高频电路器件的制作方法

文档序号:7187674阅读:204来源:国知局
专利名称:高频电路器件的制作方法
技术领域
本发明涉及以谐振器作为基本结构的高频电路器件,该谐振器用作为通信系统等的高频信号处理装置中使用的滤波器、分波器等。
作为现在使用的谐振器滤波器的高频电路器件,主流为使用介质谐振器的器件、使用传输线构造的器件以及使用表面弹性波元件的器件等。其中,使用传输线构造的器件体积小,能够适用于达到微波、毫米波的高频,进而由于是在基板上形成的二维构造,易于和其它电路及元件的组合,故被广泛应用。以往,作为这种类型的谐振器,最一般地利用基于传输线的1/2波长谐振器,进而,通过把多个该1/2波长谐振器连接起来,构成滤波器等高频电路器件(特开平5-267908号公报)。
然而,在1/2波长谐振器等传输线构造的谐振器中,由于导体中的高频电流集中在一部分上,故由导体的电阻引起的损失较大,导致谐振器中Q值恶化,在构成了滤波器时导致损失的增加。还有,在使用通常广泛利用的微波带线路构造的1/2波长谐振器时,还存在从电路向空间的幅射引起的损失的问题。
若把构造小型化或提高工作频率,则这些影响会更显著。作为损失较小的大功率的谐振器,使用介质谐振器。然而,由于介质谐振器具有立体构造而且尺寸大,故在高频电路器件小型化方面存在问题。
还有,通过在使用传输线构造的高频电路器件的导体中使用直流电阻为零的超导体,有可能谋求高频电路的低损失化及提高高频特性。在以往的金属系列超导体的情况下,需要10°K左右的极低温环境,而伴随着高温氧化物超导体的发现,有可能在比较高的温度(77°K左右)下利用超导现象,故而研究了使用这些高温超导材料的传输线构造的器件。然而,上述以往构造的器件中,由于因电流的过度集中而丧失超导性,因此难于利用大电流的信号。
为此,本发明通过使用由在基板上形成的导体构成的、以无简并的正交的2个偶极子模型作为谐振模式的谐振器,实现了导体电阻损失小, Q值高的小型传输线型高频电路元件。
在此,说明“无简并、正交的2个偶极子模型”。在通常的圆板型谐振器中,把在沿圆板周边各一个位置上分布正、负电荷的谐振模型称为“偶极子模型”,这里也采取同样的名称。在考虑了二维形状时,该任意的偶极子模型分解为电流流动方向正交的相互独立的2个偶极子模型。在谐振器的形状完全圆形的情况下,正交的2个偶极子模型的谐振频率相同。这时,2个偶极子模型的能量相同,故能量简并,一般在具有任意形状的谐振器的情况下,由于这些独立模型的谐振频率不同,故能量不简并。例如,考虑了椭圆形状的谐振器的情况下,正交的相互独立的2个偶极子模型分别朝向椭圆的长轴和短轴方向。而且,两模型的谐振频率分别由椭圆的长轴和短轴的长度决定。所谓“无简并正交的2个偶极子模型”,例如就是椭圆形状的谐振器中的这种谐振模型。如果使用具有这样以无简并的正交的2个偶极子模型作为谐振模型的谐振器,则通过分别利用两模型,虽然是1个谐振器却能起到谐振频率不同的2个谐振器的功能,因此能够有效利用谐振器电路的面积,即谋求谐振器的小型化。还有,若使用该谐振器,则由于2个偶极子模型的谐振频率不同,故几乎不产生两模型间的耦合,较少招致谐振作用的不稳定性和Q值的恶化等。还有,因为有这样的高Q值,所以导体电阻损失也小。
然而,一般对于使用了薄膜状电极图形的传输线构造的谐振器,无论是否使用超导体,由于是在基板上形成的二维构造,故产生在将传输线构造制成模板图形时因图形尺寸误差而引起的器件特性的离散(例如,中心频率的偏移等)。还有,在使用了超导体的传输线构造的谐振器的情况下,除去由图形尺寸误差等引起的器件特性的离散的问题之外,还存在作为超导体特有的课题的器件特性随温度变化及输入功率而改变的问题。为此,需要调整由图形尺寸误差等引起的器件特性的离散以及因温度变化和输入功率引起的器件特性的变化。
作为调整器件特性的机构,已知有公开于特开平5-199024号公报中的机构。公开于该公报中的调整机构具备这样的结构,即在具有超导谐振器和超导接地电极的高频电路器件内,在可能侵入产生流过谐振电路的高频电磁波的电磁场内的状态下,配置导体片、介质片或磁性片。依据该结构,通过把导体片、介质片或磁性片接近或远离超导谐振器,能够容易地调整器件特性之一的谐振频率。
然而,在上述特开平5-1990 24号公报公布的高频电路器件中,由于超导谐振器的形状是完全的圆形,故正交的2个偶极子模型的谐振频率相同。从而,不能够分别利用两模型,不能够同时谋求超导谐振器以及高频电路器件的小型化。
本发明为解决以往技术中的上述课题,以提供在导体电阻损失小和Q值高的小型传输线型高频电路器件中、能够修正图形尺寸误差等并能调整器件特性的高频电路器件为目的。另外,本发明的目的还在于提供在作为谐振器使用超导体时能够抑制温度变化及输入功率引起的器件特性的波动或能够调整器件特性的高频电路器件。
还有,在上述本发明的第1结构中,形成谐振器的基板和形成输入输出端子的基板最好使形成上述谐振器的基板面和形成上述输入输出端子的基板面相对平行地配置。
还有,在上述本发明的第1结构中,最好是使形成了谐振器的基板成形为圆板状,使形成了上述谐振器的基板嵌合在设置在形成了输入输出端子的基板上的断面为圆形的孔中。
还有,在上述本发明的第1结构中,最好进一步具备使形成了谐振器的基板和形成了输入输出端子的基板的相对位置变化的机构。
还有,在上述本发明的第1结构中,最好进一步具备使形成输入输出端子的基板相对于垂直于形成了谐振器的基板的旋转轴的周围旋转的机构。
还有,在上述本发明的第1结构中,电导体最好具有光滑的轮廓形状。
还有,在上述本发明的第1结构中,电导体最好具有椭圆形状。
还有,在上述本发明的第1结构中,最好具有从微带线路构造、带状线路构造及平面波导构造中选出的构造。
还有,本发明的高频电路器件的第2结构由形成在基板上的电导体构成,包括作为谐振模型具有无简并的正交的2个偶极子模型的谐振器;以及在上述谐振器的外周上耦合的输入输出端子,其特征在于在面对上述谐振器的位置上配置介质、磁性体或导体。
还有,在上述本发明的第2结构中,最好具备使谐振器和介质、磁性体或导体的相对位置变化的机构。
还有,在上述本发明的第2结构中,最好在介质的表面上形成谐振器。
还有,在上述本发明的第2结构中,电导体最好具有光滑的轮廓形状。
还有,在上述本发明的第2结构中,电导体最好具有椭圆形状。
还有,在上述本发明的第2结构中,最好具有从微带线路构造、带状线路构造及平面波导构造中选出的构造。
另外,本发明的高频电路器件的第3结构由形成在基板上的超导体构成,包括作为谐振模型具有无简并的正交的2个偶极子模型的谐振器;以及在上述谐振器的外周上耦合的输入输出端子,其特征在于在与上述谐振器的周缘部分接触的状态下设置着导电性薄膜。
还有,在上述本发明的第3结构中,导电性薄膜最好是由含有从金、银、铂、钯、铜及铝中选出的至少1种金属的材料、或者由把从金、银、铂、钯、铜及铝中选出的至少2种金属迭层而形成的材料构成。
还有,在上述本发明的第3结构中,超导体最好具有光滑的轮廓形状。
还有,在上述本发明的第3结构中,超导体最好具有椭圆形状。
还有,在上述本发明的第3结构中,最好具有从微带线路构造、带状线路构造及平面波导构造中选出的构造。
若依据上述本发明的第1结构,由于是由电导体构成的、具备作为谐振模型具有无简并的、正交的2个偶极子模型的谐振器和输入输出端子的高频电路器件,而且具有在各个基板上分别形成上述谐振器和上述输入输出端子的至少一方的特征,故通过改变形成了谐振器的基板和另一方基板的相对位置,能够使输入输出端子和谐振器实现最佳高频耦合。另外,通过相对地改变各个输入输出端子对于谐振器的耦合位置,能够使一对输入输出端子和2个正交模型的各自的耦合强度发生变化,能够调整谐振器工作的中心频率。其结果,在高频电路器件做成后能够调整在制作传输线构造的模板图形时因图形尺寸误差等而引起的器件特性的离散(例如,中心频率偏移等),能够实现高性能的高频电路器件。在这种情况下,由于能够由机械的位置修正进行器件特性的调整,因此,能够使高频电路器件边工作边进行器件特性的调整。其结果,与微调谐振器图形相比,可以使调整实用化。另外,若把输入输出端子的一方形成在已形成了谐振器的基板上,则改变一方输入输出端子的输入输出耦合点和另一方输入输出端子的输入输出耦合点的间隔也能够调整器件特性。
还有,在上述本发明的第1结构中,若依据形成了谐振器的基板和形成了输入输出端子的基板平行配置从而使得形成上述谐振器的基板面和形成上述输入输出端子的基板面相对的理想例,则输入输出端子和谐振器的耦合良好。
还有,在上述本发明的第1结构中,若依据形成谐振器的基板被形成圆板状、形成上述谐振器的基板嵌合到设置在形成输入输出端子的基板上的断面为圆形的孔中的理想例,则能够谋求器件的小型化。
还有,在上述本发明的第1结构中,若依据电导体具有光滑轮廓形状的理想例,则由于不存在高频电流部分地过度集中,信号电磁波向空间幅射的现象,因此可以抑制因幅射损失增大引起Q值降低,其结果,可得到高Q(无负载Q)值。还有,由于高频电流二维地广泛分布,故能够把用相同的功率的高频信号进行谐振时的最大电流密度压低,因此,在处理大功率的高频信号时,也能够防止发热等引起导体材料恶化等的因高频电流过度集中引起的恶劣影响,其结果,能够处理更大功率的高频信号。
还有,在上述本发明的第1结构中,若依据电导体具有椭圆形状的理想例,则能够容易地实现以无简并的、正交的2个偶极子模型作为谐振模式的谐振器。
还有,在上述本发明的第1结构中,若依据具有从微波带线路构造、带状线路构造及平面波导构造选出的构造的理想例,则具有以下优点,即,微波带线路构造其构造简单并且和其它电路的匹配性也好。还有,带状线路构造由于幅射损失极小,故可得到损失小的高频电路器件。另外,平面波导构造由于能够在基板单面上制成含有接地面的全部构造,故可以简化制做过程,同时在把难于形成在基板两面上的高温超导薄膜作为导体材料使用时特别有效。
还有,若依据上述本发明的第2结构,由于是由形成在基板上的电导体构成的、具备作为谐振模型具有无简并的、正交的2个偶极子模型的谐振器以及在上述谐振器的外周上耦合的输入输出端子的高频电路器件,而且具有在与上述谐振器相对的位置上配置介质、磁性体或导体的特征,所以能够起到以下那样的作用。即,如果在谐振器的附近配置介质或磁性体,则谐振器周围的电磁场分布发生变化。从而,通过使介质或磁性体与基板的相对位置变化,能够调整谐振器工作的中心频率等的频率特性。其结果,和上述本发明的第1结构的情况相同,在高频电路器件制作后能够调整在制作传输线构造的模板图形时因图形尺寸误差等而引起的器件特性的离散,能够实现高性能的高频电路器件。
还有,在上述本发明的第2结构中,若依据在介质表面形成谐振器的理想例,由于各个谐振器与输入输出端子电气耦合,因此能够起到陷波滤波器和带通滤波器的作用。
还有,若依据本发明的第3结构,由于是由形成在基板上的超导体构成的、具备作为谐振模型具有无简并的、正交的2个偶极子模型的谐振器和在上述谐振器的外周上耦合的输入输出端子的高频电路器件,而且具有在与上述谐振器的周缘部分接触的状态下设置导电性薄膜的特征,因此具有以下那样的作用。即,磁场侵入长度、动态电感等的超导体的种种特性是温度的函数,这些特性,特别是在转移温度Tc近傍的温度区域中,对于微小的温度变化也要产生很大的变化,在高频应用中,这些值成为使频率特性变化的主要原因。由于磁场侵入长度决定谐振器周缘部分的电流分布,故需要抑制温度变化或减少对于温度波动的周缘部分内的电流分布变化。在此,相对于构成问题的产生温度波动的温度变化,金属等导电材料的特性变化几乎能够忽略。从而,如果在接触谐振器周缘部分的状态下设置导电性薄膜,则减少了温度波动给予高频特性的影响。另外,在处理大功率高频信号时,大电流流过谐振器的周缘部分,而如果像这样在谐振器的周缘部分形成导电薄膜,则由于流过谐振器(超导体)的周缘部分的电流的一部分流过导电性薄膜,故能够部分避免因超导体失去超导性而返回到常导状态的功率条件。若在超导体上使之接触导电性材料,则虽然增大高频损失,但由于谐振器的中心部分上不存在导电性材料,故其影响被抑制为最小。另外,在由于某些原因失去超导体的超导性而成为常导状态时,由于高频功率流过导电性薄膜,故可以抑制极端的特性恶化。
还有,在上述本发明的第3结构中,若依据导电薄膜由含有从金、银、铂、钯、铜及铝中选出的至少1种金属的材料,或者把从金、银、铂、钯、铜及铝中选出的至少2种金属迭层形成的材料构成的理想例,则可得到良好的传导性,有利于对高频的应用。还有,由于化学性能稳定,反应性低,对其它材料的影响小,故在与种种材料,特别是超导材料接触而形成时是有利的。
图2(a)是示出本发明的高频电路器件第2实施例的平面图,图2(b)是图2(a)的断面图,图2(c)是图2(a)的分解斜视图。
图3是示出本发明的高频电路器件第3实施例的断面图。
图4是示出本发明的高频电路器件第4实施例的断面图。
图5是示出本发明的高频电路器件第5实施例的概念图。
图6(a)是示出本发明的高频电路器件第6实施例的断面图,图6(b)是图6(a)的断面图。
图7是示出本发明的高频电路器件第7实施例一个结构的断面图。
图8是示出本发明的高频电路器件第7实施例其它结构的断面图。
实施发明的最佳状态以下,用实施例进一步具体说明本发明。
<第1实施例>


图1是示出本发明的高频电路器件第1实施例的断面图。如图1所示,在由介质单晶体等构成的基板11a上,其中央部分利用例如真空蒸发法和刻蚀法等形成由电导体构成的椭圆状谐振器12。另一方面,在由介质单晶体等构成的基板11b上,利用例如真空蒸发法或刻蚀法等形成一对输入输出端子13。而且,形成了谐振器12的基板11a和形成了输入输出端子13的基板11b其形成谐振器12的面和形成输入输出端子13的面相对平行地配置。这样,若把形成了谐振器12的基板面和形成了输入输出端子13的基板面相对平行地配置,则输入输出端子13和谐振器12的耦合良好。这种情况下,即使基板11a和基板11b之间存在空隙,原则上也没有问题,而为了使高频电路器件的特性提高,做成基板11a和基板11b接触的状态。由此,输入输出端子13的一端与谐振器12的外周部分呈电容耦合。另外,基板11a、11b的背面的整个面形成接地面14,整体实现了具有带状线构造的高频电路器件。这样若采用带状线构造,则由于幅射损失极小,故可得到损失小的高频电路器件。在以上那样构成的高频电路器件中,如果能使高频信号耦合则能够实现谐振作用。
考虑了本实施例这样的椭圆状谐振器时,正交且相互独立的2个偶极子模型分别朝向椭圆的长轴和短轴方向。而且,两模型的谐振频率分别由椭圆的长轴和短轴的长度决定。从而,这种情况下,2个偶极子模型的能量不同,能量不简并。这样,若使用作为谐振模型具有无简并的、正交的2个偶极子模型的谐振器,则由于能够分别利用两个模型,因此虽然是一个谐振器却能够起到谐振频率不同的2个谐振器的功能。其结果,能够有效利用谐振电路的面积,即,能够谋求谐振器的小型化。还有,若使用该谐振器,则由于2个偶极子模型的谐振频率不同,因而几乎不发生两模型间的耦合,很少招致谐振工作的不稳定和Q值的恶化。还有,由于有这样高的Q值,因此导体电阻的损失也小。
平行配置的基板11a、11b做成为能够由使用了螺钉的机构微动机械使其作相对地移动。由此,能够把谐振器12和输入输出端子13调整为高频最佳耦合。另外,基板11a做成为能够由使用了螺钉的机械微动机构使其以谐振器(椭圆)12的中心轴(垂直方向)为旋转轴18进行旋转。由此,能够改变一对输入输出端子13和谐振器12的外周部分的耦合位置,因此能够使一对输入输出端子13和2个正交模型的各个耦合强度改变从而调整谐振器工作的中心频率。所以,如果用这2个微动机构适宜地调整基板11a和基板11b的相对位置以及谐振器12和输入输出端子13的耦合位置,则能够调整器件特性,实现高性能的高频电路器件。这样,若依据本实施例的结构,则因为能够在高频电路器件制做后调整在制作传输线构造的模板图形时因图形尺寸误差等引起的器件特性的离散(例如,中心频率偏移等),所以与微调谐振器的图形相比,可能成为实用的调整。
另外,本实施例中,在基板11a上形成谐振器12,在基板11b上形成一对输入输出端子13,然而不是必须限定于这种结构,也可以在形成了谐振器12的基板11a上形成一方的输入输出端子13。若这样构成,则变化一方的输入输出端子13的输入输出耦合点和另一方的输入输出端子13的输入输出耦合点的间隔,也能够调整器件特性。
<第2实施例>
图2是示出本发明的高频电路器件第2实施例的结构图。如图2所示,在由介质单晶体构成的基板19上,其中央部分设有断面为圆形的孔19a。在基板19上例如用真空蒸发法和刻蚀法等形成一对位于该孔19a两侧的输入输出端子13。另一方面,由和基板19同一材料构成的基板20成形为圆板状以便能够嵌合到基板19的孔19a中。基板20其中央部分用例如真空蒸发法和刻蚀法形成由电导体构成的椭圆形状的谐振器12。而且,基板20嵌合到基板19的孔19a中并形成一体。由此,输入输出端子13的一端与谐振器12的外周部分呈电容耦合。另外,在基板19、20的背面,在其整个面上分别形成接地面14a、14b,从而整体实现具有微带线路构造的高频电路器件。该微带线路构造其结构简单而且和其它电路的匹配性也好。
基板20被做成能够由使用了螺钉的机械微动机构使其以谐振器(椭圆)12的中心轴(垂直方向)为旋转轴18旋转。由此,因为能够改变一对输入输出端子13和谐振器12的外周部分的耦合位置,所以改变了一对输入输出端子13和2个正交模型的各耦合强度,故能够和上述实施例1一样地调整谐振器工作的中心频率。
另外,本实施例中,以具有微带线路构造的高频电路器件为例进行了说明,然而不是必须限定于该结构,也可以通过与该高频电路器件的谐振器12相对配置具有接地面的基板,从而形成带状线路构造。另外,也可以通过制成基板的一个面上包含接地面的整体构造形成平面波导构造。若采用该平面波导构造,则能够简化制作过程,并且在把难于在基板两面形成的高温超导薄膜作为导体材料时特别有效。
<第3实施例>
图3是示出本发明的高频电路器件第3实施例的断面图。如图3所示,由介质单晶体构成的基板11其中央部分形成由超导体构成的椭圆形状的谐振器12。还有,在基板11上位于谐振器12两侧形成一对输入输出端子13,输入输出端子13的一端与谐振器12的外周部分上呈电容耦合,还有,在基板11的近傍,在与谐振器12相对的位置上配设着介质22。介质22可以是任意的形状,独立地保持介质22使其能够对于谐振器12相对地位移。介质22的位移由使用了螺钉的机械微动机构来达到。在基板11的背面,整个面上形成接地面14,从而整体实现具有微带线路构造的高频电路器件。这里,接地面14具有超导体层14a和金层14b的2层构造。
如上述那样,若在谐振器12近傍配置介质22,则谐振器12周围的电磁场分布变化。从而,如上述那样,通过改变介质22和基板11的相对位置,就能够调整谐振器的工作中心频率等频率特性。即,如果用该微动机构适宜地调整谐振器12和介质22的相对位置,则可以得到高性能的高频电路器件。
另外,本实施例中,在与谐振器12相对的位置上配置着介质22,然而不是必须限定这种结构。可以替代介质22而配置磁性体或导体,使其相对位置变化也能够调整谐振器工作的中心频率等频率特性。还有,如果在介质22的与谐振器12的对向面上形成谐振器,使各个谐振器与输入输出端子13电耦合,能够构成陷波滤波器和带通滤波器。而且,在这种情况下,通过使谐振器12和介质22的相对位置移动,能够调整各滤波器的特性。
还有,本实施例中,输入输出端子13的一端和谐振器12和外周部分的耦合做成为电容性耦合,然而不是必须限定该结构,也可以是电感性耦合。
<第4实施例>
图4是示出本发明的高频电路器件第4实施例的断面图。如图4所示,由介质单晶体构成的基板11a其中央部分形成由超导体构成的椭圆形状的谐振器12。另外,在基板11a上,位于谐振器12两侧形成一对输入输出端子13,输入输出端子13的一端与谐振器12的外周部分呈电容耦合。另一方面,在由和基板11a同一材料构成的基板11b上,其中央部分形成由超导体构成的椭圆形状的谐振器25。而且,基板11a和基板11b其形成谐振器12的面和形成谐振器25的面相对平行地配置。还有,在基板11a、11b的背面,其整个面上形成接地面14,从而整体实现具有带状线路构造的高频电路器件。这里,接地面14具有超导层14a和金层14b的2层构造。
平行配置的基板11a、11b做成为能够由微动机构使其作相对地移动。该微动机构由使用了螺钉的机械装置实现,能够进行3个轴方向的平行移动和旋转移动。
以上的结构能够用作为某种陷波滤波器,而通过以谐振器(椭圆)12或谐振器(椭圆)25的中心轴为旋转轴使一方的基板11a(或11b)相对于另一方的基板11b(或11a)旋转,分别改变2个谐振器12、25的2个模型和输入输出端子13的耦合位置,能够调整谐振器工作的中心频率等的频率特性。即,如果由该微动机构适宜调整基板11a和基板11b的相对位置,则能够把中心频率最优化。
<第5实施例>
图5中示出和上述第4实施例一样把2个基板相对配置的高频电路器件的概念图。图5中,实线示出在一方基板上形成的谐振器图形(这里是超导体构成的椭圆型谐振器12)和一对输入输出端子13,虚线示出另一方基板上形成的谐振器图形(这里是超导体构成的椭圆型谐振器25)。各基板间设有空隙,通过高频耦合实现多级的带通滤波器。由于相对平行配置的各基板能够相对地平行移动,因此,通过使各基板的相对位置变化,改变各基板间的高频耦合,能够调整多级带通滤波器的频率特性。
另外,本实施例中,使在各基板上形成的一个一个滤波器耦合,然而,不是必须限定该结构,也可以使多个滤波器耦合。还有,在本实施例中,把一对输入输出端子13形成在一方的基板上,然而也不是必须限定该结构,也可以把一对输出输入端子13分开形成在两方的基板上。而且,如果组合这些结构,可以得到具有种种特性的高频电路器件。
还有,在上述第3~第5实施例中,使用超导体作为谐振器的材料以谋求低损失化,但原理上只要是导电体即可。
还有,在上述第3~第5实施例中,作为微动机构采用使用了螺钉的机械装置,然而,不是必须限定该结构,采用其它装置也没有什么障碍。如果作为微动机构采用机械装置,则在进行作为高频电路器件的工作的同时,能够进行器件特性的调整,因此,与微调谐振器图形相比,能够成为实用的调整。
<第6实施例>
图6是示出本发明的高频电路器件第6实施例的结构图。如图6所示,在由介质单晶体等构成的基板11上,其中央部分形成由超导体构成的椭圆形状的谐振器12。还有,在基板11上,位于谐振器12的两侧形成一对输入输出端子13,输入输出端子13的一端与谐振器12的外周部分呈电容耦合。还有,基板11的背面整个面形成接地面14,整体实现具有微带线路构造的高频电路器件。
在谐振器(超导体)12上,在其周缘部分上形成圆环状导电性薄膜23。
然而,磁场侵入长度、动态电感等超导体的种种特性是温度的函数,这些特性特别在转移温度Tc近傍的温度区域下对于微小的温度变化也要产生很大的变化,在高频应用中,这些值成为使频率特性变化的主要原因。磁场侵入长度由于决定谐振器12周缘部分的电流分布,故需要抑制温度变化,或减少对于温度波动的周缘部分的电流分布变化。在这里,相对于成为问题的温度波动程度的温度变化,金属等导电材料的特性变化几乎可以忽略。从而,如果在谐振器12的周缘部分形成圆环状的导电性薄膜23,则减少对相对于温度波动的高频特性的影响。还有,在处理大功率高频信号时,大电流流过谐振器12的周缘部分,而如果像本实施例这样在谐振器12的周缘部分形成导电性薄膜23,则由于流过谐振器(超导体)12周缘部分的电流的一部分流过导电性薄膜23,故能够部分避免失去超导体的超导性而返回常导状态的功率条件。若使电导性材料接触超导体,则虽然增大高频损失,但由于在椭圆型谐振器12的中心部分上不存在导电性材料,故其影响被抑制为最小。即,若依据本实施例的结构,则与使导电性薄膜接触由超导体构成的谐振器的整个面而形成的器件相比,可以得到低损失的高频电路器件。还有,即使在因某种原因超导体失去超导性而成为常导状态的情况下,也可以通过高频电流流过电导性薄膜23来抑制极端的特性恶化。
在本实施例中说明的高频电路器件中,作为导电性薄膜23可以使用金属薄膜。作为金属材料,希望使用具有良好导电性的材料。特别地,如果使用含有从金、银、铂、钯、铜及铝中选出的至少1种金属的材料,或者是把从金、银、铂、钯、铜及铝中选出的最少2种金属迭层形成的材料,则可以得到良好的导电性,有利于对高频的应用。还有,这些材料化学性能稳定,化学反应性低,对其它材料的影响小,故使之和各种材料、特别是和超导材料接触而形成时是有利的。
本实施例中作为谐振器12使用的超导材料由于与金属材料相比损失极小,故实现了具有极高Q值的谐振器。从而,在本发明的高频电路器件中,超导体的利用是有效的。作为该超导体,也可以使用金属系列材料(例如,Pb、PbIn等铅族材料、Nb、NbN、Nb3Ge等铌族材料),而实用上,希望使用温度条件比较平缓的高温氧化物超导体(例如,Ba2YCu3O7)。
还有,本实施例中,输入输出端子13的一端在谐振器12的外周部上的耦合取为容性耦合,然而不是必须限定这种结构,也可以是感性耦合。
还有,在上述第1~第6实施例中,作为谐振器使用椭圆形状的导电体或超导体,然而不是必须限定为该结构。即使是任意形状的平面电路谐振器,只要谐振模型具有无简并的2个正交偶极子模型,则基本上就能够实现同样的作用。但是,在导电体或超导体的轮廓形状不光滑时,高频电流部分地过度集中,因损耗增大而Q值降低,则在处理大功率高频信号时有可能产生问题。从而,对于椭圆形状以外的形状,通过用具有光滑轮廓形状的导电体或超导体构成谐振器,能够进一步提高有效性。
还有,在上述第1~第6实施例中,谐振器12上耦合着一对输入输出端子13,然而不是必须限定为该结构,与谐振器12耦合的输入输出端子13也可以是至少1个。
<第7实施例>
图7中示出本实施例中制作的高频电路器件的结构。谐振器12是椭圆型导体板。谐振器12的直径约7mm,设定椭圆率和输入输出耦合的间隙使得带宽约为2%。高频电路器件的制作方法如下。首先,在由LaAlO3单晶体构成的基板11a、11b的两面上形成1μm厚的高温氧化物超导薄膜。这里使用的高温氧化物超导薄膜是被通常称为汞族氧化物超导体的材料,主要使用HgBa2CuOx(1201相)薄膜。该薄膜在90°K以上显示出超导转移。接着,在两基板11a、11b的背面用真空蒸发法堆积1μm厚的金薄膜,形成由高温氧化物超导薄膜和金薄膜构成的接地面14。接着,用光刻法和氩离子波束刻蚀法的方法,在一方基板11a的与形成接地面14的面相反的面上,形成由高温氧化物超导薄膜构成的谐振器12的图形,在另一方的基板11b的与形成接地面14的面相反的面上,同样地形成由高温氧化物超导薄膜构成的一对输入输出端子13的图形。接着,在表面上镀了金的铜制外壳21中,把基板11a和基板11b面对面平行配置,使形成了谐振器12的面和形成了输入输出端子13的面相对。由此,整体实现了具有带状线路构造的高频电路器件。这里,外壳21和接地面14用导电胶(本实施例中使用了银胶)26粘接,确保热传导性和电接地。还有,图7中,基板11a和基板11b之间存在若干的空隙,而实际上基板11a和基板11b是重合的。
使AuFe-镍铬合金热电偶接触外壳21,测定温差电动势以进行温度监视。而且,用小型的能够电控输出的制冷器(未图示)冷却外壳21的整体,通过对该制冷器反馈对应于温差电动势的控制信号,进行温度调节。
外壳21上设有微动机构27,通过调整该微动机构27,能够使谐振器12相对于形成了输入输出端子13的基板面作水平方向的位移,同时,能够使其以谐振器12的中心轴(垂直方向)为旋转轴沿旋转方向移动。由此,能够把谐振器12和输入输出端子13调整到可以得到最佳输入输出耦合的位置。
图8示出本实施例中制作的高频电路器件的其它结构。谐振器12是椭圆导电板。谐振器12的直径约7mm,设定椭圆率和输入输出耦合的间隙使得带宽约为2%。本高频电路器件的制作方法如下。首先,在由LaAIO3单晶体构成的基板11的两面形成1μm厚的高温氧化物超导薄膜。这里使用的高温氧化物超导薄膜通常被称为汞族氧化物超导体,主要使用HgBa2CuOx(1201相)薄膜。该薄膜在90°K以上示出超导转移。接着,在基板11的背面,用良空蒸发法形成1μm厚的金薄膜,形成由高温氧化物超导薄膜和金薄膜构成的接地面14。接着,用光刻法和氩离子波束刻蚀法的方法,在基板11的与形成接地面14的相反的面上,形成由高温氧化物超导薄膜构成的谐振器12和一对输入输出端子13的图形。由此,整体实现了具有微带线路构造的高频电路器件。接着,把基板11配置在表面上镀金的铜制外壳21中,进而在和谐振器12相对位置上配置聚四氟乙烯制的圆板状介质体22。用导电胶(本实施例中使用银胶)26粘接外壳21和接地面14,确保导电性和电接地。
使AuFe-镍铬合金热电偶接触外壳21,测定温差电动势进行温度监视。而且,用小型的可电控输出的制冷器冷却外壳21的整体,通过对该制冷器反馈对应于温差电动势的控制信号,进行温度调节。
在外壳21上设置微动机构27,通过调整该微动机构27,使介质体22和谐振器12的间隔发生若干变化,能够调整谐振器12的特性。
另外,本实施例中,作为介质体22使用聚四氟乙烯制的介质体,然而不是必须限定于此,其它的介质材料也没有问题。
产业上利用的可能性如上述,若依据本发明的高频电路器件,则在高Q值的小型的传输线型高频电路器件中,能够修正图形尺寸误差等,能够调整器件特性,同时,作为谐振器使用超导体时,由于能够抑制由温度变化及输入功率引起的器件特性的波动,能够调整器件特性,故窄带、低损失、小型和大功率的滤波器能够在必要的移动通信的基站和通信卫星等中应用。
权利要求
1.一种高频电路器中,包括一个谐振器,该谐振器由一个在基板上形成的电导体构成,并且作为谐振模型具有无简并的正效极化的2个偶极子模型;并且还包括一个耦合到该谐振器的外周的输入输出端子,其中在与该谐振器相对的位置上配置介质、磁性体或导体。
2.权利要求1记述的高频电路器件,其特征在于还具备用于使谐振器和介质、磁性体或导体的相对位置变化的机构。
3.权利要求1记述的高频电路器件,其特征在于在介质的表面上形成谐振器。
4.权利要求1记述的高频电路器件,其特征在于电导体具有光滑的轮廓形状。
5.权利要求1记述的高频电路器件,其特征在于电导体具有椭圆形状。
6.权利要求1记述的高频电路器件,其特征在于该高频电路器件的总体构造具有从微带线路构造、三重线路构造及共平面波导构造中选出的构造。
7.权利要求1记述的高频电路器件,其特征在于所述谐振器被形成在所述介质表面上,并且所述高频电路器件还包括用于使该谐振器和该介质的相对位置变化的机构。
8.权利要求1记述的高频电路器件,其特征在于所述谐振器由超导体构成。
9.权利要求1记述的高频电路器件,其特征在于所述谐振器由氧化物超导体构成。
10.权利要求1记述的高频电路器件,其特征在于所述谐振器由氧化物超导体构成,并且在该谐振器的周缘部分设置了导电性薄膜。
11.权利要求1记述的高频电路器件,其特征在于所述谐振器由氧化物超导体构成,并且在该谐振器的周缘部分设置了导电性薄膜,并且该导电性薄膜由含有从金、银、铂、钯、铜及铝中选出的至少1种金属的材料、或者把从金、银、铂、钯、铜及铝中选出的至少2种金属迭层形成的材料构成。
全文摘要
一种体积小、传输线型高频电路器件。该器件因导体电阻而引起的损耗很低而且具有高的Q值。其特征可通过修正图形尺寸误差而调整。基板(11a)具有由电导体构成的椭圆形谐振器(12),另一块基板(11b)具有一对输入输出端子(13)。基板(11a)和(11b)平行放置,使装有谐振器(12)和端子(13)的基板面彼此面对面。通过使用一种带螺丝的机械微调机构使基板(11a)和(11b)相对移动。此外,通过一种带螺丝的机械微调机构使基板(11a)绕谐振器(12)的中心轴(18)转动。
文档编号H01P7/08GK1421957SQ0215022
公开日2003年6月4日 申请日期2002年11月5日 优先权日1994年6月17日
发明者水野纮一, 榎原晃, 东野秀隆, 濑恒谦太郎 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1