要求1至5之一的元件,所述的元件包括至少10种彼此重叠布置的电极层。
7.按权利要求1至6之一的元件,其中,所述的陶瓷层包括一种具有一般组成为ABO3的铁电的钙钛矿陶瓷。
8.按权利要求7的元件,其中,所述的钙钛矿陶瓷是PZT-类型Pb(ZrxTi1-x)O3的。
9.按权利要求7或8的元件,其中,在所述陶瓷的A位置上嵌入了阳离子,并且其中,通过合适的其它阳离子或阳离子的组合替代了B位置上的阳离子。
10.按权利要求9的元件,其中,在所述陶瓷的A位置上嵌入了两价的金属阳离子MII。
11.按权利要求10的元件,其中,所述的两价的金属阳离子MII选自一种含有钡、锶、钙和铜的元素类组。
12.按权利要求10的元件,其中,在所述陶瓷的A位置上部分地嵌入了选自一种含有钪、铟、铋和镧的元素类组的、或选自镧系类组的三价金属阳离子MIII。
13.按权利要求10的元件,其中,在所述陶瓷的A位置上嵌入了一价阳离子。
14.按权利要求13的元件,其中,所述的一价阳离子选自一种含有银、铜、钠和钾的元素类组。
15.按权利要求10和14的元件,其中,在所述陶瓷的A位置上嵌入两价金属阳离子MII和一价阳离子的组合。
16.按权利要求8的元件,其中,为了部分地置换在铁电钙钛矿陶瓷的B位置上的四价阳离子Zr和Ti,采用了组合具有MI=Na、K和MV=Nb、Ta的一和五价金属阳离子MI1/4MV3/4、或具有MII=Mg、Zn、Ni、Co和MV=Nb、Ta的二和五价金属阳离子MII1/3MV2/3、或具有MIII=Fe、In、Sc、重镧系元素和MV=Nb、Ta的三和五价金属阳离子MIII1/2MV2/3,或采用了组合具有MIII=Fe、In、Sc、重镧系元素和MVI=W的MIII2/3MVI1/3、或具有MII=Mg、Co、Ni和MVI=W的MII1/2MVI1/2。
17.按权利要求9的元件,其中,所述的组成对应于一般分子式Pb1-x-ySExCuyVx/2(Zr0.54-zTi0.46+z)O3,式中0.01<x<0.05和-0.15<2<+0.15以及0<y<0.06,其中,SE是一种稀土金属,而V是一种空位,并且其中,调定了一种1至最多5mol-%的PbO过余量。
18.按权利要求9至16之一的元件,其中,所述的陶瓷含有一种CuO的添加剂。
19.用于制造按权利要求1至18之一的元件的方法,具有以下的步骤a)通过堆垛和随后层压一些绿膜或电极层,制造含有粘合剂的陶瓷绿膜和电极层的一种叠片,b)在一种含有惰性气体和氧气的气氛中将所述的叠片去粘合,其中,通过添加一种适量的氢气或通过除气如此地降低所述的氧含量,使得不损伤所述的电极层。
20.按权利要求19的方法,其中,在一种在150和600℃之间的温度下进行所述的去粘合。
21.按权利要19或20的方法,其中,所述用于去粘合的气氛具有分压>200毫巴的氢气。
22.按权利要19至21之一的方法,其中,在低于铜熔点的温度下,在去粘合之后烧结所述的层叠片,其中,将一种含有氮气、氢气和水蒸汽的气氛用于所述的烧结,并且其中,通过一种合适的氢气浓度如此调定所述的氧气分压,使得不超出Cu/Cu2O平衡的平衡分压。
23.按权利要求22的方法,其中,为2至12小时之间的持续时间维持一种最高温度。
全文摘要
本发明涉及一种其电极层含有铜的压电元件。通过一种借助水蒸汽进行的去粘合过程实现铜在电极层中的应用。
文档编号H01L41/273GK1409876SQ00817221
公开日2003年4月9日 申请日期2000年12月15日 优先权日1999年12月16日
发明者A·菲尔茨, S·冈斯伯格, H·弗洛里安, H·卡斯特尔 申请人:埃普科斯股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1