半导体器件的制造方法

文档序号:6969502阅读:157来源:国知局
专利名称:半导体器件的制造方法
技术领域
本发明涉及一种半导体器件的制造方法,特别涉及适合用于将倒装片型半导体芯片的键合焊盘连接到电路板的半导体器件的制造方法。
背景技术
近年来,在通过将半导体芯片机械和电气地连接到电路板而进行的倒装片式封装中对采用超声波键合法的兴趣日益增长。超声波键合法例如在日本特许公开专利公报No.平-10-50758和日本特许公开专利公报No.2000-195905中有介绍。
众所周知,在进行倒装片式封装中,通过在半导体芯片和电路板之间注入下填树脂并使其固化来防止由于半导体芯片和电路板的热膨胀系数不一致造成的损伤。
然而,在日本特许公开专利公报No.平-10-50758中,只是主要介绍了涉及在超声波键合法中采用的设备外形的内容,并没有说明用于将下填树脂注入到在电路板和连接的半导体芯片之间的工艺。此外,在日本特许公开专利公报No.2000-195905中,只是主要介绍了涉及清洗超声波键合设备的工具头的内容,而关于下填树脂的注入并没有说明。
换言之,尽管在倒装片式封装中对采用超声波键合法的兴趣日益增长,但是采用当前技术进行制造的产品只限于由于采用陶瓷板而不采用树脂的封装、具有少量管脚和小芯片的封装以及不需要通过注入树脂来进行增强的封装等。
顺便提及,在对更大芯片的半导体芯片或具有多个管脚的半导体芯片施加超声波键合法时,需要在半导体芯片和电路板键合之后注入下填树脂,然而,在这种情况下,可能发生下列问题。
换言之,在半导体芯片和电路板键合之后,为了在其间注入下填树脂,必须采用成为分散器的器件。然而,在采用分散器时,难以进行适当树脂注入量的控制,并且很难连续注入合适量的数值。
此外,由于通过采用毛细现象而将下填树脂注入到半导体芯片和半导体电路之间的空间中,因此难以用处于合适状态的下填树脂密封半导体芯片和电路板之间的空间。在这种情况下,很难获得从半导体芯片外缘向下平缓倾斜的所希望的倒角(fillet)形状。
为此,存在封装的可靠性下降的可能性,因此不能有效地吸收由半导体芯片和电路板的热膨胀系数不一致产生的应力,破坏了所希望的导电性能,等等。
因此,本发明的目的是提供一种制造半导体器件的方法,其中用下填树脂适当地和很容易地密封半导体芯片和电路板之间的间隙,并且实现了所希望的倒角形状,即使采用超声波键合法也可以获得具有良好导电性能的高度可靠的倒装片式封装。
发明的公开为实现本发明的目的,根据本发明的制造半导体器件的方法的特征在于包括在其上形成布线图形的电路板上形成下填树脂层以覆盖至少一部分布线图形的第一步骤;第二步骤,通过使键合焊盘和具有形成在上述键合焊盘上的突起电极的半导体芯片定位并与电路板的布线图形定位,并且进一步通过对半导体芯片施加超声波振动,同时将突起电极压在布线图形上并穿透下填树脂层,机械和电气地将布线图形和突起电极相互键合在一起,和第三步骤,对其中布线图形和突起电极已经键合在一起的电路板和半导体芯片进行预定处理,并使处于电路板和半导体芯片之间的下填树脂固化。
根据本发明的制造半导体器件的方法,由于形成下填树脂层并在其固化之前进行超声波键合,因此,即使采用超声波键合法,也可以通过将下填树脂置于半导体芯片和电路板之间的间隙内而适当地和容易地进行封装密封。
通常,为了使半导体芯片和树脂的线性膨胀系数相近,在下填树脂中混合成为填料的绝缘颗粒,并利用不同于超声波键合法的采用树脂的其它压力键合法,例如,有关于在填料被捕获在电极之间的情况下发生不良连接的报导。
然而,在本发明的制造方法中,由于超声波振动施加于半导体芯片,同时从下填树脂层上面将突起电极压在布线图形上,因此可以在两侧键合同时利用超声波振动将下填树脂层中的填料从突起电极和布线图形之间推出。
在该键合期间,例如,如果下填树脂层采用凝胶型树脂,考虑到超声波振动可以传播到凝胶型树脂的各个部分,因此可以获得所希望的倒角形状,其中位于半导体芯片外缘的外部的部分自然地朝向电路板向下倾斜。另一方面,在例如下填树脂层采用下填树脂膜的情况下,可以使为半导体芯片外缘的外部的树脂的端部收缩和固化,并且通过进行热处理作为第三步骤中的预定处理,可以获得所希望的倒角形状。
为此,尽管在下填树脂预先形成在布线图形上之后进行突起电极和布线图形的键合处理,但是两者可以机械和电气地键合在一起并具有所希望的导电性能。此外,可以获得高度可靠的倒装片式封装,可以适当地吸收半导体芯片和电路板之间起作用的应力,并具有良好的导电性能。
在实施本发明的最佳方式中,具有绝缘特性和热调整性能的凝胶型树脂用作第一步骤中的布线图形上的下填树脂,并且在第三步骤中凝胶型树脂通过在预定温度(例如,140℃-160℃)下的热处理而固化。
对于凝胶型树脂,例如可以是由Matsushita Electric Works,Ltd.制造的“CV5186”(产品号)。
在施加凝胶型树脂时,可采用扩散法或印刷法。例如,在采用扩散法时,由于在采用超声波键合法的半导体组装步骤中在第二步骤(初始键合)之前施加树脂,因此具有不需要精细树脂涂覆工艺并且操作简单的优点。
另一方面,如果采用印刷法,不需要另外使用如分散器等器件。因此,可以解决例如由于扩散量不合适而产生的不能获得良好密封条件的问题。
根据本发明,通过采用扩散法和印刷法,利用超声波键合法可以简化树脂密封步骤,并且可以解决工艺故障问题。
在实施本发明的另一优选方式中,具有绝缘特性和热调整特性的树脂膜粘接在布线图形上,作为第一步骤中的下填树脂层,并且该树脂膜通过在第三步骤中在预定温度(例如,140℃-160℃)下的热处理而固化。
在这种情况下,由于通过在第二步骤之前预先简单地粘接树脂膜(初始键合)而容易地和适当地形成下填树脂层,因此可以解决工艺故障问题,同时消除麻烦的步骤,如精细树脂涂覆等,并且可以进一步简化工艺。
对于膜状树脂,可以采用其中混合了热膨胀系数接近于半导体芯片的热膨胀系数的二氧化硅(硅石)和/或氧化铝等颗粒的下填树脂。
对于下填树脂膜,例如可采用由Nitto Denko Corporation制造的“PFM21-B1F”(产品号)。
附图的简要说明

图1是表示根据本发明的示意实施方式1的半导体器件的制造方法的流程图;图2A-2D是表示对应图1的各个步骤的侧视图;图3A-3C是表示通过扩散法的凝胶型树脂的涂覆方法的平面图,各表示单点、四点和五点涂覆法;图4A-4C是表示可以用在本发明中的突起电极的形状的侧视图,并且分别表示不同校平形状;图5A-5C是表示根据典型方式1的用于将突起电极和布线图形键合在一起的侧视图,各表示不同的阶段;图6A-6F是表示利用印刷法在各阶段中的树脂涂覆步骤的侧视图;图7是表示根据本发明的典型方式2的半导体器件的制造方法的流程图;图8A-8F是表示对应图7的各个步骤的侧视图;图9A-9D是表示对应图7的各个步骤的侧视图;和图10A-10C是表示根据典型方式2用于键合突起电极和布线图形的侧视图,各表示不同阶段。
实施本发明的最佳方式下面参照附图并结合典型方式具体和详细地介绍实施本发明的方式。
典型方式1这个典型方式1是根据本发明的制造半导体器件的方法的方式的一个例子,其中图1是表示根据该典型方式的制造半导体器件的方法的流程图,图2A-2D是表示对应图1的各个步骤的侧视图,图3A-3C是表示利用扩散法的用于凝胶型树脂的涂覆方法的平面图,图4A-4C是表示可用在该典型方式中的突起电极的形状。此外,在图2A-2D和图4A-4C中,只示出了两个或一个突起电极,但实际上有很多突起电极。
首先,如图1所示,在步骤S1中开始超声波键合,并通过扩散法利用树脂涂覆注射器14将下填树脂层即凝胶型树脂16涂覆到电路板10的布线图形(引线布线)12上(图2A)。
这个涂覆步骤是如图3A所示的在电路板的中心部分以一个点为中心进行的涂覆、如图3B中所示的分别在电路板的中心部分的四个点上的涂覆、和如图3C中所示的分别在电路板的中心部分的五个点上的涂覆。
在扩散法中,由于用凝胶型树脂16填充的树脂涂覆注射器14被空气压力控制,因此不仅可以采用上述1-5点的涂覆,而且可以采用更多数量的多点涂覆,并且可以从各种涂覆法中任意选择,这取决于引线布线12的布置。
接着,在步骤S3,安装在超声波连接器头18上的半导体芯片20()的键合焊盘22上的突起电极24与布线图形12相对设置(图2B)。
这里,在半导体芯片20的下表面上形成由铝构成的多个键合焊盘22,每个键合焊盘22电气和机械地键合到突起电极24上。
对于突起电极24,例如,可以采用如图4A中所示的根本不用校平的形状、如图4B所示的利用相对低负载进行校平的形状、如图4C中所示的利用相对高负载进行校平的形状。图4C中所示的类型是通常用在ACF键合等中的电极形状,并且突起电极24的尖端端部与其它类型相比具有更多的平面形状,以便固定更大面积。
每个形状的突起电极24了利用金(Cu)线构成为栓状突起,以便在超声波键合器件很容易利用初始加载挤压和变形。
此外,在该典型方式中,采用图4B所示的结构,因为在超声波键合器件可同时利用初始加载使突起电极24的尖端与布线图形12接触。
接着,从超声波连接器头18给半导体芯片20施加超声波振动,同时采用超声波连接器头18利用预定压力对着电路板10的布线图形压半导体芯片20的突起电极24(图2C)。
这样,由于在箭头26所示方向上的超声波振动而使突起电极24在加压状态下与布线图形12摩擦,因此突起电极24和布线图形12互相机械和电气地键合在一起(图2D)。
这里,突起电极24的布线图形12的键合状态示于图5A-5C中。
更具体地说,如图5A所示,通过对着布线图形12从凝胶型树脂16上面压突起电极24,使凝胶型树脂16渗透,并且突起电极24的尖端端部与布线图形12接触。
此外,如图5B所示,在箭头26方向的超声波振动施加于半导体芯片20,同时在箭头28所示的方向给半导体芯片20即突起电极24加压。结果是,其尖端端部被挤压和变形的突起电极24在箭头35所示的方向振动并将凝胶型树脂16中的填料32从布线图形12和凝胶型树脂16之间的空间推出,并与布线图形12键合,如图5C所示。
同时,通过超声波振动传播到凝胶型树脂16的各个部分,可以获得如图5C中所示的所希望的倒角(fillet)形状,其中位于半导体芯片20外缘的外部的部分朝向电路板10自然向下倾斜。与此相反,如果例如在突起电极24和布线图形12键合在一起之后在键合部分周围提供凝胶型树脂16,则将出现例如不能获得所希望的倒角形状等问题。
接下来,在步骤S4,将被键合的半导体芯片20和电路板10装在预定室内,通过在例如140-160℃的温度下进行热处理(热固化)110分钟~130分钟,使凝胶型树脂16固化。
然后,在步骤S5,进行关于已经通过凝胶型树脂16的固化而形成封装的半导体芯片20和电路板10的导电性能等的检测。结果是,如果判断可以接受,则工艺结束,该封装作为可接受产品被采用(步骤S6)。另一方面,如果判断有缺陷,则该封装作为缺陷产品被回收。
这样,即使在布线图形12上预先施加凝胶型树脂之后键合突起电极24和电路板10,突起电极24和电路板10也可以机械和电气地键合在一起以具有良好的导电性能。
此外,可以获得具有良好导电性能的高度可靠的倒装片式封装,并且可以适当地吸收在半导体芯片20和电路板10之间起作用的应力。
虽然在该典型方式中,给出了其中在超声波键合之前采用扩散法用于下填树脂层的形成工艺的例子,但不限于此,也可以采用印刷法。
图6A-6F是表示利用印刷法涂覆凝胶型树脂16的步骤的各个阶段的示意图。
首先,如图6A所示,制备电路板10,用印刷屏覆盖布线图形12,如图6B所示,并将凝胶型树脂16放在印刷网34的一端侧上,如图6C所示。
在这个状态,涂刷器36以平行方式在由箭头40所示的方向移动,如图6D所示。结果是,凝胶型树脂16均匀地进入到印刷网34的开口34a中,如图6E所示。
此外,通过去掉印刷网34,在布线图形12中的预定位置上形成预定厚度的凝胶型树脂16,如图6E所示。
在上述印刷法中,与扩散法不一样,由于树脂涂覆注射器14中的控制空气压力根据注射器中留下的树脂量而改变,树脂涂覆量变得不稳定,并且必须可以控制涂敷在布线图形12上的量。因此,通过进入批量生产而控制树脂涂覆变得更容易。
典型方式2这个典型方式是根据本发明的半导体器件的制造方法的另一方式,图7是表示根据该典型方式的半导体器件的制造方法的流程图,图8A-8F和图9A-9D是对应图7的各个步骤的侧视图,图10A-10C是表示将突起电极与布线图形键合在一起的工艺的各个阶段的侧视图。
首先,如图7所示,开始进行超声波键合法(步骤S1),制备电路板10(图8A),将下填树脂层即下填树脂膜42粘接到电路板10的布线图形12上(图8B)。
下填树脂膜42包括分离器部分44和粘接层46,用于提高操纵容易性。因此,首先,正在粘接下填树脂膜42的粘接层46以便覆盖电路板10上的至少一部分布线图形12之后,去掉分离器部分44(图8C)。结果是,粘接层46保持在电路板10的布线图形12上。
在这种情况下,由于布线图形12上的粘接层46的厚度可以根据下填树脂膜42的厚度而适当改变,因此该工艺比其中利用印刷法涂覆预定厚度的凝胶型树脂16的方法更简单。
接着,为了提高粘接层46的粘接性,通过利用定位装置的头部分48在粘接层46上施加预定负载,粘接层46以平面方式设置在布线图形12上,如图8D和8E所示。
之后,如图8F所示,例如在100℃的温度下进行热处理约10秒种,并且粘接层46固化到预定硬度(暂时固化)之前首先熔化。
然后,在步骤S13中,进行超声波键合。更具体地说,利用超声波连接器头18相对于布线图形12上的粘接层46定位半导体芯片20(图9A)。
此外,从超声波连接器头18给半导体芯片20施加超声波振动,同时以预定压力对着布线图形12压半导体芯片20的突起电极24(图9B)。
为此,由于在由箭头26所示的方向的超声波振动而使突起电极24在加压状态下与布线图形摩擦,因此突起电极24和布线图形12机械地和电气地互相键合在一起(图9C)。
这里,在键合期间突起电极24和布线图形12的条件示于图10A-10C中。换言之,如图10A所示,从下填树脂膜42的粘接层46的上面将突起电极24压在布线图形12上,由此渗透下填树脂膜42,并突起电极24的尖端端部与布线图形12接触。
此外,如图10B所示,在由箭头26所示的方向给半导体芯片20施加超声波振动,同时在由箭头28所示的方向压半导体芯片20,因此压突起电极24。结果是,其尖端端部被挤压和变形的突起电极24在由箭头30所示方向振动,将粘接层46中的填料32从突起电极24和布线图形12之间的空间推出去,并与布线图形12键合(图10C)。
接下来,在步骤S14中,通过在140-160℃的温度下进行热处理例如约110-130分钟,使粘接层46完全固化(永久固化)。在该固化期间,通过在半导体芯片20的外边缘部分的外部倾斜向下的树脂部分的收缩,粘接层46呈现朝向电路板10向下自然倾斜的所希望的倒角形状。
然后,在步骤S15中,进行用于检测例如导电性能等的必要条件的筛选(screening),如果判断为可接受的,则工艺结束(步骤S16),如果判断为有缺陷的,则该封装作为有缺陷产品被回收。
如上所述,在本发明的典型方式1和2中,由于可以用凝胶型树脂16或下述树脂膜42形成下填树脂层,并且可以在其固化之前进行超声波键合,因此下填树脂可以置于半导体芯片20和电路板之间的间隙内,即使采用超声波键合法,也可以很容易地适当地密封该封装。
而且,由于超声波振动施加于半导体芯片20,同时从下填树脂层的上面对着布线图形12压突起电极24,因此它们可以键合在一起,同时通过超声波振动可靠地将下填树脂层中的填料32从突起电极24和布线图形12之间推出去。因此,虽然在布线图形12上形成下填树脂层之后进行键合工艺,两者仍可以键合在一起并具有所希望的导电性能。因此,可以适当地吸收在半导体芯片20和电路板10之间起作用的应力,并且可以获得具有所希望的导电性能的高度可靠的倒装片式封装。
此外,在典型方式1和2中,突起电极24采用金(Au)线形成为栓状突起,并且布线图形12之间的连接距离非常短。结果是,与半导体芯片和布线图形通过线键合的情况相比,例如,可以获得所希望的导电性能,其中由下列等式表示的阻抗Z0显著减小Z0=(R2+(ωL-1/ωC)2}1/2如上所述,根据本发明的制造半导体器件的方法,采用下填树脂适当地和容易地密封半导体芯片和电路板之间的间隙,同时实现了所希望的倒角形状,即使采用超声波键合法,也可以获得具有良好导电性能并能适当地吸收在半导体芯片和电路板之间起作用的应力的倒装片式封装。
权利要求
1.一种制造半导体器件的方法,其特征在于包括用于在具有形成在其上的布线图形的电路板上形成下填树脂层以便覆盖至少一部分布线图形的第一步骤;用于通过将具有键合焊盘和形成在键合焊盘上的突起电极的半导体芯片相对于电路板上的布线图形定位,并进一步给半导体芯片施加超声波振动,同时对着布线图形压突起电极并渗透下填树脂层,将布线图形和突起电极互相机械和电气地键合在一起的第二步骤;用于通过对布线图形和突起电极键合在一起的电路板和半导体芯片进行热处理,使置于电路板和半导体芯片之间的下填树脂固化的第三步骤。
2.根据权利要求1的制造半导体器件的方法,其特征在于在第一步骤中,具有绝缘和热调节性能的凝胶型树脂涂敷于布线图形上,作为下填树脂层,并且在第三步骤中,通过在预定温度下的热处理使凝胶型树脂固化。
3.根据权利要求2的制造半导体器件的方法,其特征在于在涂覆凝胶型树脂时,采用扩散法或印刷法。
4.根据权利要求1的制造半导体器件的方法,其特征在于在第一步骤中,具有绝缘和热调节性能的树脂膜粘接在布线图形上,作为下填树脂层,并且在第三步骤中,通过在预定温度下的热处理使树脂膜固化。
5.根据权利要求4的制造半导体器件的方法,其特征在于其中混合了热膨胀系数接近于半导体芯片的热膨胀系数的二氧化硅和/或氧化铝的颗粒的下填树脂膜用作该树脂膜。
全文摘要
一种制造半导体器件的方法,即使采用超声波键合法也可以通过下填树脂容易和适当地密封封装,由此提供高度可靠的倒装片式封装。该方法包括形成下填树脂层(16)以便覆盖电路板(10)上的布线图形(12)的第一步骤;将具有突起电极(24)的半导体芯片(20)定位于电路板(10)的布线图形(12)上,并通过给(20)施加超声波振动,同时对着布线图形(12)通过下填树脂层(16)压突起电极(24),将布线图形(12)连接到突起电极(24)的第二步骤;用于使置于电路板(10)和半导体芯片(20)之间的下填树脂层(16)固化的第三步骤。
文档编号H01L21/56GK1462474SQ02801486
公开日2003年12月17日 申请日期2002年3月11日 优先权日2001年3月12日
发明者吉田浩二 申请人:索尼公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1