半导体器件的制造方法

文档序号:6829742阅读:95来源:国知局
专利名称:半导体器件的制造方法
技术领域
本发明涉及半导体器件的制造方法,例如涉及构成堆叠式MCP(多芯片封装)型的半导体器件的、含有从在背面上形成了粘接剂层的半导体芯片上剥离在制造工序中粘贴上的粘接性带的工序的半导体器件的制造方法。
背景技术
一般地说,在半导体器件的制造工序中,元件形成结束后的半导体晶片,就要采用沿着划片线或芯片分割线进行分离、个片化的办法,形成多个半导体芯片。在个片化工序的前后要把粘接性带粘贴到半导体芯片上,个片化后的半导体芯片保持晶片形状不变地一体化。像这样地个片化为多个半导体芯片支持到粘接性带上的半导体晶片,例如就转移到用于小片接合等的装配工序。源于半导体晶片的各个半导体芯片,被从粘接性带上拾取下来,经由送往引线框架或TAB带的固定工序或送往进行封装的封装工序等的装配工序后完成半导体器件。
在拾取这样的每一个半导体器件时,在把半导体晶片的粘接性带的粘贴面的背面粘贴到已粘贴到晶片环上的别的粘接性带上之后,剥离该粘接性带,把晶片环载置到拾取装置上后拾取每一个半导体器件。
图23是在特开2003-17513号公报(图1、图2及其说明处)中公开的现有的拾取装置的主要构成部分的扩大剖面图,示出了从粘接性带101上拾取半导体芯片100的动作。
在从已把半导体芯片100粘贴到晶片环上的粘接性带101上剥离并拾取半导体芯片100的情况下,要中间存在着粘接性带101地从半导体芯片100的背面一侧使上推推杆(针)102突出(上升),利用粘接性带101的弹力剥离半导体芯片100。上推推杆102被配置在与上述半导体芯片100的各个角部分或中央部分附近对应的位置上,其基部已安装在推杆保持器103上。
作为从粘接性带101上剥离半导体芯片100的顺序,首先,使把已粘贴上半导体芯片100的粘接性带101所固定的保持台移动以使得将成为拾取对象的半导体芯片100位于上推推杆102之上。其次,进行用来进行应进行剥离的半导体芯片100的位置检测或判别合格品/不合格品的标记检测等,用真空拉住支撑架104的内部,把粘接性带101吸附固定到支撑架104的上表面上。在该状态下使已安装上上推推杆102的推杆保持器103上升,使上推推杆102从支撑架104的上表面上突出出来,中间存在着粘接性带101地把半导体芯片100从背面一侧往上推。被上推后的半导体芯片100用吸附筒夹105吸附起来供往安装工序。
近些年来,为了使半导体芯片内置于例如卡片状的薄的封装内,强烈希望半导体芯片的薄型化,借助于半导体晶片的背面进一步的研磨、研削和刻蚀,已经薄到了100微米以下。对于在半导体芯片的厚度已像这样地变成为100微米以下的情况下的裂纹的问题,边参看图24A-25B边更为详细地进行说明。
当半导体芯片的厚度如上所述非常薄时,即便是假定半导体芯片100的外周部分(特别是角部分)已被剥离,由于比起上推推杆102的上升速度来剥离粘接性带101的速度这一方慢,故如图24A所示,在进行剥离前半导体芯片100会被弯曲成凹状,如图24B所示,最终产生裂纹。此外,如图25A所示,如果在中间存在着粘接性带101的状态下用上推推杆102往上推半导体芯片100的背面一侧,则在只剥离角部分的状态下在半导体芯片100和上推推杆102之间的接触部分上就会产生裂纹,导致上推推杆102贯通,或者如图25B所示导致芯片裂纹。如果半导体芯片的厚度在100微米以上,由于半导体芯片的强度(厚度方向)这一方比半导体芯片100与粘接性带102之间的粘接力更强,故这样的现象就难于发生。
上述的现有的半导体器件的制造方法,也适用于堆叠式MCP型的半导体器件。现有的堆叠式MCP产品的制造方法,一直这样地进行先用背面研削→背面薄膜状粘接剂(粘接剂层)粘贴→划片工序制作半导体芯片,反复进行小片接合→粘接,把多个半导体芯片多级堆叠起来后进行模制。
图26-31,是说明一直到制作半导体芯片为止的堆叠式MCP产品的现有的制造工序的工序剖面图。首先,在已形成了半导体元件的半导体晶片W1的元件形成面MS上粘贴粘接性带(表面保护带)24(图26)。然后,进行背面研削以使半导体晶片W1薄厚度化(图27)。接着,把用来叠层半导体芯片的粘接剂层109粘贴到背面上(图28)。其次,把半导体晶片W1的已粘贴上粘接性带的元件形成面MS的背面,粘贴到已粘贴到晶片环102上的别的粘接性带112上(图29)。然后,剥离粘接性带24(图30)。其次,借助于激光器、切片刀等,与粘接剂层109一起,把半导体晶片W1分离切断成半导体芯片1(图31)。
上述的现有的半导体器件制造方法,也适用于堆叠式MCP型的半导体器件。现有的堆叠式MCP产品的制造方法,一直这样地进行先用背面研削→背面薄膜状粘接剂(粘接剂层)粘贴→划片工序制作半导体芯片,反复进行小片接合→粘接把多个半导体芯片多级堆叠起来后进行模制。在这样的方法中,存在着以下的一些问题。
(问题1)由于要以背面研削→粘接剂层粘贴→划片制作半导体芯片的工序,故只能制作背面碎裂多发,抗折强度弱的芯片。其结果是只能制作100~150微米厚的半导体芯片。
(问题2)如上所述由于在半导体芯片中多发背面碎裂,故存在着在进行对半导体芯片一侧的粘接时半导体芯片裂纹的可能性。
(问题3)作为解决上述问题的手段,可以考虑在背面研削后施行刻蚀处理以提高芯片抗折强度的方法。但是,在该方法中,当芯片厚度变薄到100微米以下时,由于会发生比不进行刻蚀的背面研削→划片的方法更大的背面碎裂,故反而会使芯片裂纹不合格增加。
(问题4)即便是假定可以解决上述问题且成功地制作出100微米以下的半导体芯片,也会产生参看图24A-25B所说明的那样的问题。
如上所述,当半导体芯片薄厚度化后,半导体芯片的抗折强度就会降低,若用现有的粘接性带剥离机构或剥离方法以及现有的半导体芯片的拾取装置或拾取方法,则不能避免裂纹或碎裂等的品质降低和成品率的降低,对于具备这些的半导体器件的制造方法人们希望进行改善。特别是在半导体芯片背面上已附着上粘接剂、粘接薄片或粘接薄膜等的粘接剂层的半导体芯片,存在着剥离时的荷重增高,裂纹的发生大,其结果是招致半导体器件的品质的降低或成品率的降低的问题。

发明内容
倘采用本发明的第1侧面,则可以提供如下的半导体器件的制造方法。该方法具备在已在第1面上形成了半导体元件的半导体晶片的上述第1面上,设置最终加工厚度以上的沟,向已设置有上述沟的上述晶片的上述第1面之上粘贴粘接性带,采用从与已粘贴上上述粘接性带的上述半导体晶片的上述第1面相反的第2面使上述半导体晶片薄厚度化的办法,把上述半导体晶片分离成已形成了上述半导体元件的多个半导体芯片,向分离后的上述半导体晶片的整个背面上粘贴粘接剂层,使得分离成每一个上述半导体芯片那样地切断上述粘接剂层,在切断上述粘接剂层后,用至少已分离成2个吸附区的多孔质构件边借助于吸附固定上述半导体晶片,边从上述半导体晶片上剥离上述粘接性带。
此外,倘采用本发明的第2侧面,则可以提供如下的半导体器件的制造方法,该方法具备在已在第1面上形成了半导体元件的半导体晶片的上述第1面上,设置最终加工厚度以上的沟,向已设置有上述沟的上述晶片的上述第1面之上粘贴粘接性带,采用从与已粘贴上上述粘接性带的上述半导体晶片的上述第1面相反的第2面使上述半导体晶片薄厚度化的办法,把上述半导体晶片分离成已形成了上述半导体元件的多个半导体芯片,向分离后的上述半导体晶片的整个背面上粘贴粘接剂层,用至少已分离成2个吸附区的多孔质构件边借助于吸附固定粘贴了上述粘接剂层的上述半导体晶片,边从上述半导体晶片上剥离上述粘接性带,边借助于吸附把已剥离掉上述粘接性带的上述半导体晶片固定到上述多孔质构件上,边使得分离成每一个上述半导体芯片那样地切断已粘接到上述第2面的整个面上的上述粘接剂层。


图1-7是按照本发明的实施形态1,说明一直到使已形成了半导体元件的半导体晶片个片化后剥离已粘贴到半导体晶片上的粘接性带为止的工序的工序剖面图。
图8的立体图示出了本发明的实施形态1的装片机的概略构成。
图9A是图8所示的装片机的晶片吸附部分的平面图。
图9B是沿着图9A的A-A线的剖面图。
图10A-10C是说明本发明的实施形态1的晶片吸附部分和个片化后的半导体晶片的配置的晶片吸附部分的平面图。
图11是对图8所示的装片机所具备的、粘接性带的剥离机构进行说明的剖面图。
图12和图13,是对图8所示的装片机所具备的、半导体芯片的拾取机构进行说明的剖面图。
图14A-14C,是对用本实施形态拾取的半导体芯片的装配工序进行说明的概略剖面图。
图15-17,是按照本发明的实施形态2,说明一直到剥离使已形成了半导体元件并个片化后的半导体晶片上粘贴的的粘接性带后,把粘接剂层切断成芯片尺寸为止的工序的工序剖面图。
图18A-18C,是按照本发明的实施形态2,说明从粘接性带的剥离工序到拾取半导体芯片的工序的剥离机构和拾取机构的剖面图。
图19A-19D,是说明先在元件形成面上形成半导体元件,使已在该半导体元件之上形成了低介电系数绝缘膜的半导体晶片个片化为半导体芯片后,剥离粘接性带,把半导体晶片的粘接剂层和低介电系数绝缘膜切断成芯片尺寸,然后使低介电系数绝缘膜熔融为止的工序的工序剖面图。
图20A-20D和图21是本发明的实施形态2的比较例的模式图。
图22是示出了本发明的实施形态2的效果的模式图。
图23是现有的拾取装置的主要构成部分的扩大剖面图。
图24A和25A,是对半导体芯片的厚度在100微米以下的情况下的现有的裂纹进行说明的半导体芯片的剖面图,图24B和25B分别是图24A和图25A的平面图。
图26-31是说明一直到制作成半导体芯片为止的堆叠式MCP产品的现有的制造工序的工序剖面图。
具体实施例方式
以下,参看

发明的实施形态。
首先参看图1-14C说明实施形态1。
图1-7是按照本发明的实施形态1,说明一直到使已形成了半导体元件的半导体晶片个片化为半导体芯片后剥离已粘贴到半导体晶片上的粘接性带为止的工序的工序剖面图。
先在由硅等构成的半导体晶片W1的元件形成面上形成半导体元件,然后,用毛细管40形成电连到半导体元件上的突点41(图1)。其次,从半导体晶片W1的元件形成面一侧,沿着划片线或芯片分割线,用金刚石切片机、金刚石切片刀或激光器切片机等形成达不到背面的深度的切断沟42。该切断沟的形成,叫做半切割划片(图2)。其次,向半导体晶片W1的元件形成面的表面上,粘贴作为表面保护带的粘接性带24(图3)。其次,用磨石43进行半导体晶片W1的背面研削,使半导体晶片W1薄厚度化,同时进行分割成一个一个的半导体芯片1的分割(先划片)(图4)。
在背面研削结束后,在半导体晶片W1的背面上形成粘接带等的粘接剂层29(图5)。其次,用激光器或切片刀等的切断装置把粘接剂层29切断成芯片尺寸(图6)。其次,从在保持台3上具备的晶片吸附部分保持着的已个片化的半导体晶片W1上剥离粘接性带24(图7)。
构成剥离粘接性带24且已个片化的半导体晶片W1的半导体芯片1,借助于拾取机构拾取起来后被搬运往半导体器件的规定的制造工序。
这里所使用的粘接性带,虽然可以是像通常的表面保护带那样由热可塑性薄膜基材和粘接剂层构成的粘接性带,但是也可以是热可收缩性薄膜基材与粘接剂层构成的的粘接性带。由热收缩性薄膜基材和粘接剂层构成的粘接性带,由于采用进行热收缩的办法自动地从半导体晶片上剥离,故具有可以简化后述的剥离机构的可能性。另外,上述粘接性带的粘接剂可为UV硬化型粘接剂。此外,在剥离粘接性带的工序中,在剥离粘接性带之前采用进行UV照射的办法就可以使剥离变得容易起来。在形成上述切断沟的工序中,可以使用切片刀划片、激光器、刻蚀或解理中的任何一者的手段。
此外,在进行了上述背面研削后,采用对背面进行刻蚀的办法,就可以得到背面碎裂少的半导体芯片。上述粘接剂层,既可以是热粘接性的热可塑性薄膜,此外,也可以是热硬化性的粘接剂层。此外,还可以是具有UV硬化性的热硬化性的粘接剂层。热硬化性的粘接剂层由于有时候在常温区域中带有粘接性,故存在着芯片固定到吸附台上的可能性。如果热硬化性的粘接剂层具有UV硬化性,如果在把粘接剂层粘接到半导体晶片的背面上后,在吸附固定到吸附台上之前使粘接剂层UV硬化,由于粘接性降低,故就难于产生这样的问题。此外,上述粘接剂层可以使用切片刀、激光器或刻蚀中的任何一者的切断装置。
其次,边参看图8-14C,边说明把构成个片化后的半导体晶片的半导体芯片应用于小片接合工序的例子。在该工序中,以具有粘接性带的剥离机构和半导体芯片的拾取机构的装片机为例进行说明。
图8的立体图示出了本发明的实施形态的装片机的概略构成,图9A是在剥离工序和拾取工序中使用的、图8所示的装片机的晶片吸附部分的平面图,图9B是沿着图9A的A-A线的剖面图,图10A-10C是对图8所示的晶片吸附部分和个片化后的半导体晶片的之间的位置关系进行说明的平面图。图11是对图8所示的装片机所具备的、粘接性带的剥离机构进行说明的剖面图,图12和图13,是对图8所示的装片机所具备的、半导体芯片的拾取机构进行说明的剖面图,图14A-14C,是对用本实施形态拾取的半导体芯片的装配工序进行说明的概略剖面图。
图7所示的半导体晶片W1,粘接性带24作为表面保护带被覆到具有元件形成区的元件形成面MS的整个面上,在背面上形成有粘接剂层29。粘接剂层29被形成为分离成每一个半导体芯片1。
图8所示的装片机具备用来剥离粘接性带的剥离机构,用来拾取半导体芯片的拾取机构,把所拾取的半导体芯片移送到引线框架之上的移送机构和搬运引线框架的搬运机构。剥离机构包括保持台3,TV摄像机4,剥离爪21,辅助平板22和吸引装置20。拾取机构包括保持台3,TV摄像机4,吸附筒夹10和吸引装置20。保持台3、TV摄像机4和吸引装置20为剥离机构和拾取机构所共用。
保持台3对于粘接性带的剥离方向具有至少已被分离成2个吸附区的(已被块化)的多孔质构件,例如,由薄膜状的陶瓷构件/玻璃环氧树脂基板构成的晶片吸附部分2。在本实施形态中,如图9A和9B所示,晶片吸附部分2具有7个吸附区2-1~2-7。在每一个吸附区2-1~2-7的下部都设置有用来连接真空管道的连接孔23-1~23-7。中间存在着粘接剂层29地把已结束元件形成个片化后的半导体芯片1粘接到粘接性带24(参看图11)上的半导体晶片W1的晶片一侧吸附固定到该晶片吸附部分2上。这时,如图10A和图10B所示,若把各个半导体芯片1的边配置为对于剥离方向平行或垂直,则拾取时的各半导体芯片1的位置识别就变得容易起来。另一方面,如图10A和图10C所示,若把半导体芯片1的对角线配置在对于剥离方向平行的方向(在半导体芯片为正方形的情况下具有45度的倾斜),由于粘接性带24的剥离从半导体芯片1的角部分开始,故可以容易地剥离。究竟选择哪一方的配置,可在考虑到半导体芯片1的尺寸或厚度、粘接性带24的粘接力等后决定。
保持台3,采用使半导体晶片在XY方向上移动的办法,使得每一个半导体芯片1都可在吸引装置20之上移动。TV摄像机4监视上述半导体芯片1的表面。吸引装置20配置在保持台3的下侧,具有与晶片吸附部分2的每一个吸附区2-1~2-7对应设置的至少2个系统的真空(吸引)管道和与每一者对应的2个真空(吸引)泵,切换真空管道的切换阀门,控制该切换阀门的控制装置等。
把半导体芯片1移送到引线框架之上的移送机构,包括粘接工具8、吸附筒夹10、位置修正台11和粘接头12。吸附筒夹10在拾取时使用,吸附从粘接性带24上剥离下来的半导体芯片1并将之移送到位置修正台11之上。在该位置修正台11之上对半导体芯片1的位置进行修正。位置修正后的半导体芯片1借助于粘接头12被移送到引线框架之上。此外,搬运引线框架的搬运机构,包括引线框架供给部分5、引线框架搬运装置6、头供给装置7和引线框架收纳部分9。结果变成为在引线框架供给部分5内收容有装片前的引线框架,并依次向引线框架搬运装置6送出引线框架。头供给装置7,向已搬运到引线框架搬运装置6内的引线框架的头部涂敷导电性膏。此外,引线框架收纳部分9,收容装片结束后的引线框架。
图8所示的装片机的全体的概略性的动作如下。
首先,把粘接性带24粘贴到其元件形成面一侧上,把对每一个芯片都在其背面上形成了粘接剂层29的半导体晶片W1装设到保持台3上。其次,借助于吸引装置20直接吸附半导体芯片1并固定到晶片吸附部分2上,用剥离爪21和辅助平板22剥离粘接性带24。接着,使保持台3在XY方向上移动,用TV摄像机4监视半导体芯片1的表面,采用使用该监视得到的图像数据2值化或多值化的办法,进行半导体芯片1的位置检测和用来判别合格品/不合格品的标记检测等。然后,边用由吸引装置20产生的真空吸引半导体芯片1(取决于半导体芯片的尺寸或厚度,并不是非用真空进行吸引不可),采用用吸附筒夹10进行吸附的办法拾取半导体芯片1并移送到位置修正台11之上,在对半导体芯片1的位置或根据需要对表背的位置关系进行了修正后,借助于粘接头12移送到引线框架之上。
在上述拾取结束后,使保持台3向其次应拾取的半导体芯片1的位置移动。反复进行这些动作。
另一方面,借助于引线框架供给部分5,依次把引线框架送出到引线框架搬运装置6。从头供给装置7向借助于引线框架搬运装置6搬运的引线框架的头部上涂敷导电性膏。然后,把用粘接头12移送来的半导体芯片1装配到引线框架的头部之上(将之叫做装片)。装片结束后的引线框架被搬运到引线框架收容部分9内。依次反复进行以上那样的动作。
其次,边参看图11-图14C边详细地说明上述那样的装片中的粘接性带的剥离机构和半导体芯片的拾取机构以及使用它们的剥离方法和拾取方法。
首先,准备已把粘接性带24粘贴到元件形成面上,个片化后的半导体晶片W1。半导体晶片W1由背面已分别用粘接剂层29被覆起来的半导体芯片1构成。此外,如上所述,粘接性带24起着半导体晶片的表面保护带或支持带的作用。个片化的半导体晶片W1被放置到保持台3上。在保持台3上设置有2个系统的真空管道25A、25B,管道的切换阀门26A~26G以及2个真空泵27A、27B,用它们进行粘接性带24的剥离。首先,用第1系统的真空管道25A和第1真空泵27A真空吸引已连接到粘接性带24上的半导体晶片W1固定到晶片吸附部分2上。在该状态下开始粘接性带24的剥离。
在进行剥离时,把剥离用的带粘接到粘接性带24的端侧上,用剥离爪21保持其另一端部,把进行辅助剥离的辅助平板22设置到粘接性带24的上部,用辅助平板22压住粘接性带24的上表面,边使粘接性带24弯曲边用剥离爪21向图示箭头方向上以0.1mm~100mm/sec的速度,理想的是以0.1mm~10mm/sec的速度拉粘接性带24的一端。这时,既可以给拉剥离爪21的强度增添强弱,也可以以恒定的速度使剥离爪21和辅助平板22移动的办法进行剥离。此外,还可以在用剥离爪21拉出一定的距离后,反复进行用辅助平板22压住粘接性带24的上表面的动作。然后,在剥离掉晶片吸附部分2的邻接的吸附区2-1~2-7附近的粘接性带24的一部分后,借助于切换阀门26A~26G切换成第2系统的真空管道25B,用第2真空泵27B吸附剥离后的吸附区的半导体芯片1固定到晶片吸附部分2上。在图11中示出的是剥离一直进行到吸附区2-1和吸附区2-2的边界区域,切换阀门26A进行了切换后的状态。
以下同样地,随着粘接性带24的剥离依次对切换阀门26-B~26-G进行切换。然后,在粘接性带24已完全被剥离后的状态下各个半导体芯片1,就从粘接性带24转到晶片吸附部分2上,借助于第2真空泵27B通过第2系统的真空管道25B吸引固定各个半导体芯片1。另外,辅助平板22可以使用在顶端上带有弧度或顶端为锐角的辅助平板。顶端部分的形状由粘接性带24的厚度或粘接力、柔软性等决定。其次,进行半导体芯片1的位置检测和合格品检测。然后,用晶片吸附部分2开始每一个半导体芯片1的拾取。在刚刚开始拾取后,各个半导体芯片1借助于第2真空泵27B用第2系统的真空管道25B进行吸附固定,在该状态下用吸附筒夹10仅仅用吸附力进行拾取。
然后,拾取继续进行,在进行到吸附区的边界附近的那一时刻,采用切换切换阀门的办法切换成第1系统的真空管道25A,用第1真空泵27A吸引已被拾取后的吸附区。在图12中,示出了拾取一直到吸附区2-1为止大体上结束,与吸附区2-1对应的切换阀门26A已闭合上的状态。
借助于此,采用拾取半导体芯片1以使晶片吸附部分2的一部分露出来的办法,在可以防止第2真空泵27B的吸引力降低的同时,还可以吸附残存在已露出来的晶片吸附部分2上的未变成为不合格芯片或产品的晶片的周边部分的芯片固定到晶片吸附部分2上。另外,也可以在拾取继续进行且已拾取了吸附区内的半导体芯片1的那一时刻,如图13所示,关闭切换阀门停止吸附。在图13中,示出的是拾取进行到吸附区2-4为止,与吸附区2-1~2-3对应的切换阀门26-A~26C已闭合上的状态。
然后,如图14A-14C所示,向引线框架上小片接合。图14A示出了粘接性带24的剥离工序,图14B示出了拾取工序,图14C示意地示出了用导电性膏14等把半导体芯片1安装到引线框架13上去的工序。此外,废弃不合格品和未变成为晶片外周部分产品的半导体芯片1。
倘采用以上那样的构成和方法,由于可以效果良好地以与粘接性带的剥离位置或半导体芯片的拾取状态对应的最佳吸引力吸附固定个片化后的半导体晶片,故可以防止因半导体芯片的薄型化而成为问题的粘接性带的剥离时或拾取时的半导体芯片的裂纹或碎裂。此外,由于仅仅用吸附进行拾取,故还可以防止在现有技术的上推推杆进行拾取中成为问题的在上推推杆接触部分处产生的对半导体芯片的损伤。此外,由于已形成了粘接剂层,故叠层半导体芯片的堆叠式MCP产品的制作就可以变得容易起来。
在现有技术的情况下,当半导体芯片的厚度变成为50微米以下时,虽然在半导体芯片的拾取时会多发裂纹(100pcs/100pcs),但是,倘采用本实施形态,则即便是半导体芯片的厚度在50微米以下裂纹的发生也可以降低到可以忽略(0/100pcs)的那种程度。
另外,在本实施形态中,虽然以装片机为例进行的说明。但是对于需要粘接性带的剥离机构或半导体芯片的拾取机构的别的装置,也可以应用。这样的装置,包括在剥离掉粘接性带后把每一个半导体芯片拾取起来堆放到托盘内的拾片机;在剥离掉粘接性带后把每一个半导体芯片拾取起来用倒装芯片连接技术进行装配到安装基板上的倒装芯片粘接机;在剥离掉粘接性带后把每一个半导体芯片拾取起来装配到热可塑性的薄膜基板之上的薄膜粘接机;在剥离掉粘接性带后,把每一个半导体芯片拾取起来,用加热工具装配到TAB带上的内引线粘接机等。
其次,参看图15-18C说明实施例2。
图15-17,是说明在剥离掉半导体晶片W30上形成了半导体元件后把粘贴到已个片化为半导体芯片30的半导体晶片W30上的粘接性带34之后一直到把半导体晶片W30的粘接剂层39切断成芯片尺寸为止的工序的工序剖面图。一直到背面研削为止的工序,实质上与上述的实施形态1(参看图1-4)是同样的,故省略其说明。
在背面研削结束后,在半导体晶片W30的背面上形成粘接带等的粘接剂层39(图15)。其次,从保持在保持台33上所具备的晶片吸附部分上的已个片化的半导体晶片W30上剥离粘接性带34(图16)。其次,用激光器或切片刀等的切断装置,在保持台33之上把粘接剂层39切断成芯片尺寸(图17)。构成已剥离掉粘接性带34的个片化的半导体晶片W30的半导体芯片30,借助于拾取机构(参看图8)拾取起来搬运到半导体器件的规定的制造工序。
其次,参看图18A-18C,说明从粘接性带的剥离工序到拾取半导体芯片的工序。在这些图中所示的半导体晶片W30,粘接性带34作为表面保护带被覆到具有元件形成区的元件形成面整个面上,在背面上则形成有粘接薄板或粘接薄膜等的粘接剂层39。粘接剂层39,在半导体晶片整个面上形成。
首先,在保持台33之上边用吸引装置20直接吸附半导体晶片W30固定到保持台33上,边用剥离爪31和辅助平板32从半导体晶片W30的表面上剥离粘接性带34。这时,要用真空把半导体晶片W30固定到已连接到与被分割成2个以上的吸附区对应起来分成2个系统以上的真空管道上的保持台33上,边根据粘接性带34的剥离状态切换各多孔质块的管道系统边剥离粘接性带34(图18A)。接着,用激光器或切片刀等的切断装置35把粘接剂层39切断成芯片尺寸。这时也要用真空把半导体晶片W30固定到已连接到与被分割成2个以上的吸附区对应起来分成2个系统以上的真空管道上的保持台33上,边与切断状况相一致地切换连接到各多孔质块上的管道系统边切断粘接剂层39(图18B)。然后,开始来自晶片吸附部分33的每一个半导体芯片30的拾取。在刚刚开始拾取后,各个半导体芯片30用吸附筒夹36仅仅用吸引力进行拾取(图18C)。被拾取起来的各个半导体芯片30被粘接到引线框架等上。作为切断装置的激光器,包括YAG激光器、二氧化碳激光器、单脉冲激光器等。
可在这里使用的粘接性带,就如通常的表面保护带那样虽然可以是热可塑性薄膜基材与粘接剂层的构成的粘接性带,但是,也可以是热收缩性薄膜基材与粘接剂层的构成的粘接性带。由热收缩性薄膜基材与粘接剂层构成的粘接性带,由于借助于进行热收缩而自动地从半导体晶片上剥离,故后述的剥离机构具有可以简化的可能性。此外,上述粘接性带的粘接剂,也可以是UV硬化型粘接剂。在剥离粘接性带的工序中,由于在剥离粘接性带前进行UV照射故可以使剥离变得容易起来。在形成上述切断沟的工序中,可以使用切片刀划片、激光器、刻蚀或解理中的任何一者的手段。
此外,在进行了上述背面研削后,采用对背面进行刻蚀的办法,就可以得到背面碎裂少的半导体芯片。上述粘接剂层,既可以是热粘接性的热可塑性薄膜,也可以是热硬化性的粘接剂层。此外,还可以是具有UV硬化性的热硬化性的粘接剂层。热硬化性的粘接剂层由于有时候在常温区域中带有粘接性,故存在着芯片固定到吸附台上的可能性。如果热硬化性的粘接剂层具有UV硬化性,如果在把粘接剂层粘接到半导体晶片的背面上后,在吸附固定到吸附台上之前使粘接剂层UV硬化,由于粘接性降低,故就难于产生这样的问题。此外,上述粘接剂层可以使用切片刀、激光器或刻蚀中的任何一者的切断装置进行切断。
如上所述,倘采用本实施例,由于可以效果良好地以与粘接性带的剥离位置和半导体芯片的拾取状态对应的最佳吸引力吸附固定个片化后的半导体晶片,故可以防止因半导体芯片的薄型化而成为问题的粘接性带的剥离时或拾取时的半导体芯片的裂纹或碎裂。此外,由于仅仅用吸附进行拾取,故还可以防止在现有技术的上推推杆进行拾取中成为问题的在上推推杆接触部分处产生的对半导体芯片的损伤。此外,由于已形成了粘接剂层,故叠层半导体芯片的堆叠式MCP产品的制作就可以变得容易起来。
其次,参看图19A-22说明本发明的实施形态3。
该实施形态的特征在于处理具有在其元件形成面上成膜的低介电系数绝缘膜(通常叫做low-k膜),与该低介电系数绝缘膜接连起来粘贴上的粘接性带(表面保护带),在在与上述元件形成面相反的面的整个面上形成的粘接剂层的半导体晶片这一点。
作为低介电系数绝缘膜的材料,例如在在半导体器件中使用的情况下,广为使用的是相对介电系数比硅氧化膜(相对介电系数为3.9~4.1)还低的掺氟硅氧化膜(3.4~3.7)。
低介电系数绝缘膜,可以分类为2种材料。第1种材料,是采用使硅氧化膜(相对介电系数为3.9~4.1)的密度不断降低的办法来降低相对介电系数的材料,有MSQ(Methyl SilsesquioxaneCH3-SiO1.5(相对介电系数为2.7~3.0),H(Hydrogen SilsesquioxaneH-SiO1.5(相对介电系数为3.5~3.8),多孔质HSQ(H-SiOX(相对介电系数为2.2)),多孔质MSQ(CH3-SiO1.5(相对介电系数为2.0~2.5))等,都可以用涂敷法形成。作为用等离子体CVD法形成的,有有机氧化硅(CH3-SiO1.5(相对介电系数为2.5~3.0))等。在本实施形态中,被叫做low-k膜的低介电系数绝缘膜,指的是其介电系数不足3.9的绝缘膜。作为第2种,是在有机膜中具有低的极化率的材料。例如PTFE(Polytetrafluoroethylene(相对介电系数2.1)),PAE(Polyarylether相对介电系数2.7~2.9),多孔质PAE(相对介电系数为2.0~2.2),BCB(Benzocyclobutene相对介电系数为2.6~3.3)等。这些都可以用旋转涂敷等的涂敷法成膜。
图19A-19D,说明先在元件形成面上形成半导体元件,使已在该半导体元件之上形成了低介电系数绝缘膜的半导体晶片个片化为半导体芯片后,剥离粘接性带,把半导体晶片的粘接剂层和低介电系数绝缘膜切断成芯片尺寸,然后使低介电系数绝缘膜熔融为止的工序的工序剖面图。一直到背面研削工序为止的内容实质上都与上述的实施形态1(参看图1-4)是同样的,故省略其说明。
图19A所示的半导体晶片已经个片化为半导体芯片39,在与元件形成区相反的面上已形成了粘接剂层39。半导体元件已用树脂封接起来,与该封接树脂接连地成膜有低介电系数绝缘膜210,使得与低介电系数绝缘膜210接连那样地粘接性带34已被覆到半导体晶片的元件形成面的整个面上。
首先,如图19A所示,借助于吸引装置20边直接吸附半导体晶片并将之固定到保持台33上,边用剥离爪31和辅助平板32从半导体晶片表面上剥离粘接性带34。这时,要用真空把半导体晶片W30固定到已连接到与已分割成2个以上的吸附区对应地分成2个系统以上的真空管道上的保持台33上,根据粘接性带34的剥离状态边切换各个多孔质块的管道系统边剥离粘接性带34(图19A)。接着,用激光器或切片刀等切断装置35,把粘接剂层39切断成芯片尺寸。这时也要用真空把半导体晶片W30固定到已连接到与被分割成2个以上的吸附区对应起来分成2个系统以上的真空管道上的保持台33上,边与切断状况相一致地切换连接到各多孔质块上的管道系统边切断粘接剂层39(图19B)。与粘接剂层39的各个切断相并行地,或者在粘接剂层39的切断后,使低介电系数绝缘膜210的周缘部分熔融。在本实施形态中,以20度~40度的入射角θ向低介电系数绝缘膜210的周缘部分进行照射激光(图19C)。借助于此,一端熔融后的低介电系数绝缘膜210,在达到了原来的温度时,就以高的贴紧性与封接树脂进行再粘接。其结果是可以得到难以产生膜剥离的半导体芯片。在作为切断装置35使用激光器的情况下,可以完全照原样不变地使用该切断装置35。
然后,用晶片吸附部分拾取个片化后的各个半导体芯片38。在刚刚开始拾取后,用吸附筒夹36仅仅用吸附力进行拾取各个半导体芯片38。被拾取起来的各个半导体芯片38被接合到引线框架等上。
如上所述,倘采用本实施形态,则除去上述的裂纹和碎裂的防止外,还可以得到具有以高的贴紧性与各个半导体芯片的元件形成区的封接树脂进行再粘接的低介电系数绝缘膜的半导体器件。参看图20A-22说明本实施形态的效果。图20A-20D、图21是比较例的模式图,图22的模式图示出了本实施形态的效果。图20A是用切片刀从半导体晶片个片化的现有的半导体芯片的端部扩大图,图20B是对图20A的芯片进行了500次热循环试验(以下,简单叫做TCT)后的端部扩大图。此外,图20C是用激光器从半导体晶片个片化后的现有技术的半导体芯片的端部扩大图,图20D是对图20C的芯片进行了同样的500次的TCT后的端部扩大图。在使用切片刀的情况下,如图20A所示,即便是在刚刚切断后是良好的状态,如图20B所示,在TCT后也发生了许多水泡,判明存在着多个微小的裂纹。在使用激光器的情况下,TCT后的异常虽然未发现,但是,如图20D的模式图和图21的平面图所示,已经确认低介电系数绝缘膜的破坏。在经过了本实施形态的熔融工序的情况下,如图22的平面图所示,没有剥离的良好的低介电系数绝缘膜已得到确认。
以上虽然说明了本发明的实施形态,但是本发明并不限定于这些实施形态,在下述的技术方案的范围内可以进行种种的变形。此外,在这些实施形态中含有种种的阶段的发明,采用把所展示的多个构成要件适当组合起来的办法就可以抽出种种的发明。例如,在上述的实施形态的先划片的工序中,虽然借助于使用磨石的研削从背面使半导体晶片薄厚度化,但是并不限定于此,例如也可以用刻蚀工序使之薄厚度化。此外,在实施形态3中,虽然说明的是已在半导体晶片背面的整个面上都形成了粘接剂层39,但是,低介电系数绝缘膜的熔融工序,并不限定于该形态,对于在每一个半导体芯片的背面上分别形成粘接剂层而无须切断粘接剂层的情况,当然也可以应用。此外,上述的低介电系数绝缘膜的熔融工序,可以与半导体晶片的个片化工序并行地应用。
权利要求
1.一种半导体器件的制造方法,具备在已在第1面上形成了半导体元件的半导体晶片的上述第1面上,设置最终加工厚度或最终加工厚度以上的沟,向已设置有上述沟的上述晶片的上述第1面之上粘贴粘接性带,通过从与已粘贴上上述粘接性带的上述半导体晶片的上述第1面相反的第2面使上述半导体晶片薄厚度化,把上述半导体晶片分离成已形成了上述半导体元件的多个半导体芯片,向分离后的上述半导体晶片的整个背面上粘贴粘接剂层,使得分离成每一个上述半导体芯片那样地切断上述粘接剂层,在切断上述粘接剂层后,用至少已分离成2个吸附区的多孔质构件边借助于吸附固定上述半导体晶片,边从上述半导体晶片上剥离上述粘接性带。
2.根据权利要求1所述的半导体器件的制造方法,包括剥离上述粘接性带,相对上述粘接性带的剥离方向,通过用与上述吸附区对应的至少2个系统的吸引路径吸附上述半导体晶片,把上述半导体晶片固定到上述多孔质构件上,通过沿着剥离方向剥离上述粘接性带,在彼此邻接的上述吸附区的一方中已剥离掉粘接性带的一部分时,在上述粘接性带的剥离达到邻接的上述吸附区的另一方的附近处切换上述吸引路径吸附上述半导体晶片,把上述半导体晶片固定到上述另一方的吸附区中的上述多孔质构件上。
3.根据权利要求1所述的半导体器件的制造方法,上述半导体晶片,具有在上述第1面上形成的封接树脂,与该封接树脂接连起来成膜的低介电系数绝缘膜,上述粘接性带,中间存在着上述封接树脂和上述低介电系数绝缘膜地粘接到上述半导体晶片的上述第1面上,上述方法还具备使上述低介电系数绝缘膜的至少一部分熔融后再粘接到上述封接树脂上。
4.根据权利要求1所述的半导体器件的制造方法,上述粘接性带,由热收缩性薄膜基材和粘接剂层构成,可借助于热收缩从上述半导体晶片上剥离。
5.根据权利要求4所述的半导体器件的制造方法,上述粘接性带的粘接剂,是UV硬化型粘接剂。
6.根据权利要求5所述的半导体器件的制造方法,上述粘接性带在UV照射后被剥离。
7.根据权利要求1所述的半导体器件的制造方法,上述沟,借助于切片刀划片、激光器、刻蚀或解理中的任何一者设置。
8.根据权利要求1所述的半导体器件的制造方法,还具备在使上述半导体晶片薄厚度化后,对上述第1面进行刻蚀。
9.根据权利要求1所述的半导体器件的制造方法,上述粘接剂层,是具有UV硬化剂的热硬化性的粘接剂层。
10.根据权利要求1所述的半导体器件的制造方法,上述粘接剂层,用切片刀、激光器和刻蚀中的任何一者进行。
11.一种半导体器件的制造方法,具备在已在第1面上形成了半导体元件的半导体晶片的上述第1面上,设置最终加工厚度或最终加工厚度以上的沟,向已设置有上述沟的上述晶片的上述第1面之上粘贴粘接性带,通过从与已粘贴上上述粘接性带的上述半导体晶片的上述第1面相反的第2面使上述半导体晶片薄厚度化,把上述半导体晶片分离成已形成了上述半导体元件的多个半导体芯片,向分离后的上述半导体晶片的整个背面上粘贴粘接剂层,用至少已分离成2个吸附区的多孔质构件边借助于吸附固定已粘贴上述粘接剂层的上述半导体晶片,边从上述半导体晶片上剥离上述粘接性带,边借助于吸附把已剥离掉上述粘接性带的上述半导体晶片固定到上述多孔质构件上,边使得分离成每一个上述半导体芯片那样地切断已粘接到上述第2面的整个面上的上述粘接剂层。
12.根据权利要求11所述的半导体器件的制造方法,包括剥离上述粘接性带,相对上述粘接性带的剥离方向,通过用与上述吸附区对应的至少2个系统的吸引路径吸附上述半导体晶片,把上述半导体晶片固定到上述多孔质构件上,通过沿着剥离方向剥离上述粘接性带,在彼此邻接的上述吸附区的一方中已剥离掉粘接性带的一部分时,在上述粘接性带的剥离达到邻接的上述吸附区的另一方的附近处切换上述吸引路径吸附上述半导体晶片,把上述半导体晶片固定到上述另一方的吸附区中的上述多孔质构件上,上述粘接剂层的切断,与和其切断状况相一致地切换上述至少2个或2个以上系统的吸引路径的控制并行地执行。
13.根据权利要求11所述的半导体器件的制造方法,上述半导体晶片,具有在上述第1面上形成的封接树脂,与该封接树脂接连起来成膜的低介电系数绝缘膜,上述粘接性带,中间存在着上述封接树脂和上述低介电系数绝缘膜地粘接到上述半导体晶片的上述第1面上,上述方法还具备使上述低介电系数绝缘膜的至少一部分熔融后再粘接到上述封接树脂上。
14.根据权利要求11所述的半导体器件的制造方法,上述粘接性带,由热收缩性薄膜基材和粘接剂层构成,可借助于热收缩从上述半导体晶片上剥离。
15.根据权利要求14所述的半导体器件的制造方法,上述粘接性带的粘接剂,是UV硬化型粘接剂。
16.根据权利要求15所述的半导体器件的制造方法,上述粘接性带在UV照射后被剥离。
17.根据权利要求11所述的半导体器件的制造方法,上述沟,借助于切片刀划片、激光器、刻蚀和解理中的任何一者设置。
18.根据权利要求11所述的半导体器件的制造方法,还具备在使上述半导体晶片薄厚度化后,对上述第1面进行刻蚀。
19.根据权利要求11所述的半导体器件的制造方法,上述粘接剂层,是具有UV硬化剂的热硬化性的粘接剂层。
20.根据权利要求11所述的半导体器件的制造方法,上述粘接剂层,用切片刀、激光器和刻蚀中的任何一者进行。
全文摘要
一种半导体器件的制造方法,包括在已在第1面上形成了半导体元件的半导体晶片的上述第1面上,设置最终加工厚度以上的沟;向已设置有上述沟的上述晶片的上述第1面之上粘贴粘接性带;采用从与已粘贴上上述粘接性带的上述半导体晶片的上述第1面相反的第2面使上述半导体晶片薄厚度化的办法,把上述半导体晶片分离成已形成了上述半导体元件的多个半导体芯片,向分离后的上述半导体晶片的整个背面上粘贴粘接剂层;使得分离成每一个上述半导体芯片那样地切断上述粘接剂层;在切断上述粘接剂层后,用至少已分离成2个吸附区的多孔质构件边借助于吸附固定上述半导体晶片,边从上述半导体晶片上剥离上述粘接性带。
文档编号H01L21/304GK1536646SQ20041003163
公开日2004年10月13日 申请日期2004年3月31日 优先权日2003年4月3日
发明者田久真也, 黑泽哲也, 也, 持田欣也, 一, 渡边健一 申请人:株式会社东芝, 琳得科株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1