衬底处理装置和半导体器件的制造方法

文档序号:6930368阅读:141来源:国知局
专利名称:衬底处理装置和半导体器件的制造方法
技术领域
本发明涉及一种升华氧化锑(Sb2O3)等原料后提供给半导体衬底等衬底的衬底处理装置和半导体器件的制造方法。
背景技术
图7是表示现有的衬底处理装置的示意剖面图。如图所示,在外套管1的外侧设置加热器2,在外套管1的内侧设置内套管3,在内套管3内插入可升降的盖4,在盖4上装载端口(port)5,在端口5内保持多个半导体衬底(未图示)。另外,在外套管1、内套管3的外部、即炉外设置原料升华装置6,在原料升华装置6上连接原料导入管7的一端,原料导入管7的另一端位于内套客3的上部,原料导入管7与内套管3的内部连通。在内套管3的下部设置排气管8。
在该衬底处理装置中,在加热器2加热保持在端口5上的半导体衬底的同时,向原料升华装置6中投入氧化锑粉末并加热时,氧化锑升华,通过原料导入管7将氧化锑的蒸气提供给半导体衬底的表面,在半导体衬底内扩散氧化锑。之后,排出气体由盖4冷却,从排气管8排出。
图8是表示特公平6-28248号公报所示的另一现有衬底处理装置的示意剖面图,图9是图8的A-A线的放大剖面图。如图所示,副炉芯管12连接在主炉芯管11上,在主炉芯管11的外部设置主炉芯管用加热器13,在副炉芯管12的外部设置副炉芯管用加热器14,在副炉芯管12和副炉芯管用加热器14之间设置均热用管15,在主炉芯管11内装载半导体衬底16,在副炉芯管12内设置杂质端口17。
在该衬底处理装置中,在主炉芯管用加热器13加热半导体衬底16的同时,在杂质端口17上装载氧化锑粉末,通过副炉芯管用加热器14加热氧化锑粉末时,氧化锑升华,将氧化锑的蒸气提供给半导体衬底16的表面,在半导体衬底16内扩散氧化锑。
但是,在图7所示的衬底处理装置中,在原料导入管7和原料升华装置6的连接部分,为了维持气密性而通过O型圈等密封部件连接,但由于O型圈的耐热性问题(通常约为100-300℃),冷却O型圈的周边,所以在后续部附近,原料的升华温度总会要下降。因此,由于该连接部分的温度低,所以在该部分氧化锑再固化,作为反应生成部而附着,因此不能向半导体衬底的表面提供氧化锑的蒸气。
另外,在图8、图9所示的衬底处理装置中,通过配置在副炉芯管12外部的副炉芯管用加热器14加热升华作为原料的氧化锑,但因为该加热器14被配置在炉外,所以原料与该加热器14分离设置。并且,由于原料与该加热器14之间有副炉芯管12和均热用管15等多个物品的影响,有升华控制性变差的可能。
并且,在图8、9的现有实例中,呈横向配置炉芯管的所谓横型装置的装置形态,所以在不影响炉内温度的状态下,即使主炉芯管11和副炉芯管12分离(即炉芯管变长),也可以仅考虑设置装置的无尘室的平面面积;而在图7的现有实例的状态下,即使不设置使用O型圈的连接部,也可连通装载衬底的主炉芯管11和原料升华空间。但是,在当前以半导体器件的制造线为主流的图7所示纵型装置(即在垂直方向配置反应管)的情况下,由于存在限制设置装置的无尘室的高度的问题,如图7所示,炉芯管的长度也不单纯在垂直方向上变长。

发明内容
为了解决上述问题,本发明的目的在于提供可靠地向衬底提供原料蒸气的衬底处理装置和半导体器件的制造方法。
为了实现该目的,在本发明的衬底处理装置中,具有衬底加热用的主加热器,由该主加热器加热处理反应室内的衬底,在所述反应室内设置升华用加热器和装载原料的原料升华部,所述升华用加热器设置在所述原料升华部的附近,通过所述升华用加热器来加热所述原料,使之升华。
此时,作为所述原料升华部和衬底处理区域之间,也可以在所述反应室内设置隔热部。
此时,也可以设所述升华用加热器的加热温度超过原料升华温度的温度。
此时,也可以在所述主加热器的温度达到处理所述衬底时的温度后,控制所述主加热器和升华用加热器,使所述升华用加热器的温度达到升华所述原料时的温度。
此时,也可以在达到所述原料升华温度的时刻,控制所述主加热器和升华用加热器,使所述衬底的温度达到处理温度。
此时,所述升华用加热器包含基板和加热元件,也可以在所述基板的上面装载防止金属污染用的感受器。
另外,在该制造半导体器件的方法中,进行以下工序即在反应室内用主加热器来加热衬底的工序;将输运气体导入所述反应室内的工序;通过设置在所述反应室内的升华用加热器来升华装载在所述反应室内的原料的工序;向衬底扩散所述升华原料的工序。
此时,在所述制造半导体器件的方法中,也可以具有将所述升华的原料越过设置在原料升华区域和衬底处理区域之间的隔热部提供给所述衬底处理区域的工序。
此时,在所述升华工序中,也可以将所述升华用加热器的加热温度设为超过所述原料升华温度的温度。
此时,在所述升华工序中,也可以在所述主加热器的温度达到处理所述衬底时的温度后,使所述升华用加热器的温度达到升华所述原料时的温度。
此时,也可以在通过所述升华工序达到所述原料升华温度的时刻,所述衬底的温度达到处理温度。


图1是表示本发明的衬底处理装置的示意剖面图;图2是表示图1所示衬底处理装置的一部分的剖面图;图3是表示图1所示衬底处理装置的一部分的剖面图;图4是表示图1所示衬底处理装置的一部分的立体图;图5是表示图1所示衬底处理装置的一部分的立体图;图6是表示氧化锑在形成于半导体衬底表面上的膜内扩散时的加热器加热温度变化的图线;图7是表示现有的衬底处理装置的示意剖面图;图8是表示现有的其它衬底处理装置的示意剖面图;图9是图8的A-A线的放大剖面图。
具体实施例方式
图1是表示本发明的衬底处理装置的示意剖面图,图2是表示图1所示衬底处理装置的一部分的剖面图,图3是表示图1所示衬底处理装置的一部分的剖面图,图4是表示图1所示衬底处理装置的一部分的立体图,图5是表示图1所示衬底处理装置的一部分的立体图。如图所示,在由SiC构成的外套管(均热管)21的外侧设置衬底加热用的主加热器22,在外套管21的内侧设置由石英构成的筒状内套管(反应管)23,在内套管23内插入可升降的由石英构成的盖24,在盖24上装载端口25,在端口25上保持多个半导体衬底(未图示)。另外,在盖24上设置原料升华部46和隔热部36,在盖24内可拆装地安装加热部45。另外,在加热部45的由陶瓷构成的基板27上设置加热元件28,由基板27和加热元件28构成的升华用加热器26位于内套管23的内侧、即反应室内。另外,在基板27的上面设置由SiC构成的感受器29,通过绝缘体32将与加热元件28连接的加热端子30支撑在加热部45的连接凸缘31上。并且,设置测定升华用加热器26的加热温度用的热电偶33,并将热电偶33支撑在连接凸缘31上。在升华用加热器26的上部设置原料升华部46的原料装载板34(石英),在原料装载板34的外周部设置多个柱材35(石英),原料装载板34的上部空间(即原料升华空间)与衬底处理区域、即与内套管23内的半导体衬底存在的区域连通。由此,因为原料的升华用加热器26在与原料同一的空间内(即反应室内)且位于附近,所以可提高原料升华的控制性。在柱材35上支撑隔热部36,隔热部36位于原料升华部46和衬底处理区域之间,隔热部36在由石英构成的箱状部件内装入石英织物。在此,衬底处理区域和原料升华部46位于内套管23内,但由于衬底处理区域和原料升华部46之间存在隔热部36,所以为了防止对衬底处理区域的温度影响,衬底处理区域和原料升华部46的间隔即使不取得过大,也可以防止对原料升华部46的热影响。因此,即使反应管的长度不十分长(换言之,即使衬底处理区域和原料升华部46很接近),也不会影响原料的升华控制,从而可以实现抑制装置高度增加的紧凑装置。在内套管23的下部连接气体导入管37,在内套管23的外套管连接部38上设置排气缝隙39,在内套管23的外部和外套管连接部38的下部设置排气环40,通过排气缝隙39连通内套管23的内部和排气环40,在排气环40上连接排气管41。在外套管连接部38的上面设置环状的槽42,在槽42的底部设置开口的氮气(N2)导入管43,在内套管23和盖24之间设置O型圈44。另外,如上所述,虽然外套管21由具有作为均热管功能的SiC构成,但SiC在有温度差时容易破裂,且加工困难,所以将外套管21配置在由主加热器22包围的区域(均热空间)内。对于构成排热部的排气环40等而言,设置在比SiC容易加工的石英构成的内套管23内。
因为将原料设置在作为与衬底同一空间的内套管23的下部,所以升华后的原料气体必须从内套管23的下部向上方流动,但通过内套管、外套管的上述结构,可以实现没有破损等问题的气体的流动。
下面说明图1-图5所示衬底处理装置的动作、即本发明的半导体器件的制造方法。首先,在将作为原料的氧化锑粉末47装载在原料装载板34上的状态下,将装载端口25的盖24插入内套管23内。接着,通过主加热器22将保持在端口25上的半导体衬底加热到规定温度,并从气体导入管37提供输运气体,由升华用加热器26加热氧化锑粉末47。此时,氧化锑升华,向半导体衬底的表面提供氧化锑的蒸气,氧化锑在半导体衬底的表面上扩散。此时,从气体导入管37导入的气体在内套管23中上升,在内套管23的上端折回180℃,并在内套管23和外套管21之间流动,通过排气缝隙39、排气环40从排气管41排出。当通过氮气导入管43向槽42提供氮气时,可防止排出气体从外套管21和内套管23之间泄漏。
图6是表示氧化锑在形成于半导体衬底表面上的膜内扩散时的加热器加热温度变化的图线,(a)表示主加热器22的加热温度变化,(b)表示升华用加热器26的加热温度变化。从该图表可知,主加热器22、升华用加热器26的加热温度分别从900℃、455℃的状态开始,同时使主加热器22、升华用加热器26的加热温度上升,在主加热器22的加热温度为1200℃时,升华用加热器26的加热温度达到775℃。另外,在升华用加热器26的加热温度达到作为氧化锑的升华温度的656℃时,主加热器22的加热温度必须为1200℃。即,在达到原料升华温度的656℃的时刻,若半导体衬底的温度达到扩散温度(处理温度),则可对膜质进行良好处理。另一方面,不管原料的升华是否开始,若半导体衬底未达到扩散温度,则不能进行良好的扩散处理。另外,主加热器22的加热温度在1200℃下保持45分钟,升华用加热器26的加热温度在775℃下保持25分钟,同时降低主加热器22、升华用加热器26的加热温度,当主加热器22的加热温度返回到900℃时,升华用加热器26的加热温度返回到455℃。此时,当主加热器22的加热温度保持在1200℃时,从气体导入管37提供作为输运气体的流量为2l/min的氩气(Ar),在此以外的时间内,从气体导入管37提供流量为10l/min的氮气。
在这种衬底处理装置、半导体器件的制造方法中,升华并变为蒸气的氧化锑移动到内套管23内并到达半导体衬底的表面,所以不会冷却氧化锑的蒸气,另外,氧化锑不会作为反应生成物附着在内套管23的内面等上,可以可靠地向半导体衬底的表面提供氧化锑蒸气。另外,由于在接近反应室原料的状态下设置升华用加热器26,所以可以可靠地进行原料升华部46的温度控制。因为在原料升华部46和衬底处理区域之间设置隔热部36,所以可防止由主加热器22使原料升华部46的温度受到影响。因为将在半导体衬底的表面上扩散氧化锑时的升华用加热器26的加热温度控制为氧化锑升华温度以上的温度,例如,即使在到达衬底处理区域之前存在较低温度的隔热部36,也可以更可靠地向半导体衬底表面提供氧化锑蒸气。即,将升华用加热器26控制在650-850℃的范围内,在比升华温度656℃高的温度下(图6的实例中为775℃)进行控制。这是因为为了抑制对原料升华部46的衬底处理区域的温度影响而配置隔热部36,所以以隔热部36为基点,原料升华部46侧的温度变低,由于有可能发生原料好不容易升华,在该低温部分再硬化的问题,所以最好在比升华温度高的温度下控制升华用加热器26。另外,因为感受器29设置在基板27的上面,所以可防止来自加热元件28的金属污染。
另外,在污染不成问题的情况下,也可不设置感受器29。
在上述实施例中,虽然说明了原料为氧化锑的情况,但在其它的原料情况下也可适用本发明。并且,在上述实施例中,虽然在半导体衬底表面上扩散氧化锑时的主加热器22的加热温度为1200℃,但期望向衬底提供氧化锑蒸气时的主加热器的加热温度为1150℃以上。
在本发明的衬底处理装置、半导体器件的制造方法中,由于原料蒸气不会冷却,所以可以可靠地向衬底表面提供原料蒸气。
作为原料升华部和衬底处理区域之间、在反应室内设置隔热部时,可以防止因主加热器原料升华部的温度而受到影响。
当升华用加热器的加热温度设为超过原料升华温度的温度时,可以更可靠地向衬底表面提供原料蒸气。
权利要求
1.一种衬底处理装置,其具有衬底加热用的主加热器,由该主加热器加热处理反应室内的衬底,其特征在于在所述反应室内设置升华用加热器和装载原料的原料升华部,所述升华用加热器设置在所述原料升华部的附近,通过所述升华用加热器来加热所述原料,使之升华。
2.如权利要求1所述的衬底处理装置,其特征在于在所述原料升华部和衬底处理区域之间的所述反应室内设置隔热部。
3.如权利要求2所述的衬底处理装置,其特征在于设所述升华用加热器的加热温度为超过原料升华温度的温度。
4.如权利要求1所述的衬底处理装置,其特征在于在所述主加热器的温度达到处理所述衬底时的温度后,控制所述主加热器和升华用加热器,使所述升华用加热器的温度达到升华所述原料时的温度。
5.如权利要求1所述的衬底处理装置,其特征在于在达到所述原料升华温度的时刻,控制所述主加热器和升华用加热器,使所述衬底的温度达到处理温度。
6.如权利要求1所述的衬底处理装置,其特征在于所述升华用加热器包括基板和加热元件,在所述基板的上面装载防止金属污染用的感受器。
7.一种半导体器件的制造方法,其特征在于,具有在反应室内用主加热器来加热衬底的工序;将输运气体导入所述反应室内的工序;通过设置在所述反应室内的升华用加热器来升华装载在所述反应室内的原料的工序;向衬底扩散所述升华原料的工序。
8.如权利要求7所述的半导体器件的制造方法,其特征在于还具有将所述升华的原料越过设置在原料升华区域和衬底处理区域之间的隔热部提供给所述衬底处理区域的工序。
9.如权利要求7所述的半导体器件的制造方法,其特征在于所述升华工序中,将所述升华用加热器的加热温度设为超过所述原料升华温度的温度。
10.如权利要求7所述的半导体器件的制造方法,其特征在于所述升华工序中,在所述主加热器的温度达到处理所述衬底时的温度后,使所述升华用加热器的温度达到升华所述原料时的温度。
11.如权利要求7所述的半导体器件的制造方法,其特征在于在通过所述升华工序达到所述原料升华温度的时刻,所述衬底的温度达到处理温度。
全文摘要
本发明提供一种可以可靠地向衬底提供原料蒸气的衬底处理装置和半导体器件的制造方法。该装置在外套管21的外侧设置衬底加热用的主加热器22,在外套管21的内侧设置内套管23,在内套管23内插入可升降的盖24,在盖24上装载端口25,在盖24内设置原料升华部46和隔热部36,在盖24上可拆装地安装加热部45,使加热器45的升华用加热器26位于反应室内,在升华用加热器26的上部设置原料升华部46的原料装载板34,在原料装载板34的外周部设置多个柱材35,在柱材35上支撑隔热部36,使隔热部36位于原料升华部46和衬底处理区域之间,在隔热部36内装入石英织物。
文档编号H01L21/225GK1397985SQ0212863
公开日2003年2月19日 申请日期2002年7月12日 优先权日2001年7月12日
发明者谷山智志, 远目塚幸二, 柳川周作 申请人:株式会社日立国际电气, 索尼公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1