半导体装置的制造方法

文档序号:6834070阅读:225来源:国知局
专利名称:半导体装置的制造方法
技术领域
本发明涉及使用典型地通过墨水溅射方法的液滴流注方法的半导体制造方法。本发明尤其涉及用于形成在半导体装置中所设有的接触孔的技术。
背景技术
关于半导体装置制造的相关技术的描述,鉴于设备费用的降低和过程的简化,考虑使用液滴流注系统,形成薄膜或布线图。
已用下列方法在半导体装置中形成接触孔。首先,当抗蚀剂全面地施加在基片上并预烘干;通过掩模应用紫外线辐射时,执行光刻;并之后曝光基片来形成抗蚀图形。随后,存在接触孔部分的绝缘薄膜部分、半导体薄膜、导电薄膜等之类部分,使用抗蚀图形作为掩模来加以蚀去,从而形成接触孔。(日本Laid-Open专利申请No.2000-89213)然而,当使用半导体装置制造的传统过程形成接触孔时,为了在不形成接触孔的薄膜上施加抗蚀剂,抗蚀剂几乎在整个底基片上形成。因此,抗蚀剂的生产能力相当地低。此外,即使提高了生产能力,当底基的表面状态和施加的抗蚀剂数量不能完全地控制时,抗蚀剂扩展到接触孔的区域,因此,接触缺陷发生。

发明内容
考虑到上面的问题提出本发明,本发明的一个目标是建议一个用于形成好接触孔和在此接触孔上设有的绝缘薄膜,诸如夹层绝缘薄膜、平面化薄膜、栅极绝缘薄膜和类似的薄膜的方法。本发明进一步的目标是提供一个用于制造在低开销下具有高产量高生产能力的半导体装置的方法。
根据本发明,在形成半导体装置的薄膜上,选择性地形成液体防护的第一有机薄膜(在下文称为第一有机薄膜)在此设置半导体装置接触孔,。在没有形成第一有机薄膜的薄膜部分上,形成第二有机薄膜,随后第一有机薄膜被移除;因此,在第一有机薄膜已经形成的部分上,形成接触孔。
首先,在形成提供接触孔的半导体装置的薄膜区域上,形成液体防护(防水的、防油的)的第一有机薄膜。第一有机薄膜可能通过典型地使用墨水溅射方法的液滴流注方法来形成;然而,只要有可能选择性地形成第一有机薄膜,形成方法不受限制。
在其上设有第一有机薄膜的薄膜包括半导体薄膜、导电薄膜、绝缘薄膜或类似的。在此,半导体薄膜典型地包括,但不限于每个形成源极区域、漏极区域和沟道区域的薄膜。此外导电薄膜典型地包括,但不限于在半导体装置中形成栅极电极、源电极、漏电极和诸如扫描线、信号线或类似的线路的薄膜。绝缘薄膜典型地包括,但不限于栅极绝缘薄膜、夹层绝缘薄膜、平面化薄膜或类似的。
接下来,在没有形成第一有机薄膜的薄膜区域上形成第二有机薄膜。通过旋转涂层或液滴流注方法在基片上形成第二有机薄膜。在此,第一有机薄膜对第二有机薄膜是相斥的;因此,第二有机薄膜不在第一有机薄膜上形成。第二有机薄膜在半导体装置中起到夹层绝缘薄膜、平面化薄膜、栅极绝缘薄膜或类似的薄膜作用。
接着,第一有机薄膜被移除,并在第一有机薄膜已经形成的区域上形成接触孔。第一有机薄膜可能通过干蚀刻、湿蚀刻、使用大气中的等离子体蚀刻、水洗或使用激光或电子束处理来移除。根据第一有机薄膜的材料可以适当地选择用于蚀刻(腐蚀剂)的溶液、溶剂或气体或激光。
在此值得注释的是,在第一有机薄膜本质上不是液体防护的情况下,在形成第二有机薄膜之前,第一有机薄膜要用等离子体、激光、电子束或类似的来处理。通过处理可以使得第一有机薄膜的表面是液体防护的,且可防止第二有机薄膜粘附第一有机薄膜。因此,可以形成好的接触孔。自然地,当第一有机薄膜是用液体防护的材料构成时,可以省略这样的处理,或者可以为了改善液体防护而执行这样的处理。
在此值得注释的是,在这个说明中,“第一有机薄膜”包括一个有机薄膜,它的防护性被改善或它通过预处理形成液体防护,尽管此有机薄膜本质上不是液体防护或者是液体防护不够。
此外,在第二有机薄膜上和接触孔中形成导电薄膜;因此,导电薄膜可以通过接触孔电连接到诸如TFT的元件。可能通过使用含有导电材料的膏剂的液滴流注法或通过使用含有导电材料的靶的喷涂,来形成导电薄膜。导电材料可以典型地从诸如Ag,Au,Cu,Ni,Pt,Pd,Ir,Rh,W,Al,Ta,Mo,Cd,Zn,Fe,Ti,Si,Ge,Zr和Ba的金属、卤化银粒子、扩散的毫微粒子、用作透明导电薄膜的氧化铟锡(ITO)、氧化锌(ZnO)、添加镓的氧化锌、2%到20%的氧化锌混合到氧化铟的氧化铟锌(IZO)、有机铟、有机锡、氮化钛和类似的中选择。硅(Si)或氧化硅(SiOx)可能包含在膏剂或用于溅射的靶中,作为特别的用于透明导电薄膜的材料。例如,可能使用其中氧化硅被包含在ITO(通常称为ITO-SiOx;然而为了方便下文也称为ITSO的导电材料。此外,那些材料的层可以堆叠以形成所需的导电薄膜。
此外,通过设有包括含有有机或无机化合物的的光发射元件使用TFT控制显示装置。这样显示装置被叫做有源矩阵显示装置。
如本发明中的,液体防护的材料用于第一有机薄膜(在将成为接触孔部分上提供的薄膜),所以可以在预设部分上形成作为夹层绝缘薄膜、平面化薄膜、栅极绝缘薄膜或类似的第二有机薄膜。此外,无需使用抗蚀剂掩模执行曝光或显影,可以在接触孔中或周围形成绝缘薄膜;因此,与传统过程相比过程可以被大大地简化。此外,在第一有机薄膜上不形成第二有机薄膜,因此第一有机薄膜可以更容易地被移除且通过简单步骤可以形成好的接触孔。
甚至在对第一有机薄膜使用不是液体防护的材料的情况下,在形成第二有机薄膜之前,可以通过使用等离子体、激光、电子束或类似的液体防护处理来使得第一有机薄膜是液体防护的。因此,可以提出材料的更广泛选择。此外,在使用本质上是液体防护材料的情况下,抗蚀性可通过处理来改善。
在形成第一有机薄膜、导电薄膜和类似薄膜中,通过改变基片和通过液滴流注方法从其流注液体的喷嘴的相对位置,含有此薄膜的材料的液体可以应用到任意区域。此外,形成的图形的厚度或宽度可以通过喷嘴直径、液体流注速率和喷嘴的运动速度和和应用流注的材料的基片之间相对关系来控制。因此,薄膜的材料可以被精确地流注,且在所期望的区域形成薄膜。因为使用抗蚀剂掩模来曝光和显影的图形成型过程可以省略,所以可以试图大大简化过程和降低开销。此外,通过使用液滴流注方法,可以在任意区域形成图形,且可控制所形成图形的厚度和宽度。因此,甚至一侧具有1m到2m的大的半导体元件基片可以低开销高产量的制造。
如上所述,半导体装置的接触孔和其周围的绝缘薄膜可以经过简单过程精确地形成。这是一种以低开销高生产能力和高产量的半导体装置的制造方法。


图1A到1C是描述反向错开的TFT的制造方法的图形;图2A到2C是描述反向错开的TFT的制造方法的图形;图3A到3C是描述反向错开的TFT的制造方法的图形;图4A到4D是描述反向错开的TFT的制造方法的图形;图5A到5D是描述反向错开的TFT的制造方法的图形;图6A到6C是描述有源有×矩阵基片的制造方法的图形;图7A到7C是描述有×有源矩阵基片的制造方法的图形;图8A到8B是描述有×有源矩阵基片的制造方法的图形;图9A到9B是估计第一有机薄膜和第二有机薄膜的接触角的图表;图10A到10D是描述沟道蚀刻类型TFT的制造方法的图形;图11A到11D是描述沟道蚀刻类型TFT的制造方法的图形;图12是描述有×有源矩阵液晶显示装置的图形;图13是描述有×有源矩阵液晶显示装置的图形;图14A到14C显示顶部发射类型、底部发射类型和双发射类型的光发射装置;图15是显示显示面板的模块的图形;图16A到16C是描述显示装置例子的图形;图17是显示使用硅烷接合剂的改良玻璃的外部基片的图形;图18A和18B是EL显示装置的面板中像素的顶视图;图19A和19B是每个显示EL显示装置的面板中像素的横截面视图。
具体实施例方式
实施例模式1在这个实施例模式中,将参考图1A到图3C描述应用本发明到反向错开的(底部栅极类型)TFT的制造的情况。
首先,在基片100上形成栅极电极104和供给信号到栅极电极104的扫描线路105。最好部栅极电极104和扫描线路105都通过选择性地流注每个含有导电材料的合成物在基片100上形成。在这种情况下,不需要使用掩模图形进行的蚀刻,所以制造过程量可以大大地简化。
用作液体流注手段的喷嘴102的直径是,每个设在0.1μm到50μm(最好0.6μm到26μm),且从喷嘴102所流注的合成物数量每个设在0.00001pl到50pl(最好0.0001pl到10pl)。流注的数量按喷嘴102的直径比例增加。此外,目标和喷嘴流注口之间的距离应该尽可能短,最好降低到0.1mm到2mm,以将流注的合成物施加至所期望区域。
来自每个流注口所流注的合成物使用在溶剂中导体被溶解或分散的材料。可以使用诸如Ag,Au,Cu,Ni,Pt,Pd,Ir,Rh,W,Al,Ta,Mo,Cd,Zn,Fe,Ti,Si,Ge,Zr和Ba的金属、卤化银粒子、扩散的毫微粒子或类似的。此外,ITO,ITSO,有机铟、有机锡、氧化锌(ZnO)、氮化钛(TiN)或类似的可以用作透明导电薄膜。在此值得注释的是,栅极电极104和扫描线路105可以由将含有上述材料的导电薄膜堆叠组成。
考虑到电阻率,从每个流注口流注的合成物最好是在溶剂中溶解或扩散金、银或铜的溶液。更好的是,使用具有低阻抗的银或铜。在此值得注释的是,在使用铜的情况下,为了防止杂质混合进来,最好设有阻挡层薄膜。溶剂可能使用诸如丁基醋酸盐或乙荃醋酸盐的酯,诸如异丙醇或乙醇的酒精,或诸如甲基乙荃酮或丙酮的有机溶剂。
作为在使用铜作布线的情况下使用的阻挡层薄膜,绝缘或导电材料含有诸如氮化硅、氧氮化硅、氮化铝、氮化钛或氮化钽(TaN),且可能通过液滴流注方法施加材料。
为了防止干燥和允许合成物被平滑地从每个流注口流注,液滴流注方法中使用的合成物的粘度最好是300mPa·s或更少。可以根据溶剂或用途适当地设置每个合成物的粘度、表面张力或类似的。例如,ITO,ITSO,有机铟或有机锡在溶剂中被溶解或扩散的合成物的粘度是5mPa·s到50mPa·s;在溶剂中银被溶解或扩散的合成物的粘度是5mPa·s到2mPa·s;且在溶剂中金被溶解或扩散的合成物的粘度是10mPa·s到20mPa·s。
基于每个喷嘴的直径或所需图形的形状,为了防止每个喷嘴堵塞或为了形成良好的图形,最好是导体粒子的直径尽可能的小,最好0.1μm或更小些。可能通过诸如电解方法、雾化方法或降低湿度的已知方法形成每个合成物,粒子大小通常大约是0.5μm到10μm。在此值得注释的是,在通过气体蒸发方法形成合成物的情况下,用分散剂保护的毫微粒子细小至大约7nm,且当他们每个用涂层防护时,毫微粒子在室温下稳定地扩散,其性能类似于液体,不会聚合。因此最好使用涂层。
通过蚀刻先前使用掩模图形在整个基片上形成的导电薄膜,来形成栅极电极104和扫描线路105。在这个场合,以传统方式通过曝光和显影形成掩模图形;然而,考虑到过程的简化,需要通过液滴流注方法形成掩模图形。可以通过选择性地从流注喷嘴102流注在导电薄膜上,含有诸如丙烯酸、苯环丁烯、聚酰胺、聚酰亚胺、苯咪唑或聚乙烯酒精的的有机材料的合成物来形成掩模图形。可以通过选择性地流注合成物的使用流注方法,仅仅在所期望区域形成图形。
甚至含有感光剂的合成物可以用于掩模图形的材料。例如,被使用在已知溶剂中溶解或扩散的是正性抗蚀剂的酚醛清漆树脂和感光剂的萘并苯醌叠氮化物化合物;负性抗蚀剂的基座树脂,二苯基硅烷二醇和酸发生器;或类似的合成物,。另外,可能使用一种材料,其中骨干结构由硅(Si)和氧(O)的结合物构成,除了氢(典型的硅氧烷树脂),至少含有作为取代基的氢,或进一步至少含有氟、烷基族和作为取代基的芳香烃中的一个。希望在蚀刻导电薄膜之前,此掩模图形是烘干的和硬化的。
在通过蚀刻形成栅极电极104和扫描线路105的情况下,为了避免与随后形成的半导体薄膜107的电连接,最好通过使栅极电极104和扫描线路105成锥形改善该步骤的覆盖范围。蚀刻后移除掩模图形。
玻璃基片、石英基片、由诸如氧化铝的绝缘材料构成的基片、能忍耐粘贴过程的操作温度的耐热塑料基片或类似的可用作为基片100。在这样的情况下,为了防止穿杂质之类渗透过基片,期望形成氧化硅(SiOx)、氮化硅(SiNx)、氧氮化硅(SiOxNy)(x>y),氮氧化硅(SiNxOy)(x>y)(x,y=1,2...),或类似的绝缘薄膜。此外,可以使用由诸如不锈钢构成的基片或为它的表面设有诸如氧化硅或氮化硅的绝缘薄膜的半导体基片。(图1A)在栅极电极104和扫描线路105上形成栅极绝缘薄膜106。最好通过诸如等离子体CVD或溅射的薄膜形成方法,使用含有诸如氮化硅、氧化硅的硅的绝缘薄膜来形成栅极绝缘薄膜。
栅极绝缘薄膜106上形成半导体薄膜107。半导体薄膜107可能是非结晶半导体(SAS)、结晶半导体或部分非结晶半导体(SAS)。半导体薄膜可能含有硅、硅锗(SiGe)或类似的作为主要成分。可以通过等离子体CVD或类似的形成半导体薄膜107。此外,半导体薄膜107最好具有10nm到60nm的厚度。
通过液滴流注方法在半导体薄膜107上形成第一掩模图形108。最好使用具有抗蚀剂或耐热高分子量材料形成第一掩模图形108。最好使用含有具有更少脂肪族的部分的高极性杂原子的高分子量材料,并进一步提供含有作为主链的芳环和杂环。聚酰亚胺和聚苯并咪唑可以作为这样的高分子量材料的典型例子。在使用聚酰亚胺的情况下,含有聚酰亚胺的合成物从喷嘴127流注,并施加到半导体薄膜107上,在200℃烘干30分钟;因此,形成掩模图形108(图1B)接下来,使用掩模图形108蚀刻半导体薄膜107来形成半导体岛薄膜109。基于氯的气体用Cl2,BCl3,SiCl4或CCl4代表;基于氟的气体用CF4,SF6,NF3或CHF3代表;或者O2可用作蚀刻气体。蚀刻后移除掩模图形108。
形成的掩模图形110与重叠在栅极电极104上的半导体岛状薄膜109相接触。通过使用喷嘴128的液滴流注方法,可以直接在半导体岛状薄膜109上形成掩模图形110。液体合成物的材料从能够形成电绝缘薄膜的丙烯酸、苯环丁烯、聚乙烯酒精等等中选择。最好使用聚酰胺。此外,,掩模图形110不仅作为掩模而且在掺杂杂质成份111到半导体岛状薄膜109中作为沟道保护薄膜。掩模图形110的厚度可能大于1m,最好5m或更多(图1C)。
随后,通过掺杂杂质成份111到半导体岛薄膜109,在没有被掩模图形覆盖的半导体岛状薄膜109的一部分中形成杂质区域。作为杂质成份111,可能使用设有p型导电性的硼,或设有n型导电性的砷或磷。可能通过离子掺杂或离子植入来执行掺杂。在半导体岛状薄膜109中形成用杂质掺杂的沟道区域112和源极区域113和漏极区域114。此外,在掺杂之后,可能通过热处理执行活化作用(图2A)。
其后,掩模图形110可能被剥落或剩留下来作为随后形成的钝化薄膜的一部分。
在此没有显示,掩模图形110可能保留在109上,掺杂杂质的半导体薄膜可形成并形成图形,随后执行蚀刻来分离掺杂杂质的半导体薄膜;因此,可能形成源极区域113和漏极区域114。在这种情况下,掩模图形110起到沟道保护薄膜作用;因此,在蚀刻掺杂杂质的半导体薄膜中,可以防止由于过度蚀刻(之类)将成为沟道区域的一部分半导体薄膜109的损害。因此,可以获得具有高迁移性和稳定特征的沟道保护类型(沟道阻塞类型)TFT。通过使用其中诸如硼、砷或磷的杂质元素被混合到诸如SiH4,Si2H6,SiH2Cl2,SiHCl3,SiCl4或SiF4的源气体中的气体的等离子体CVD或类似的来形成掺杂杂质的半导体薄膜。
随后,通过液滴流注方法施加导电性材料,在源极区域113和漏极区域114上形成源极115和漏极116,在TFT元素区域周围形成源信号线路117。与用于栅极电极104和扫描线路105的材料相同的材料被溶解或扩散到一种溶剂中以形成导电材料。例如,含有Ag(下文称为Ag膏剂)的合成物被选择性地流注并通过热处理烘干,来形成厚度为600nm到800nm的电极。
在此值得注释的是,假如在O2空气中执行烘干,则Ag膏剂中含有的诸如粘结剂(热硬性树脂)或类似的有机材料被分解,获得含有极少有机材料的Ag薄膜。Ag膏剂中的溶剂在还原压力下通过流注膏剂被挥发。因此,此后的热处理可以被省略,或者可以减少热处理的时间。
先通过溅射或类似的形成导电薄膜,再通过液滴流注方法形成掩模图形和之后的蚀刻导电薄膜,因此,形成了源极115和漏极116。掩模图形也可以用上述的相同材料形成。
钝化薄膜118在源极115和漏极116之上形成。钝化薄膜118是由诸如氮氧化硅、氧化硅、氧氮化硅、氮氧化硅、氮氧化铝、氧化铝、类似碳的金刚石(DLC),或者含氮碳的绝缘材料,通过诸如等离子体CVD或溅射的薄膜形成方法而形成。材料可能和掩模图形110相同。此外,上面的材料可能堆叠形成钝化薄膜118。期望尽可能形成钝化薄膜118,因为钝化薄膜具有防止杂质扩散到上述的TFT或类似的上的功能。(图2B)。
接下来,通过液滴流注方法在钝化薄膜118上面部分选择性地形成液体防护的第一有机薄膜119。这个部分形成的接触孔用于电连接TFT的源极115和TFT的漏极116、扫描线路105和源信号线路117。
化学公式Rn-Si-X4-n(n=1,2,3)的是高液体防护的硅烷接合剂能用于第一有机薄膜119。最好使用是基于氟的硅烷接合剂的氟代烷基硅烷(FAS)。
在此,R表示含有诸如烷基的相对惰性族,或诸如乙烯族、氨族或环氧族的反应族的物质。此外,X是由卤素、含甲氧族、乙氧族或诸如乙酸族的基片表面的羟族;或由所吸收水分粘结凝结而成的水解物组成。FAS中的R具有表示为(CF3)(CF2)x(CH2)y(x是一个范围为0到10的整数,y是范围为0到4的整数)的结构。当大量Rs和Xs和Si结合时,Rs或Xs可能彼此相同或不同。
特别是在对第一有机薄膜使用诸如FAS的基于氟的硅烷接合剂的情况下,因为有机薄膜是单分子薄膜,薄膜厚度非常薄。在本说明中,厚度以夸大的形式显示。因此,可能有一种情况是薄膜的厚度比第二有机薄膜薄。即使使用另外一种材料如PVA作为第一有机薄膜的材料也发生同样的情形。
第一有机薄膜119由下面形成。在此将描述使用硅烷接合剂的情形。首先,硅烷接合剂被选择性地通过旋转涂层的方式或类似的方式施加到第一有机薄膜要形成的区域。接着,硅烷接合剂被置于室温下干燥,必要时执行水洗。最后,硅烷接合剂被烘干,所以建成了包括CF2链和CF3链的硅氧烷网络(其中骨架结构由Si和O的结合组成,含有氢作为取代基或者除了氢以外进一步含有至少氟、烷基、芳香烃中的一个的结构)。干燥或水洗可以省略。CF2和CF3可以使得薄膜的表面经硅烷接合剂处理具有液体防护作用。
硅烷接合剂是表示为Rn-Si-X4-n(n=1,2,3)的硅化合物。在此,R表示含有诸如烷基的相对惰性族,或诸如乙烯族、氨族或环氧族的反应族的物质。此外,X是由卤素、含甲氧族、乙氧族或诸如乙酸族的基片表面的羟族;或由所吸收水分粘结凝结而成的水解物组成。尤其是,当R是诸如烷族的惰性族时,薄膜表面具有诸如防水性,抗粘连、摩擦、光滑、光泽或其他类似的特性。例如,假如n=1,则硅化合物被用作接合剂;假如n=2,则硅化合物被用作硅氧烷聚合体的材料;假如n=3,则硅化合物被用作硅烷化剂或聚合体的封闭剂(用于终结每个聚合体的末端的密封剂)。
给出氟代烷基硅烷接合剂作为硅烷接合剂的典型例子。例如,给出了CF3(CF2)KCH2CH2Si(OCH3)3,(CF3(CF2)KCH2CH2SiCH3(OCH3)2,CF3(CF2)KCH2CH2Si(CH2CH3)3(k=3,5,7,9);(CF3)2CF(CF2)mCH2CH2Si(OCH3)3,(CF3)2CF(CF2)mCH2CH2SiCH3(OCH3)2(m=4,6,8);和CF3(CF2)j(C6H4)C2H4Si(OCH3)3,CF3(CF2)j(C6H4)C2H4SiCH3(OCH3)(j=0,3,5,7)。
图17所示是使用CF3(CF2)KCH2CH2Si(OCH3)3的绝缘体的玻璃进行表面改良的情况下,玻璃表面的结构。粘附在玻璃上的液体(如水)的接触角是按照CF<CF2<CF3的顺序增加的。此外,接触角度随着碳氟化合物链的变长而趋向于更大。
可使用在日本Laid Open专利申请No.2003-80694中所公开的材料作为FAS。
作为一种不同于FAS,是液体防护的基于氟的树脂、聚四氟乙烯-氟乙烯(PTFE)、全氟烷氧基烷烃(PFA)、聚四氟乙烯氟乙烯-全氟-丙稀共聚物(PFEP)、乙烯-四氟乙烯共聚物(ETFE)、聚偏二乙烯-氟化物(PVDF)、多氯-三氟乙烯(PCTFE)、乙烯-氯三氟乙烯共聚物(ECTFE)、聚四氟乙烯-同氟二氧共聚物(TFE/PDD)、乙烯聚合氟化物(PVF)或类似的均可使用。
非本质是液体防护的有机材料也可用于第一有机薄膜119。在这种情况下,应该用CF4等离子体或类似的处理有机材料,来获得防护液体。例如,一种材料,其中诸如聚乙烯醇(PVA)的水溶树脂被混合到H2O溶剂或类似的溶剂中,可能在等离子体处理之后使用。此外,PVA和其他水溶树脂可能混合使用。在此值得注释的是,即使在第一有机薄膜119是液体防护的情况下,通过执行等离子体处理或类似的可以进一步改善防护性。(图2C)接下来,在第一有机薄膜119没有形成的部分形成第二有机薄膜120。第二有机薄膜120可能使用含有Si-O结合物和由聚酰亚胺树脂、丙烯酸树脂、聚酰胺树脂或硅氧烷材料通过旋转涂层、液滴流注法或类似方法形成的Si-CHx的绝缘薄膜。
在此,图9B所示是第二有机薄膜形成的状态的放大图。在图9B中,接触角定义为在静止液体的空余表面接触到固体表面的区域中,由液体表面和固体表面所形成的角度。接触角度基于液体分子的聚合力的量级关系和液体与固体表面之间的粘着力。当液体弄湿了固体(当粘着力强)时,接触角是锐角,当液体不弄湿固体时,接触角是钝角。换句话说,当接触角越大,粘着力越小;即液体防护性增加。
图9A所示是在第一有机薄膜使用PVA和第二有机薄膜使用聚酰亚胺和丙烯酸的情况下评估接触角的结果。首先,PVA被涂在基片上,进行CF4等离子体处理,涂上了聚酰亚胺溶液(Toray构成的SL1602)和丙烯酸溶液(JSR构成的SS6699),且评估接触角。CF4等离子体处理的条件设为在250瓦到500瓦的功率和0.5Torr的压力下。
如图9A中的图所示,在聚酰亚胺(20cp粘性的单位“cp”等价于“mPa.s”)的情况下,接触角从8°增加到45°;在聚酰亚胺(10cp)的情况下,接触角度从8°增加到36°;在丙烯酸的情况下,由于250瓦的CF4等离子体处理30秒,接触角度从9°增加到37°。如上所述,接触角增加了4倍到6倍。
当CF4等离子体处理功率设为500W时,在聚酰亚胺(20cp)的情况下,接触角为57°,在聚酰亚胺(10cp)的情况下,接触角为54°,在丙烯酸的情况下,接触角为51°。因此,与250W的情况比较,接触角增加了1.2倍到1.5倍。此外,当处理时间增加到120秒时,在聚酰亚胺情况下,接触角大约为61°到65°;在丙烯酸的情况下,接触角大约为51°到54°。因此,不管功率如何当处理时间增加时可获得同样的接触角。因此,通过对PVA执行CF4等离子体处理,可以增加诸如聚酰亚胺或丙烯酸的第一有机薄膜和第二有机薄膜之间的接触角;即薄膜间的粘性被削弱,液体防护性被改善。
关于这点,使用是液体防护的作为掩模的第一有机薄膜,可以适当地形成作为诸如夹层薄膜、平面化薄膜、栅极绝缘薄膜的绝缘薄膜之用的第二有机薄膜。此外,通过随后移除第一有机薄膜可以形成好的接触孔。
在通过对形成第一有机薄膜的PVA进行等离子体处理,使得PVA和形成第二有机薄膜的聚酰亚胺或丙烯酸之间的接触角大于35°或更多(最好45°或更多)的情况下,使用作为掩模的第一有机薄膜,形成起到绝缘薄膜作用的第二有机薄膜。此外,通过下列步骤可以形成好的接触孔。换句话说,万一接触角大于35°(最好45°)第一有机薄膜被认作排斥第二有机薄膜。功率设为大于250W(最好500W)且处理时间设为100秒或更多(最好是120秒或更多),来增加接触角50°或更多(最好在聚酰亚胺的情况下是60°或更多,在丙烯酸的情况下是50°或更多);因此,薄膜间的粘性被削弱,液体防护性被进一步改善。因此,可以形成更好的接触孔和在接触孔周围的绝缘薄膜。
即使当本质上是液体防护的材料,例如是基于氟的树脂的氟烷基硅烷(FAS),被用作第一有机薄膜时(基于第一和第二有机薄膜的材料,接触角的最佳值变化),无需限制在对PVA执行CF4等离子体处理的情况,可以获得这样的协同作用。在这种情况下,自然地省略CF4等离子体处理;然而,为了进一步改善液体防护性,可能适当地应用此处理。(图3A)形成第二有机薄膜120之后,移除第一有机薄膜119。此外,在提供薄膜的情况下移除此钝化薄膜118,也移除栅极绝缘薄膜106上的扫描线部分。
通过湿蚀刻、干蚀刻、使用大气等离子体流注蚀刻、水洗、或使用激光或电子束,可移除第一有机薄膜119、钝化薄膜118和栅极绝缘薄膜106。根据第一有机薄膜119、钝化薄膜118和栅极绝缘薄膜106的材料,可以适当地选择移除的方法。尤其是,在使用诸如PVA的水溶树脂时,通过水洗可以更容易地移除。此外,根据材料可以适当地选择蚀刻气体、溶液(蚀刻剂)或激光的种类。此外,可以在不同的步骤中执行第一有机薄膜119的移除、钝化薄膜118的移除和栅极绝缘薄膜106的移除。
通过上述移除过程,在源极115或漏极116、扫描线和源信号线117上已有第一有机薄膜的区域上,形成接触孔121到123。(图3B)蚀刻条件最好被设置为第一有机薄膜119能被完全移除;然而,当接触孔到达诸如半导体薄膜和导电薄膜的预期薄膜时,第一有机薄膜可保留在接触孔的侧墙上。这是因为保留的第一有机薄膜可适当地作为一部分夹层薄膜。在这点,可以更广地选择第一有机薄膜的材料。此外,即使假如材料是液体防护的,绝缘材料或导电薄膜可以替代第一有机薄膜,并能够为形成第二薄120作为掩模。
形成接触孔121到123之后,形成用于连接到源极115或漏极116、扫描线105和源信号线117的导电薄膜124到126。可以使用诸如Ag,Au,Cu,Cr,Ni,Pt,Pd,Ir,Rh,W,Al,Ta,Mo,Cd,Zn,Fe,Ti,Si,Ge,Zr或Ba的金属、卤化银粒子、扩散的毫微粒子或类似的。可替换地,ITO,ITSO,有机铟、有机锡、氧化锌、氮化物、在合成比例中含有50%或更少氮的氮化钛(下文称为Ti(N)),或类似的可以用作透明导电薄膜。此外,通过含有此材料的导电层堆叠,可能形成导电薄膜124到126。
导电薄膜124到126可能由溅射的导电材料形成,并通过蚀刻成形。然而,最好通过液滴流注方法选择性地形成导电薄膜,所以过程能够大大地简化。在这种情况下,从喷嘴流注导电材料在溶剂中被溶解或扩散的粘合材料,来形成导电薄膜。
接下来,在导电薄膜124上形成包括含有有机或无机化合物的层的液晶元素或光发射元素(典型地,使用EL电致发光的光发生元素)。因此,通过上述步骤,制造的半导体装置来控制诸如有源矩阵液晶显示装置或EL装置的平面显示器。
在发光装置中,是含有有机或无机化合物的叠层,具有不同孔传输特性的发光层夹在一对电极之间,形成发光层使得孔可从一个电极注入,且电子可以从另一个电极注入。发光装置利用一种现象,其中从一个电极注入的孔和从另一个电极注入的电子被重新组合并产生光。孔和电子的注入到发光层的注入特性基于形成电极的材料的功函数(从金属表面或半导体提取电子所需的最小能量)。在此孔被注入的电极最好具有高功函数,且在此电子被注入的电极具有低功函数。
根据本发明,通过简化的过程,无需使用防护掩模曝光或显影,可以很好地形成接触孔和诸如夹层薄膜、平面化薄膜和栅极绝缘薄膜的绝缘薄膜。因此,除了上述显示装置,所有用于LSI,CPU或类似地半导体装置可以在低开销高产量下制造。
实施例模式2在这个实施例模式中,将参考图4A到5D描述应用本发明的顶部栅极TFT制造的情况。
首先,在具有绝缘表面的基片100上形成半导体薄膜401。基片100可能使用由诸如玻璃、石英或氧化铝的绝缘材料或诸如不锈钢的金属形成的基片,或其表面设有诸如氧化硅、氮化硅的绝缘薄膜的基片,或类似的基片。可替换地,是耐热的柔性的或非柔性的塑料基片,以经受在此过程中的最高处理温度,诸如通过液滴流注方法形成图形的烘干温度,或掺杂到半导体装置的源和漏极区域的杂质激活的热处理温度。
半导体薄膜401由非结晶的半导体、结晶半导体或部分非结晶半导体(SAS)形成。每个材料形成的半导体薄膜401可以使用含有硅、硅锗(SiGe)或类似的半导体薄膜作为主要成分。可以通过等离子体CVD或类似的形成半导体薄膜401。此外,最好形成半导体薄膜401具有10nm到60nm的厚度。
期望在底基膜(未显示)在基片100上形成之后,形成半导体薄膜401。底基膜可以防止杂质或类似的从基片渗透到半导体薄膜401。氧化硅薄膜、氮化硅薄膜、氧氮化硅薄膜、氮氧化硅薄膜或类似的可以用作底基薄膜。基薄膜可能具有二个或多个层的分层结构,而不限于单层结构。此外,可通过等离子体CVD或类似的形成底基薄膜。
接下来,为了使半导体薄膜401图形化,通过液滴流注方法形成掩模图形403。通过在半导体薄膜401上,从喷嘴417流注含有有机树脂的合成物,来形成掩模图形403,以使直接应用图形。
掩模图形403可能由诸如丙烯酸、苯环丁烯、聚酰亚胺或聚酰胺的有机树脂构成。此外,可能使用一种材料,其中骨干结构由硅(Si)和氧(O)的结合物构成,除了氢(典型的硅氧烷树脂),至少含有作为取代基的氢,或进一步至少含有氟、烷基族和作为取代基的芳香烃中的一个。甚至含有感光剂的合成物可用作掩模图形。例如,其中是正抗蚀剂的酚醛清漆树脂和是感光剂的萘并苯醌叠氮化物化合物、是负防护的基座树脂、联苯硅烷二醇和酸发生器或类似的合成物,被在所使用的已知溶剂中溶解或扩散(图4A)。
使用掩模图形403通过蚀刻半导体薄膜401形成半导体岛状薄膜404。用Cl2,BCl3,SiCl4或CCl4代表的基于氯的气体;用CF4,SF6,或NF3代表的基于氟的气体或O2,可用作蚀刻气体。其后移除掩模图形403。
在半导体岛状薄膜404上形成栅极绝缘薄膜405。通过等离子体CVD或溅射,使用含有硅的绝缘薄膜来形成栅极绝缘薄膜405(图4B)。
通过液滴流注方法在栅极绝缘薄膜405上形成栅极电极406。通过从喷嘴418流注含有导电材料的合成物来形成栅极电极406,使得栅极电极406由直接涂在栅极绝缘薄膜405上的合成物形成。导电材料可以使用和实施例模式1中栅极电极一样的材料(图4C)。
穿过栅极绝缘薄膜405,通过掺杂杂质元素407到半导体岛状薄膜404和栅极电极406中,形成是杂质区域的沟道区域408和源极区域409和漏极区域410作为掩模(图4D)。在此值得注释的是,掺杂之后通过热处理可以实现激活。
接下来,通过使用喷嘴419的液滴流注方法,在将形成接触孔的栅极绝缘薄膜上的部分(TFT的源极和漏极随后将形成的部分),选择性地形成是液体防护的第一有机薄膜119。
像实施例模式1一样,是液体防护的(最好是氟烷基硅烷(FAS))基于氟的树脂可用作第一有机薄膜119。
液体防护较差的或不是液体防护的有机材料可以用CF4等离子体或类似的处理,来获得用作第一有机薄膜119的液体。例如,可以使用其中诸如聚乙烯醇(PVA)的水溶树脂被混合到H2O的溶剂或类似的溶剂的材料。此外,PVA和另一个水溶树脂可以组合使用。
在此值得注释的是,即使在是液体防护的情况下,通过等离子体处理或类似的可以进一步改善防护性(图5A)。
接下来,在第一有机薄膜119没有形成的部分形成第二有机薄膜120。第二有机薄膜120可能使用含有Si-O结合物和通过旋转涂层、液滴流注方法或类似的方法,由聚酰亚胺树脂、丙烯酸树脂、聚酰胺树脂或硅氧烷材料构成的Si-CHx结合物的绝缘薄膜。
第二有机薄膜120形成后移除第一有机薄膜119和栅极绝缘薄膜405。通过诸如湿蚀刻、干蚀刻、或使用大气的等离子体流注的蚀刻、或水洗、或使用激光或电子束处理,可以移除第一有机薄膜119和栅极绝缘薄膜405。根据第一有机薄膜119和栅极绝缘薄膜405的材料可以适当地选择移除方法。此外,根据材料可适当地选择蚀刻气体、溶剂(蚀刻剂)或激光。此外,可以在不同的步骤执行第一有机薄膜119的移除和栅极绝缘薄膜405的移除。
通过上述移除过程,在源极409或漏极410上已有第一有机薄膜119的区域上,形成接触孔413到414(图5C)。
蚀刻条件最好设置为第一有机薄膜119能被完全移除;然而,当接触孔到达诸如半导体薄膜和导电薄膜的预期薄膜时,第一有机薄膜可保留在接触孔的侧墙上。这是因为保留的第一有机薄膜可适当地作为夹层薄膜一部分。在这点,可以更广地选择第一有机薄膜的材料。此外,即使假如材料是液体防护的,绝缘材料或导电薄膜可以替代第一有机薄膜,并能够为形成第二薄膜120作为掩模。
形成接触孔413和414之后,源极415和漏极416由导电薄膜形成,来分别连接源极区域409和漏极区域410。电极可以通过图形化之后溅射和蚀刻,由导电材料形成;然而,最好通过液滴流注方法选择性地形成导电薄膜,使得过程能大大地简化。在这种情况下,其中导电材料在溶剂中被溶解或扩散的粘合材料从喷嘴420流注,以形成布线。从流注口流注的材料可能是其中导电材料在溶剂中被溶解或扩散的溶剂。可以使用诸如Ag,Au,Cu,Cr,Ni,Pt,Pd,Ir,Rh,W,Al,Ta,Mo,Cd,Zn,Fe,Ti,Si,Ge,Zr或Ba的金属、卤化银粒子、扩散的毫微粒子或类似的。可替换地,ITO,ITSO,有机铟、有机锡、氧化锌(ZnO)、氮化钛(TiN)或类似的可以用作导电材料。此外,ITO,ITSO,有机铟、有机锡、氧化锌、氮化物、在合成比例中含有50%或更少氮的氮化钛(下文称为Ti(N)),或类似的可以用作透明导电薄膜。此外,通过堆叠含有此材料的导电层可形成电极。
考虑到电阻率,从每个流注口流注的合成物最好是在溶剂中被溶解或扩散的金、银或铜的溶液。更好的是,使用具有低电阻的银或铜。在此值得注释的是,在使用铜的情况下,为了防止杂质混合进来,最好设有阻挡层薄膜。溶剂可能使用诸如丁基醋酸盐或乙荃醋酸盐的酯,诸如异丙醇或乙醇的酒精,或诸如甲基乙荃酮或丙酮的有机溶剂。作为在使用铜作布线的情况下使用的阻挡层薄膜,含有诸如氮化硅、氧氮化硅、氮化铝、氮化钛或氮化钽(TaN)的氮的绝缘或导电材料,可通过液滴流注方法应用上述材料(图5D)。
通过上述步骤,制造了顶部栅极TFT。此外,TFT连接到像素电极,并在像素电极上形成包括含有有机或无机化合物的层的液晶元件或光发射元件(典型地,EL元件)。因此可以获得诸如有源矩阵液晶显示装置或能用TFT控制的EL装置的平面显示。
在这个实施例模式中,本发明应用在源极电极415和漏极电极416形成的部分上,形成接触孔的步骤。自然地,本发明也应用到在通过上述步骤获得的连接到TFT的像素电极部分上形成接触孔;在连接到栅极电极406的布线区域中接触孔的形成,或诸如此类。
根据本发明,通过简化的过程,无需使用防护掩模曝光或显影,可以很好地形成接触孔。因此,除了上述显示装置,所有用于LSI,CPU或类似地半导体装置可以低开销高产量地制造。
然而,在此没有显示的被称为错开的TFT可以如下获得通过液滴流注方法在基片上预先形成源极和漏极;通过等离子体CVD或类似的形成半导体薄膜和栅极绝缘薄膜;通过液滴流注方法形成栅极电极;使用作为掩模的栅极电极将n型或p型杂质掺杂到半导体薄膜中。本发明可应用到半导体装置或使用错开的TFT的有源矩阵基片的制造。
实施例1在这个实施例中,将参考图6A到图8B描述使用本发明的有源矩阵基片的制造方法。尤其是,将描述为了形成接触孔,对第一有机薄膜使用PVA和对第二有机薄膜使用聚酰亚胺或丙烯酸的情况。
首先,在基片600上形成底基绝缘薄膜601。在此,通过等离子体CVD形成氧氮化硅(SiNO)厚度为10nm到200nm,来形成底基绝缘薄膜601。底基绝缘薄膜601的材料不限于SiNO和氧化硅薄膜、氮化硅薄膜或氧氮化硅薄膜,或可使用的它们的堆叠。此外,底基绝缘薄膜601不是必须形成的。
接下来,在底基绝缘薄膜601上形成厚度为10nm到80nm的半导体薄膜。用含有镍的溶剂处理半导体薄膜的表面,且通过随后在500℃到750℃的热处理获得结晶硅半导体薄膜;此外,通过激光结晶化,改善结晶半导体薄膜的结晶度。在此值得注释的是,具有诸如硅锗(SiGe)合金的非结晶结构的另一种半导体可用作半导体薄膜。此外,通过溅射、LPCVD或类似的可以形成半导体薄膜。通过激光结晶化、热结晶化、使用另一个催化剂(Fe,Ru,Rh,Pd,Pd,Os,Ir,Pt,Cu,Au或类似的)的热结晶化,或通过另一种过程来实现结晶化。催化剂溶解或扩散于溶剂中,并通过诸如溅射的已知方法或旋转器的应用,而施加到半导体薄膜上。例如,通过重量10ppm含镍的镍醋酸盐溶剂可施加到半导体薄膜的表面。
另外,连续波激光可用作具有非结晶结构的半导体薄膜的结晶化。为了获得在结晶化中具有大的颗粒大小的晶体,能够连续波振动的固体状态激光可被使用,并最好应用在基波的第二个谐波到第四个谐波。典型地,可以应用Nd:YVO4激光的基波(基波1064nm)的第二个谐波(532nm)或第三个谐波(355nm)。当使用连续波激光的时候,从输出是10W的连续波YVO4激光发射的激光光束,通过非线性光元件被转换到谐波。另外,有一个方法用于通过将YVO4晶体和非线性光元件置于谐振器中来发射谐波。然后,使用照射一个物体的光系统的照射表面,激光光束最好形成矩形或椭圆形。在此时,需要的能量密度近似从0.01MW/cm2100MW/cm2(最好从0.1MW/cm2到10MW/cm2)。此后,通过在近似从10nm/s到2000nm/s的速度范围内相对激光关系移动,未照射半导体薄膜。
用上述方法获得结晶硅半导体薄膜之后,通过在半导体薄膜上的氧化膜形成用于吸除金属催化剂的非结晶硅薄膜,通过从500℃到750℃的温度的热处理来实现吸除处理。此外,蚀刻掉含有金属晶体的非结晶硅薄膜。
此外,为了控制TFT元件的阈值,理想地具有近似从1×1013到3×1013atoms/cm的范围内或更多浓度的硼离子注入至结晶硅半导体薄膜中。
之后,使用第一掩模图形蚀刻结晶硅半导体薄膜,并通过蚀刻形成结晶硅半导体岛状薄膜602到606。考虑到简化过程,最好通过液滴流注方法形成第一掩模图形。在这个情况下,最好用防护或耐热高分子量材料形成第一掩模图形。最好使用含有缺乏脂肪族高极性杂环原子的高分子量材料,并进一步含有作为主链的芬芳环和杂环。聚酰亚胺和聚苯并咪唑可以作为这样的高分子量材料的典型例子施加。在使用聚酰亚胺的情况下,含有聚酰亚胺的合成物被从喷嘴127流注,并施加到半导体薄膜107上,在200℃烘干30分钟;因此,形成掩模图形。接下来,移除第一掩模图形后,在结晶硅半导体岛状薄膜602到606上形成栅极绝缘薄膜607。通过等离子体CVD或溅射形成薄膜厚度为1nm到200nm的栅极绝缘薄膜607。在栅极绝缘薄膜形成单层或分层结构后,最好使用通过微波的等离子体,执行表面氮化处理,以具有如10nm到50nm薄的薄膜厚度。
当通过等离子体CVD形成具有这样的薄膜厚度的绝缘薄膜时,有必要通过降低沉淀速度和充分地控制厚度来获得此薄膜厚度。例如,氧化硅薄膜的沉淀速度在100W地RF功率下可设为6nm/min;频率为10kHz,压力为0.3托,N2O气体的流速400sccm,SiH4气体的流速为1sccm。另外,使用通过微波的等离子体的氮化处理是使用微波源(2.45GHz)和作为反应气体的氮气来进行的。
在此值得注释的是,依照离栅极绝缘薄膜607的表面的距离愈长氮浓度就减少。因此,氧化硅表面不仅能够以高浓度氮化,而且氮化能够在氧化硅薄膜和有源层之间界面上减少氮化,这个防止了装置性能的劣化。
接下来,在栅极绝缘薄膜607上形成具有100nm到600nm薄膜厚度的导电薄膜608a和608b。在此,通过溅射方法形成具有TaN薄膜和W薄膜叠层的导电薄膜。然而,它不局限于,并能够从Ag,Au,Cu,Cr,Ni,Pt,Pd,Ir,Rh,W,Al,Ta,Mo,Cd,Zn,Fe,Ti,Si,Ge,Zr或Ba等金属来形成;合金材料的单层或含有作为主成分的上述元素的化合物材料;或它们的堆叠来形成。另外,可能使用掺杂诸如磷的杂质元素的多晶硅薄膜为代表的半导体薄膜。
接下来,形成第二掩模图形609a到609g。最好通过像第一掩模图形一样的液滴流注方法形成第二掩模图形609a到609g,以简化过程(图6A)。
使用作为掩模的第二掩模图形609a到609g(第一次蚀刻),通过干蚀刻或湿蚀刻来蚀刻导电薄膜608a和608b。通过第一次蚀刻获得像素TFT的栅极电极610、操纵TFT的栅极电极611到613、作为存贮电容区域的顶部电极的电容布线614。通过第一次蚀刻而得到的第一形状(锥形)的布线615和616。蚀刻方法没有特别限制,最好执行ICP(诱导的耦合等离子体)蚀刻例如CF4和Cl2或类似的可用作蚀刻气体(图6B)。
接下来,通过像第二掩模图形609a到609g被完整保留下来进行第二次蚀刻,可以形成具有第二次形状的栅极电极617到620和布线621到623(图6C)。
接着,通过使用具有第二形状的栅极电极617到620和布线617到623作为掩模进行掺杂,将103atoms/cm3到小于1014atoms/cm2n型杂质元素注入半导体岛状薄膜602到606中。这以后,通过O2灰化或类似的移除第二掩模图形609a到609g。第二掩模图形609a到609g的移除步骤和掺杂注入步骤的顺序可以变换(图6C)。
将是p沟道TFTs652和653的部分和像素TFT654的部分用第三掩模图形624a和624b覆盖,且n型杂质元素的1014atoms/cm2到小于1016atoms/cm2被进一步附加。因此,将是源漏极和漏极区域的n型杂质区域(n+)625a和625b,和具有比n型杂质区域(n+)更低杂质浓度的杂质区域626a到626b(下文每个称为轻度掺杂的漏极(LDD)区域)被形成。此外,在LDD区域成对之间分别形成沟道区域627a和627b。(图7A)之后通过O2灰化或类似的移除第三掩模图形624a到624b。
接下来,在随后将形成驱动电路的n沟道TFT和像素TFTs654,和通过掺杂p型杂质元素形成p型杂质区域629a和629b的部分,形成第四掩模图形628a和628b。此外,在p型杂质区域629a和629b成对之间,分别形成沟道区域630a和630b。p型杂质区域629a和629b的杂质浓度可被设为1015atoms/cm3到小于1017atoms/cm3。(图7B)之后通过O2灰化或类似的移除第四掩模图形628a和628b。
在此值得注释的是,期望考虑到简化过程,通过和第一和第二掩模图形一样的液滴流注方法,形成第三和第四掩模图形。
通过等离子体CVD形成覆盖在TFTs上的覆盖绝缘薄膜(未显示)。最好为覆盖绝缘薄膜使用氮化硅薄膜或氧氮化硅薄膜。然而,覆盖绝缘薄膜的材料不局限于此。此外,形成方法也不局限于等离子体CVD。在简化过程的情况下不须形成覆盖顶端绝缘薄膜,执行热处理来来激活加到半导体薄膜的杂质元素。通过在炉中在在N2大气下在500℃到800℃加热来执行激活。例如,可执行RTA(快速热处理)。可替换地,可以通过激光照射执行激活。在这种情况下,激光可能被施加到基片的仅仅一个表面侧或基片的二侧表面。在简化过程的情况下可以省略激活过程。
接下来,通过等离子体CVD形成具有氮化硅薄膜或每个含有氢的对氮化氧薄膜形成的绝缘薄膜631。然后,执行热处理来使绝缘薄膜631氢化和使半导体薄膜氢化,从而终结硅的悬挂键。在N2大气下350℃到450℃(最好410℃)用清洁炉执行热处理。通过除了等离子体CVD之外,用另一个含有氢和氧的绝缘薄膜可以形成绝缘薄膜631。在简化过程的情况下,可以省略绝缘薄膜631的形成和氢化。
接下来,通过液滴流注方法,在接触孔到达源极区域或漏极区域625a到625c,629a和629b或布线623的绝缘薄膜631上的部分,选择性地形成第一有机薄膜119。在此,第一有机薄膜119由其中聚乙烯醇(PVA)被混合到H2O溶剂中的材料组成。
处理第一有机薄膜119的表面,使得与随后形成的第二有机薄膜120是相斥的。在此,用CF4等离子体处理第一有机薄膜119。然而方法不局限于此。在使用是本质的液体防护剂的有机材料的情况下,可以省略液体防护处理(图7C)。
在没有形成第一有机薄膜的区域中形成第二有机薄膜120。在此,其中聚酰胺在含有乙荃乳酸盐和 丁内酯的溶剂中被溶解的溶剂通过旋转涂层涂抹在基片的整个表面。然而,材料和方法不局限于此。例如,具有Si-O结合物和Si-CHx结合物的绝缘薄膜,其由除了聚酰亚胺树脂以外的丙烯酸树脂、聚酰胺树脂或硅氧烷材料构成。此外,通过液滴流注方法或类似的可以形成第二有机薄膜120(图8A)。
形成第二有机薄膜120之后,形成的第一有机薄膜119和栅极绝缘薄膜607接下来被移除。为氢化的绝缘薄膜631和覆盖的绝缘薄膜被移除,假如它们被设有的话。
在此,通过使用H2O移除含有PVA的第一有机薄膜119。此外,通过使用CF4和O2的混合物的干蚀刻,移除第一有机薄膜119下面的栅极绝缘薄膜607或类似的。然而,它不局限于此。第一有机薄膜119、栅极绝缘薄膜607和类似的可以按阶段被移除,或立刻被移除。
相信在这个实施例中使用的PVA,考虑到环境的关系,是优良的材料,因为他能用H2O容易地被移除。
通过移除如上所述的第一有机薄膜119、栅极绝缘薄膜607和类似的,在源极区域或漏极区域625a,625b,629a和629b和布线623上的部分已经形成第一有机薄膜119的部分,形成接触孔。
在形成接触孔之后,形成由导电材料组成的连接布线634到641,使得电连接各自TFTs。在此,通过堆叠具有50nm到200nm厚度的Ti薄膜,具有250nm到400nm厚度的Al薄膜或Al-Si合金薄膜来形成连接布线634到641,且具有50nm到200nm厚度的Ti薄膜通过液滴流注方法形成。然而,导电材料和形成方法不局限于此。因此,在实施例模式中显示了另一种导电材料,或者通过溅射或类似的,导电材料被传统地涂抹,并在成图形后被蚀刻。
在使用液滴流注方法的情况下,从液滴流注喷嘴流注在溶剂中溶解或扩散导电材料的粘合材料来形成布线。关于三层结构,Ti可能被TiN或含有在合成比率中占50%或更少的氮的氮化钛(Ti(N))替代;可替换地,在三层上或下最新堆叠TiN或Ti(N)的结构。此外,因为在Al的情况下,在150℃到200℃形成小丘,所以最好要加硅。
此外,在像素区域658中形成连接布线634到641之前,形成像素电极642。像素区域可能用诸如ITO,ITSO,IZO或GZO的导电薄膜来形成。通过液滴流注方法涂抹在溶剂中上述导电材料被溶解或扩散的粘合材料。通过传统溅射的方法能够形成像素电极642。此外,使用含有此材料的导电层的分层结构。像素电极642被电连接到像素TFT654的漏极区域和存储电容655的基极(掺杂杂质的半导体薄膜的部分)。在形成连接布线634到641之前形成像素电极642。
通过上述步骤,可以制造包括具有n沟道TFT651和p沟道TFT65的CMOS结构656的驱动电路657,和包括像素TFT654和存储电容655的像素区域658。
使用根据本实施例的有源矩阵基片的制造方法,在形成大量接触孔中,当第一有机薄膜119和CF4等离子体处理后,在第一有机薄膜119周围由聚酰亚胺或丙烯酸构成的第二有机薄膜一样,形成含有PVA的薄膜。因此,以简单的过程可精确形成好的接触孔。此外,为了形成接触孔,用H2O可以容易地移除PVA。因此,考虑到环境关系它也是优点。
在通过液滴流注方法形成电极618到620、布线621到623、连接布线634到641和各种掩模图形中,通过改变基片和液体从其被流注的流注喷嘴的相对位置,含有此薄膜材料的液体被涂抹到任意的区域。此外,通过改变喷嘴直径、液体流注速度和喷嘴与涂抹所流注材料的基片移动速度间的相对关系,可以控制形成的图形的厚度或宽度。因此,可以精确地流注薄膜的材料并在所期望的区域形成薄膜。因为使用防护掩模的曝光和显影和类似的可以被省略,所以可以尝试过程的大大简化和开销降低。此外,通过使用液滴流注方法,可以在任意区域形成图形,且可以控制所形成图形的厚度和宽度。因此,即使具有一侧1m到2m的大有源矩阵基片也能以低开销高产量来制造。
在这个实施例中,结晶半导体薄膜被用作每个像素区域658和驱动电路657。可替换地,非结晶半导体薄膜可用作像素区域658,结晶半导体薄膜可用作要求高速运行的驱动电路657。可以使用具有另一个非结晶结构,含有非结晶硅、硅锗(SiGe)合金的半导体薄膜。此外,部分非结晶硅(SAS)可用作驱动电路657中的结晶半导体薄膜。在基片上可形成像素区域,且通过TAB或类似的可以连接分别地形成的像素区域和驱动电路区域。
在此,将描述部分非结晶半导体。部分非结晶半导体指的是具有非结晶结构和结晶结构(包括单晶结构和多晶结构)之间的结构的半导体,部分非结晶半导体薄膜具有关于自由能量稳定的第三种状态,并包括具有短顺序和点阵畸变的结晶区域。至少部分非结晶半导体薄膜的一部分中含有大小为0.5nm到20.0nm的结晶颗粒,这样的薄膜也称为微晶半导体薄膜。此外,在喇曼光谱中,特指硅的波峰移动到520cm-1的波数的较低侧,来源于硅结晶点阵的(111)和(220)的衍射波峰在X射线衍射中被观察。此外,部分非结晶半导体薄膜含有至少1atom%的氢或卤作为悬挂键的终止剂。
通过等离子体CVD用硅化物气体发光流注分解获得部分非结晶硅。可以使用如硅化物气体、SiH4,Si2H6,SiH2Cl2,SiHCl3,SiCl4,SiF4或类似的。可以用一种或多种从由H2、H2和He,Ar,Kr和Ne的混合体组成的族中所选择的稀薄气体元素,来稀释硅化物气体。稀释比率在1∶2到1∶1,000范围内。压力近似地在0.1Pa到133Pa范围内。功率频率在1MHz到120MHz范围内。基片加热温度设在300℃或更低,最好从100℃到250℃。至于在薄膜中含有的杂质元素,在诸如氧、氮和碳地大气成分中每个杂质浓度,最好设在1 1020atoms/cm3或更小。尤其是,氧浓度设在5 1019atoms/cm3或更小;更加好的是,1 1019atoms/cm3或更小。使用部分非结晶硅薄膜作为有源层的TFT的迁移率是u=1cm2/Vsec到u=10cm2/Vsec。
实施例2
在这个实施例中,将描述对为形成接触孔使用的第一有机薄膜使用氟烷基硅烷(FAS),和对第二有机薄膜使用聚酰亚胺或丙烯酸的情况下,有源矩阵基片制造方法。
在基片上形成半导体薄膜、栅极绝缘薄膜、栅极电极和类似的步骤与实施例1或实施例模式中所示的步骤一样(图6A到7C)。此外,有必要形成为氢化的绝缘薄膜和覆盖绝缘薄膜。
图7C所示状态中,通过液滴流注方法,在接触孔到达源极区域或漏极区域625a,625b,629a和629b和布线623的栅极绝缘薄膜上的部分,选择性地形成用公式Rn-Si-X4-n(n=1,2,3)(第一有机薄膜119)表示的氟烷基硅烷(FAS)。在此,此外,X定义为诸如含甲氧基族、含乙氧基族或卤素原子的水解液。同时,R定义为具有(CF3)(CF2)x(CH2)y(x是一个范围为0到10的整数,y是范围为0到4的整数)的结构的氟烷基族。当大量Rs或Xs结合到Si时,Rs或Xs可能彼此相同或不同。
十七氟-1,1,2,2,四氢乙酸三乙基硅、十七氟-1,1,2,2,四氢乙酸三氧硅、十七氟-1,1,2,2,四氢乙酸三氯硅、十三氟-1,1,2,2,四氢辛基三乙基硅、十三氟-1,1,2,2,四氢辛基三氧硅、十三氟-1,1,2,2,四氢辛基三氯硅和三氟丙烷基三乙基硅被作为FAS给出。可以使用仅仅一种化合物或超过二种化合物的合成物。
接下来,在第一有机薄膜119周围形成第二有机薄膜120。用作第一有机薄膜119的FAS非常地薄(0.1nm到100nm),因为它是单分子薄膜。然而,FAS本质上具有高液体防护性(防水性、防油性)。因此,无需诸如CF4等离子体处理的液体防护处理,可以形成第二有机薄膜120。在此,通过旋转涂层在基片的整个表面涂抹聚酰胺在含有乙荃乳酸盐和丁内酯的溶剂中被溶解的溶剂。然而,材料和方法不局限于此。例如,具有Si-O结合物和Si-CHx结合物的绝缘薄膜,由除了聚酰亚胺树脂以外的丙烯酸树脂、聚酰胺树脂或硅氧烷材料构成。此外,通过液滴流注方法或类似的可以形成第二有机薄膜120。
形成第二有机薄膜120之后,在其下面形成的第一有机薄膜119和栅极绝缘薄膜607可被移除。为氢化的绝缘薄膜631和覆盖的绝缘薄膜被移除,假如它们被设有的话。
通过O2等离子体、UV处理、UV臭氧处理、O2气下的热处理或类似的,可以容易地移除含有FAS的第一有机薄膜119。此外,通过使用CF4和O2的混合物的干蚀刻,移除第一有机薄膜119下面的栅极绝缘薄膜607或类似的。然而,它不局限于此。第一有机薄膜119、栅极绝缘薄膜607和类似的可以分别被移除或立刻被移除。尤其是,无需任何特殊处理(诸如使用基于氟地硅接合剂的表面处理),可以用O2气体蚀刻FAS。因此,通过移除第一有机薄膜119、栅极绝缘薄膜607和类似的形成的接触孔可以立即被移除,且过程被简化。
如上所述,这个实施例中使用地FAS是本质上具有高液体防护性,使得不必要执行为获得液体防护性的等离子体处理。此外,通过使用CF4和O2的混合气体或类似的,可以蚀刻掉FAS和其他绝缘薄膜一样。因此,在简化过程中FAS是有利材料。
通过移除如上所述的第一有机薄膜119、栅极绝缘薄膜607和类似的,在源极区域或漏极区域625a,625b,625a和629b和布线623上的部分已经有第一有机薄膜119的部分,形成接触孔。
形成接触孔后,形成由导电材料组成的连接布线634到641,使得电连接各自的TFTs。此外,在像素区域形成像素电极642。用于形成连接布线634到641和像素电极的导电材料,且制造方法与实施例模式或实施例1中所示的方法一样。
通过上述步骤,可以制造包括具有n沟道TFT651和p沟道TFT65的CMOS结构656的驱动电路657,和包括像素TFT654和存储电容655的像素区域658。
使用根据本实施例的有源矩阵基片的制造方法,在形成多个接触孔中,像第一有机薄膜119和在第一有机薄膜119周围由聚酰亚胺或丙烯酸构成的第二有机薄膜一样,形成含有PVA的薄膜,且随后第一有机薄膜119被移除。因此,以简单的过程可精确形成好的接触孔。此外,为了形成接触孔,用O2气体或类似的,和栅极绝缘薄膜或类似的一样,蚀刻掉FAS。因此,在简化过程中FAS是有利的。
实施例3在实施例模式1中已描述了应用本发明到错开的TFT的制造中的情况。在这个实施例中,将参考图1A到1C和10A到11D,描述应用本发明到沟道蚀刻类型(沟道蚀刻类型)TFT的制造中的情况。
首先,通过液滴流注方法在基片100上形成栅极电极104。可以和实施例模式1一样执行这个步骤(图1A)。
接下来,在栅极电极104上形成栅极绝缘薄膜106。在此通过等离子体CVD形成厚度为100nm到400nm的氮化硅(SiNx)薄膜。然而,通过诸如溅射的另一种薄膜形成方法可以形成硅氮化物薄膜。此外,可以用含有硅或氧化硅的另一个绝缘薄膜形成栅极绝缘薄膜106。
在栅极绝缘薄膜106上形成半导体薄膜107。在此,形成厚度为10nm到300nm的非结晶硅薄膜。然而,也可以使用另一个结晶半导体或部分非结晶半导体(SAS)。厚度最好是10nm到60nm。接下来,在半导体薄膜107是形成n型半导体薄膜130。在此,形成厚度为40nm到60nm的n型(n+)非结晶半导体薄膜(图10A)。
在诸如等离子体CVD系统的一个室中,可以连续地形成栅极绝缘薄膜106、半导体薄膜107和n型半导体薄膜130。为了稳定TFT特性和改善性能,期望设置栅极绝缘薄膜106的形成温度300℃或更高,设置非结晶硅薄膜的形成温度300或更低,在此其中混合的氢不会被释放。
随后,使用第一掩模图形来蚀刻半导体薄膜107和n型半导体薄膜130成岛状型,从而形成岛状外形半导体131和岛状外形n型半导体薄膜131和岛状外形半导体薄膜109。最好通过如实施例模式1中的液滴流注方法来形成第一掩模图形。其后,移除第一掩模图形(图10B)。
通过使用喷嘴138的液滴流注方法在n型半导体薄膜131中源极区域和漏极区域的部分上,形成源极132和漏极133。作为导电材料,和栅极电极104或扫描线路105一样的材料可以在溶剂中被溶解或扩散。例如,含有Ag的合成物被选择性地流注和通过热处理被烘干,以形成每个具有600nm到800nm厚度的电极。
通过预先溅射导电薄膜、通过液滴流注方法形成的掩模图形和随后蚀刻的导电薄膜可以形成源极132和漏极133(图10C)。
接下来,使用作为掩模的源极和漏极将n型半导体薄膜130和半导体薄膜107的顶部蚀刻掉。在这个场合,为了对是TFT的沟道区域的半导体薄膜的损坏最小化,有必要设置适当的蚀刻条件。
在源极132、漏极133和半导体薄膜107上形成钝化薄膜118。钝化薄膜由诸如氮化硅、氧化硅、氮氧化硅、氧氮化硅、氧氮化铝、氧化铝、DLC含氮碳的绝缘材料,通过诸如等离子体CVD或溅射的薄膜形成方法而形成。此外,此材料的堆叠用作钝化薄膜118。
接下来,通过使用喷嘴139的液滴流注方法,在到达源极或漏极的接触孔将形成的钝化薄膜118上的区域,选择性地形成第一有机薄膜119。期望使用实施例1和2中所示对第一有机薄膜119的PVA或FAS。然而,材料不局限于此。
接下来,在没有形成第一有机薄膜119的区域中形成第二有机薄膜120。最好对第二有机薄膜120使用实施例1和2中所示的聚酰亚胺树脂或丙烯酸树脂。然而,材料不局限于此(图11C)。
第二有机薄膜120形成之后,移除第一有机薄膜119和钝化薄膜118的部分。移除方法可以和实施例1和2中所示的方法一样。因此,在源极或漏极已有第一有机薄膜119的区域上,形成接触孔。
形成接触孔之后,形成用于连接源极132或漏极133的导电薄膜137。诸如ITO或ITSO、有机铟、有机锡、ZnO,TiN,Ti,Al,Ag,Au,Cu,Cr或类似的透明导电薄膜可用作导电材料。此外,导电薄膜137具有每个含有上述元素作为主要成分的层被堆叠的结构。
导电薄膜137可用设有溅射或类似的形成,并通过图形和随后的蚀刻成形。然而,最好通过液滴流注方法选择性地形成导电薄膜,因此大大地简化过程。在这个情况下,通过从喷嘴流注导电材料被溶解和扩散在溶剂中的粘合材料,形成导电薄膜。通过堆叠含有导电材料的层形成导电薄膜137。
接下来,在导电薄膜137上形成包括含有有机或无机化合物的层的液晶单元或光发射单元(典型地是EL光发射元件)。因此,通过上述步骤,可制造诸如有源矩阵液体显示装置或能用半导体装置控制的EL光发射装置的平面显示。
在这个实施例中描述的沟道蚀刻类型TFT具有简单制造过程和简单结构的优点。此外,设有应用本发明,通过简化的过程,无需使用防护掩模的曝光和显影,,能精确地形成接触孔、绝缘薄膜、平面薄膜、栅极绝缘薄膜。因此,用作上述显示装置或类似的半导体元素可以低开销高产量来制造。
实施例4在这个实施例中,根据实施例1到3,使用TFT基片的有源矩阵类型液晶显示装置的结构和制造过程建立。
图12显示了TFT基片和对(置)基片180用密封剂粘合在一起的状态。下面描述制造过程。
在TFT基片上形成柱形隔离片183。最好根据在像素电极上形成的接触部分的凹坑形成柱形隔离片183。即使它基于液晶材料,也要形成高度为3um到10um的柱形隔离片183。在接触部分形成凹坑等同于接触孔的情况。因此,通过形成适应凹坑的柱形隔离片183可以防止方向缺陷。接下来,形成和擦拭对准薄膜182。在对(置)基片180上形成透明导电薄膜184和对准薄膜182。然后,用密封剂将TFT基片和对(置)基片180粘合在一起,并在它们之间的空间填充液晶,来形成液晶层185。因此,完成了有源矩阵型液晶显示装置。在此值得注释的是,通过掺杂液晶可以形成液晶层185。这个方法在使用具有超过1m到2m大面积的有源矩阵基片,制造液晶显示装置的情况中特别有效。
实施例5在这个实施例中,参考图13将描述在实施例1到3中获得的,使用TFT基片(有源矩阵基片)的有源矩阵型光发射装置的结构和制造方法。
基片1601是玻璃基片。在玻璃基片1601上,驱动电路区域1650中,形成n-沟道TFT1652和p-沟道TFT1653。在像素区域1651中形成开关TFT1654和电流控制TFT1655。那些TFTs由半导体薄膜1603到1606、栅极绝缘薄膜1607、栅极电极1608到1611和类似的组成。
形成厚度为50nm到200nm的氧氮化硅薄膜、氮化硅薄膜或类似的,来在基片1601上形成底基绝缘薄膜1602。用由氮化硅、氧氮化硅或类似的组成的无机绝缘薄膜1618和由丙烯酸、聚酰亚胺或类似的组成的有机绝缘薄膜1619形成夹层绝缘薄膜。
尽管驱动电路区域1650的电路在栅极信号驱动电路和数据信号方面的驱动电路之间是不同的,但是在此可以省略它们的解释。布线1612和1613被连接到通过使用这些TFTs形成的n-沟道TFT1652和p-沟道TFT1653,和移位寄存器、闭锁电路、缓冲电路和类似的。
在像素区域1651中,数据布线线路1614连接到开关TFT1654的源极侧,漏极侧上的布线1615连接到电流控制TFT1655的栅极电极1611。此外,电流控制TFT1655的源极侧连接到电源供应线路1617,漏极侧的电极1616连接到EL元件的阳极1622(也称为孔注入电极)。
在形成设有布线1612到1617的接触孔中,通过液滴流注方法,在将形成接触孔的部分形成是液体防护的第一有机薄膜。通过在第一有机薄膜周围形成第二有机薄膜,可以形成接触孔和有机薄膜1619。
在像素区域1651上,形成包括阳极1622、负极1624和电致发光在其中获得,且含有有机化合物或无机化合物的层(下文称为EL层)1623的EL元件1656。在此值得注释的是,EL层的发光包括当单峰受激态回到接地状态时获得的光发射(荧光),和当三重峰受激态回到接地状态时获得的光发射(磷光),和二者都包括。
使用诸如丙烯酸或聚酰亚胺,最好感光有机树脂的有机树脂形成绝缘体(称为隔离墙、堤或类似的)1620和1621之后,设有EL元件1656,使得覆盖布线。在这个实施例中,EL元件1656包括由ITO(氧化铟锡)、EL层1623和通过使用注入碱性金属或碱土金属,例如MgAg或LiF形成的阴极(也称为电子注入电极)1624。形成绝缘体1620和1621,使得覆盖每个阳极1622的末端,并被设有来防止阴极1624和阳极1622在此部分短路。在形成绝缘体1620和1621中,在形成EL元件1656和其周围形成第二有机薄膜120的部分,形成是液体防护的第一有机薄膜。因此,可以形成EL元件被形成的部分和绝缘体1620和1621。
在此,阳极1622可以使用诸如ITSO,ZnO,IZO或GZO的另一个透明导电薄膜,而不局限于ITO。在对阳极1622使用ITSO的情况,可以堆叠每个含有不同氧化硅的浓度的ITSO层。较低ITSO层(源连接布线或漏连接布线一侧)具有较低氧化硅浓度,较高ITSO层(光发射层的一侧)具有较高氧化硅浓度。因此,保留连接TFT的低阻抗性,可以改善孔注入EL层1623的有效性。自然地,可以使用另一种材料和ITSO的多层结构(例如,ITO的较低层和ITSO的较高层的多层结构),或除了ITSO的另外材料的多层结构。
通过气相沉积或涂覆形成EL层1623。在此值得注释的是,为了改善可靠性,在形成EL层1623之前,光源最好使用水银灯来进行紫外线(UV)照射和真空加热以除去空气。例如,执行有机化合物材料的气相沉积之前,期望在减少的压力下,或在低压大气中在200℃到300℃的惰性气体下或惰性气体下进行热处理,以便在沉积有机化合物材料之前除去基片中含有的气体。当气相沉积用于形成EL层902时,在抽空到5 10-3Torr(0.665Pa)或更少,最好10-4Torr到10-6Torr的薄膜形成室中,执行气相沉积。在气相沉积中,有机化合物通过电阻加热而被预先蒸发,并在气相沉积期间,当快栅极打开时,在基片方向散发。蒸发后的有机化合物被向上散发,并通过金属掩模中的开口在基片上沉积。
例如,通过顺序堆叠部分掺杂是红光发射色素的奈耳红的Alq3、Alq3p-EtTAZ和TPD(芬芳二胺),获得白的发光。
此外,至于EL层1623,例如,可以形成CuPc(20nm)作为空穴注入层,可用形成氧化钼(MoOx)和-NPD(40nm)作为空穴传输层,Alq3:DMQd(375nm)(DMQd二羟基喹啉并吖啶衍生物)可以形成为光发射层,并形成Alq3(375nm)作为电子传输层。
此外,当通过使用旋转涂层的涂层形成EL层1623时,涂覆后,期望用真空加热烘干。例如,作为空穴注入层的聚乙烯(乙烯二氧噻吩)/聚乙烯(苯乙烯磺酸基酸)溶剂(PEDOT/PSS)被施加在整个表面上并烘干。其后,掺杂作为发光中心色素(1,1,4,4-四苯基-1,3-丁二烯(TPB),4-双氰亚甲基-2-甲基-6-(p-二甲基胺-苯乙烯基)-4H-吡喃(DCM1),奈耳红,香豆素6,或类似的)的光发射中心色素的聚乙烯咔唑(PVK)可以在整个表面上并烘干。在此值得注释的是,水用作为不溶于有机溶剂的PEDOT/PSS的溶剂。因此,与PEDOT/PSS再次溶解无关,即使在其上PVK。此外,PEDOT/PSS和PVK具有不同的溶剂;因此,最好不使用相同的薄膜形成室。EL层1623可以单层形成,电子传输1,3,4-二唑啉衍生物(PBD)可以在空穴传输聚乙烯咔唑(PVK)中被分散。此外,通过分散作为电子传输剂的PBD的30wt%,和通过以合适数量分散四种色素(TPB,香豆素6,DCM1和奈耳红),来获得白的发光。
此外,可以个别地用R,G和B涂覆EL层,来在一个平板具有全色彩显示。
在EL层1623上提供EL元件的阴极1624。作为阴极1624,使用包括镁(Mg)、锂(Li)或钙(Ca)具有低功函数的材料。最好使用由MgAg(Mg和Ag在10比1的比例的混合材料)组成的电极。此外,可以使用诸如MgAgAl,MgIn,LiAl,LiFAl,CaF2或CaN的合金电极,或堆叠某些上面所述合金的电极,或在合金上涂抹Al的电极。可替换地,可以使用通过联合-蒸发方法,由属于周期表的族1或2的元素和Al组成的薄膜。
尽管为每个像素分别形成EL层1623和阴极1624的堆叠是必要的,因为EL层1623防水性很差,不能使用普通光刻技术。此外,通过使用碱性金属制造的阴极1624容易被氧化。因此,诸如金属掩模的物理掩模成员最好用到通过如上所述的诸如真空蒸发、溅射或等离子体CVD的汽相方法来选择性地形成它们。此外,用于防止外界潮湿或类似的防护电极可以堆叠在阴极1624上。最好含有铝(Al),铜(Cu)或银(Ag)的低电阻材料用作为防护电极。
为了获得具有低电功率消耗的高亮度,通过三个激子(三重态)发光的有机化合物(下文称为三重态化合物)用作形成EL层1623的材料。在此值得注释的是,单态化合物定义为通过仅仅单个激励发光的化合物,三重态化合物定义为通过三个激励发光的化合物。
作为三重态化合物,在下面文件中揭示的有机化合物可以被作为典型材料引用。(1)T.Tsutsui.c.Adachi,S.Saito,有机分子系统中光化学的过程,ed.K.Honda,(Elsevier Sci.Pub.,Tokyo,1991)p.437-450。(2)M.A.Baldo,D.F.O’Brien,Y.You,A.Shoustikov,S.Sibley,M.E.Thompson,S.R.Forrest,Nature395(1988)p.151-154。(3)M.A.Baldo,S.Lamansky,P.E.Burrrows,M.E.Thompson,S.R.Forrest,Appl.Phys.Lett.,75(1999)p.4-6。(4)T.Tsutsui,M.-J.Yang,M.Yahiro,K.Nakamura,T.Watanabe,T.Tsuji,Y.Fukuda,T.Wakimoto,S.Mayaguchi,Jpn.Appl.Phys.,38(12B)(1999)L1502-L1504。三重态化合物具有比单态化合物更高的光发射效率,工作电源(导致EL元素发射光所需电压)可以被降低,以获得相同的发射亮度。
在图13中,使开关TFT1654具有多栅极结构,电流控制TFT1655被设有栅极电极重叠的LDD。使用多晶硅的TFT具有高运作速度,使得热载流子注入的劣化或类似的容易发生。因此,如图13所示,对于根据像素中的功能形成具有不同结构的TFTs(具有非常低的截止电流的开关TFT和防热载流子注入的电流控制TFT),在制造具有高可靠性的显示装置是非常有效的,并能实现极好的图像显示(高运作性能)。在上述方式中,可以完成有源矩阵型光发射装置。
实施例6在实施例5中,已经描述了图13所示应用本发明到底部发射发光装置的情况。在这个实施例中,本发明被应用到图14A所示的顶部发射发光装置,和图14C所示的双发射发光显示装置。
首先,将描述双发射显示装置的情况。在这种情况下,可以使用和实施例5中阳极1622的材料一样,诸如ITO,ITSO,ZnO,IZO,GZO的透明导电薄膜。在对阳极1622使用ITSO的情况下,可以堆叠每个含有不同氧化硅浓度的ITSO层。最好较低的ITSO层(源极或漏极一侧)具有较低氧化硅浓度,较高ITSO层(光发射层的一侧)具有较高氧化硅浓度。因此,保留连接TFT的低电阻,可以改善空穴注入EL层1623的有效性。自然地,可以使用另一种材料和ITSO(例如,ITO的较低层和ITSO的较高层的分层结构)的分层结构或除了ITSO的另外材料的分层结构。
同时,具有1nm到10nm厚度的极薄的铝薄膜、含有微量的Li的铝薄膜或类似的用作阴极1624,使得光线从EL层1623被释放出来。因此,可以获得从发光元件的光线可以从顶部和底部侧被释放的双发射发光装置(图14C)。
和阳极1622一样的材料,是ITO,OTSO或类似的透明导电薄膜可以用作阳极1624,来获得双发射发光装置。在这种情况下,硅或氧化硅可以被含有在透明薄膜或可以使用它们分层结构中。
接下来,参考图14A将描述顶部发射发光显示装置的情况。通常,可以通过互相替换图14B所示的底部发射型的阳极1622(空穴注入电极)和阴极1624(电子注入电极),颠倒堆叠EL层和反转大量电流控制晶体管的极性(在此,n沟道TFT),来获得在其中来自发光元件的光线可以被释放到基片的反面侧(顶部侧)的顶部发射发光装置。在电极和EL层被颠倒堆叠的情况下,具有不同氧化硅浓度的透明导电氧化层的多层结构被用作阳极1622。因此,由于诸如改善发光有效性和低功率消耗的有利效果,可以获得具有高稳定性的发光装置。在此,反射性金属导电电极或类似的可以用作阴极1624。
在此值得注释的是,通过应用诸如ITO或ITSO的透明导电层到阳极1622,无需交换图14B所示底部发射型中的阳极1622和阴极1624,可以获得顶部发射型发光装置。可以为了用作阳极的透明导电层,应用可以使用的含有硅或氧化硅的透明导电层或它的多层结构。
实施例7在这个实施例中,通过类似在实施例模式1或其他实施例中描述的步骤,可以制造包括反向错开的TFT的显示面板面的例子。
图18A显示使用反向错开的TFT制造的的EL显示面板面像素的顶视图。图18B显示对应顶视图的示意图。在EL显示面板面像素区域中,为每个像素提供EL元件6707和用于驱动控制EL元件6707的光发射的第一TFT6700,控制第一TFT的开-关(转换)的第二TFT,用于驱动控制提供给EL元件和驻存信号数据的电容6708的电流的第三TFT6702。这些TFTs可以每个用在实施例模式1或其他实施例所示的反向错开的TFT形成。
第一TFT6700通过第三TFT6702连接在EL元件6707下提供的像素电极,并用来控制EL元件6707的光发射。第二TFT6701控制响应作为第二TFT6701的栅极电极的扫描线路6705和信号线路6703的信号的第一个TFT6700的变换,且可以控制第一TFT6700的开-关。第一TFT6700的栅极电极连接到第二个TFT6701,响应栅极的开-关来自电源线路6704的电源供应给像素电极侧。此外,对应发射亮度根据电流数量变化的EL元件的变化,提供用于电流控制的连接固定电源线6706的第三TFT6702。因此,向EL元件6707提供来自电源线路6704的恒定电流。
EL元件6707具有含有在从单态受激态(荧光)返回到接地状态时发生光发射,和/或从三重态受激态(磷光)返回到接地状态时发射光发射的有机化合物层(下文称为EL层)夹层在一对电极(阳极和阴极)之间的结构。低分子量有机发光材料、一种中间分子量有机发光材料(非理想化的,具有20或更少分子或具有至多10um长分子链的有机发光材料),或高分子量有机发光材料可以用作形成EL层的有机化合物。EL层可以用单层形成,或通过大量具有不同功能的层堆叠来形成。在堆叠大量层的情况下,空穴注入层、空穴传输层、发光层、电子注入层、电子传输层和空穴或电子模块层可以被适当地组合使用。空穴注入层和空穴传输层由具有高空穴迁移率的材料和能够从电极注入的空穴组成。二个功能可以被结合来形成一个层(空穴注入传输层)。同样也可用于电子注入传输层的情况。
图19A和19B显示沿着图18A中线A-A’和B-B’的横截面视图。图19B显示了在提供第一TFT6700、第二TFT6701、第三TFT6702和类似的基片900与密封基片906之间形成光发射元件908的有源矩阵EL显示面板。二个横截面视图都包括第一TFT6700。第一TFT6700通过第二TFT6701连接到像素电极909。提供绝缘体911(称为隔离墙、堤或类似的),其上面形成光发射层903和对电极904。因此,形成光发射元件908。在光发射元件908上形成钝化薄膜905,且用密封基片906和密封剂来密封光发射元件908。钝化薄膜905和密封基片906之间的空间填充绝缘体912。
绝缘体911和912可以使用从氮化硅、氧化硅、氮氧化硅、氮化铝、氧氮化铝、氮氧化铝、氧化铝、类似碳(DLC)的金刚石、氮化碳薄膜(CN)中选择的一个,或它们的混合体。
作为另一种绝缘材料,从聚酰亚胺、丙烯酸、苯环丁基和聚酰胺中选择的一个或多个材料可以被使用。可替换地,可以使用由硅(Si)和氧(O)的结合物组成的骨架结构,且至少含有作为取代基的氢,或进一步至少含有氟、烷基族和作为取代基的除了氢之外的(典型的氧化硅树脂)芳香烃中一个的材料。在从密封基片906方面(顶部发射类型)放出光的情况下,光发送材料必须被用作绝缘体912。
图18A到19B每个仅显示一个像素,然而,可以结合具有对应R(红)、G(绿)和B(蓝)的EL元件的像素来实现多彩显示。所有的颜色可以使用从单态受激态返回到接地状态时发生的光发射(荧光),所有的颜色可以使用从三重态受激态返回到接地状态时发生的光发射(磷光),或一个颜色可以是荧光(或磷光),剩余的二个颜色可以是磷光(荧光)。因此,光发射可以被组合。磷光可以用作仅仅是R,荧光可以用作G和B。例如,可以使用具有20nm厚度的铜]酞菁染料(CuPc)薄膜作为空穴注入层,和提供70nm厚度的三个-8-对苯二酚亚油铝合成物(Alq3)薄膜的分层结构。通过增加诸如二羟基喹啉并吖啶、二萘嵌苯或DCM1给Alg3来控制光发射的颜色。
另一种绝缘材料,诸如氮化硅、氧化硅、氧氮化硅、氮化铝、氧氮化铝、氧化铝、类似碳的金刚石或含有碳的氮,可以用作钝化薄膜905。可替换地,可以使用由硅(Si)和氧(O)的结合物组成的骨架结构,且至少含有氢作为取代基,或除了氢之外进一步至少含有氟、烷基族和芳香烃等之一作为取代基材料(典型的氢化硅树脂)。
本发明可以应用到光线从光发射显示面板的二侧释放的双发射发光显示面板,或应用到发光显示面板的一侧。在光线仅仅从对电极904侧释放(顶部发送类型)的情况下,像素电极908是等同于阳极的反射性导电薄膜。具有诸如铂(Pt)或金(Au)的高功函数的导电薄膜可以用于作为阳极。因为这些金属是昂贵的,所以可以使用金属被制成薄片覆盖在适当的导电薄膜诸如铝薄膜或钨薄膜上的像素电极,使得铂或金被暴露在最外层表面。对电极904是稀薄(最好10nm到50nm)导电薄膜,并由含有具有低功函数,属于周期表族1或族2(例如Al,Mg,Ag,Li,Ca或它们的合金,诸如MgAg,MgAgAl,MgIn,LiAl,LiFAl,CaF2或CaN)的元素的材料组成,来作为阴极服务。在对电极上形成和堆叠氧化导电薄膜(典型的,ITO薄膜)。在这种情况下,来自发光元件的发射光被像素电极909反射,并通过对电极904从密封基片906释放。
在光线仅仅从像素电极909的一侧释放(底部发射类型)的情况下,透明导电薄膜用作对应于阳极的像素电极。氧化铟和氧化锡的化合物、氧化铟和氧化锌的化合物、氧化锌、氧化锡或氧化铟可以被用作透明导电薄膜。对电极904最好使用由Al,Mg,Ag,Li或Ca或它们的合金,诸如MgAg,MgIn或AlLi组成的导电薄膜(薄膜厚度为50nm到200nm)。在这种情况下,从从发光元件908发射的光线被通过像素电极909从基片900的一侧释放。
在光线从像素电极909侧和对电极906侧释放的双发射类型的情况下,透明导电薄膜用作对应于阳极的像素电极909。ITO,OTSO,IZO,ZnO,氧化锡。氧化铟或类似的可以用作透明导电薄膜。对电极906是稀薄(最好10nm到50nm)导电薄膜,并使用含有具有低功函数,属于周期表族1或族2(例如Al,Mg,Ag,Li,Ca或它们的合金,诸如MgAg,MgAgAl,MgIn,LiAl,LiFAl,CaF2或CaN)元素的材料,来作为阴极。在对电极906上形成和堆叠透明氧化导电薄膜(典型的,ITO薄膜或ITSO薄膜)。在这种情况下,来自发光元件908的发射光从基片900和密封基片906释放。
关于上述EL显示面板,通过液滴流注方法可以制造TFT。因此,步骤的数量减少了且制造费用大大降低。尤其是,在为连接第一TFT6700和第二TFT6701形成接触孔6709中,通过应用本发明可以试图进一步减少步骤数量和费用。在这个实施例中,已经显示了为液晶显示面板使用实施例模式1或另一个实施例的反向错开的TFT的例子。然而,本发明可以同样地应用在使用实施例模式2中所示的顶部栅极TFT或错开的TFT的情况。
实施例8在这个实施例中,参考图15将描述根据实施例4用作液晶显示装置或根据实施例5用作光发射装置的显示面板。
关于图15所示模块,在COG(玻璃上的芯片)中像素区域701的周围提供包括驱动电路的驱动ICs。自然地,在TAB(自动结合带)中安装驱动ICs。
用对(置)基片703和密封剂702固定基片700。像素区域701具有实施例4所示作为显示元件的液晶,或具有实施例5所示作为显示元件的EL元件。驱动ICs705a和705b和驱动ICs707c到707a每个可以具有由单晶半导体或多晶半导体组成的集成电路。通过FPCs704c到704a,706a或706b向驱动ICs705a和705b和驱动ICs707c到707a提供信号或电源。
实施例9作为使用根据实施例8的组件的电子装置的例子,将描述图16A所示的电视机、便携式书籍(电子书籍)和蜂窝电话。
关于图16A所示的电视机,具有液晶或EL元件的显示组件2002与底盘2001结合。通过接收器2005的使用可以实现通过调制解调器2004包括普通电视广播的接收的单向(发送器到接收器)或双向(发送器和接收器,接收器们)的信息通信。通过使用底盘上的开关或遥控器2006可以操作电视机。也提供显示信息的显示区域2007给遥控器2006。
在电视机中,为了显示频道或音量,除了主屏幕2003以外,可以提供第二个屏幕组件形成的子屏幕2008。在这样的结构中,主屏幕2003由具有宽广视觉角度的EL模块形成,或由液晶显示模块制造。可替换地,在把低功耗区分优先次序的情况下,主屏幕2003由液晶显示模块形成,子屏幕2008由EL模块形成,且子屏幕2008可以具有闪光功能。
图15B显示了包括主体3101、显示区域3102和3103、记录介质3104、操作开关3105、天线3106的便携式书籍(电子笔记本)。
图15C显示包括显示面板3001和操作平板3002的蜂窝电话。显示面板3001和操作平板3002在接合点3003互相连接。关于接合点3003,可以任意改变设有显示面板3001的显示区域3004的面和提供操作平板3002的操作键盘3006的面一件的角度。此外,也包括语音输出部分3005、电源开关3007、声音输入部分3008和天线。
根据本发明,步骤的数量被大大减少了,可以在高产量低开销来制造大屏幕电视机、便携式书籍、蜂窝电话或类似的。
实施例10在上述实施例中,已主要描述了本发明对显示器的应用。然而,本发明也可以应用到其他领域的其他装置。例如,在LSI制造过程中已经通过光刻形成接触孔。然而,作为这个实施例中,通过对第一有机薄膜(覆盖是接触孔部分薄膜)使用液体防护性材料,可以在期望的部分形成好的接触孔和作为夹层绝缘薄膜、平面化薄膜、栅极绝缘薄膜或类似的第二有机薄膜。
例如,没有显示,然而,通过液滴流注方法形成液体防护第一有机薄膜,在第一有机薄膜周围形成第二有机薄膜且随后移除第一有机薄膜。因此,可以在期望的部分形成好的接触孔和作为夹层绝缘薄膜、平面薄膜、栅极绝缘薄膜或类似的第二有机薄膜。在此,作为这样的绝缘薄膜,可以使用诸如PSG(磷硅酸盐玻璃)、BPSG(硼磷硅酸盐玻璃)、SiOF的无机薄膜来替代第二有机稀薄薄膜。通过LPCVD、涂层、高密度等离子体处理或类似的可以形成这样的无机薄膜。
在制造如上所述的有源矩阵基片中,假如为第一有机薄膜选择是液体防护这样的无机绝缘薄膜的材料,或对有机薄膜应用液体防护处理来形成第一有机薄膜,则可以使用上述无机薄膜代替第二有机薄膜。
作为在本发明中,通过对第一有机薄膜(覆盖接触空穴部分的薄膜)使用液体防护性材料,可以在期望的部分上形成好的接触孔和作为夹层绝缘薄膜的服务的第二有机薄膜。此外,移除第一有机薄膜之后最好在所期望的部分形成接触孔。因此,无需使用抗蚀剂掩模进行曝光或显影,就可形成接触孔和绝缘薄膜。因此,与传统过程比较,此过程可以被大大简化。因此,可以提供在低开销下具有高生产能力和高产量的制造半导体装置的方法。
提供这些优点的本发明可以应用到各种半导体装置包括适于实施例中的反向错开的TFT、顶部栅极TFT或类似的。此外,本发明可以应用到使用半导体装置和诸如液晶显示装置或使用基片的EL显示装置的显示的有源矩阵基片制造方法中,也应用到LSIs领域。因此,本发明可以提供宽广的应用范围。
权利要求
1.半导体装置的制造方法包括步骤选择性地在薄膜上形成是液体防护的第一有机薄膜;在没有形成第一有机薄膜的薄膜部分上形成第二有机薄膜;和在形成第二有机薄膜之后,通过移除第一有机薄膜,来在已经形成第一有机薄膜的部分形成接触孔。
2.如权利要求1所述的半导体装置的制造方法,其特征在于,第一有机薄膜由化学分子式Rn-Si-X4-n(n=1,2,3)的材料形成;其中R是烷基组、乙烯基族、氨基组或环氧族;X是卤素、含甲氧基族、含乙氧基族或醋酸基族。
3.如权利要求1所述的半导体装置的制造方法,其特征在于,第一有机薄膜由FAS(氟烷基硅烷)构成。
4.如权利要求1所述的半导体装置的制造方法,其特征在于,第二有机薄膜含有从由丙烯酸树脂、聚酰亚胺树脂和硅氮烷树脂构成的族中选择的一个。
5.如权利要求1所述的半导体装置的制造方法,其特征在于,半导体装置是顶部栅极TFT(薄膜晶体管)。
6.如权利要求1所述的半导体装置的制造方法,其特征在于,半导体装置是反向错开的TFT。
7.如权利要求1所述的半导体装置的制造方法,其特征在于,在液晶装置中使用半导体装置。
8.如权利要求1所述的半导体装置的制造方法,其特征在于,在EL显示装置中使用半导体装置。
9.如权利要求1所述的半导体装置的制造方法,其特征在于,在从由电视机、便携式书籍和蜂窝电话组成的群体中选择的一个中使用半导体装置。
10.半导体装置的制造方法包括步骤在薄膜上选择性地形成为液体防护的第一有机薄膜;在没有形成第一有机薄膜的薄膜部分上形成第二有机薄膜;形成第二有机薄膜后,通过移除第一有机薄膜来在第一有机薄膜已形成的部分形成接触孔;和在第二有机薄膜上和接触孔中形成导电薄膜。
11.如权利要求10所述的半导体装置的制造方法,其特征在于,第一有机薄膜由化学分子式Rn-Si-X4-n(n=1,2,3)的材料形成;其中R是烷基组、乙烯基族、氨基组或环氧族;X是卤素、含甲氧基族、含乙氧基族或醋酸基族。
12.如权利要求10所述的半导体装置的制造方法,其特征在于,第一有机薄膜由FAS(氟烷基硅烷)构成。
13.如权利要求10所述的半导体装置的制造方法,其特征在于,第二有机薄膜含有从由丙烯酸树脂、聚酰亚胺树脂和硅氮烷树脂构成的族中选择的一个。
14.如权利要求10所述的半导体装置的制造方法,其特征在于,半导体装置是顶部栅极TFT(薄膜晶体管)。
15.如权利要求10所述的半导体装置的制造方法,其特征在于,半导体装置是反向错开的TFT。
16.如权利要求10所述的半导体装置的制造方法,其特征在于,在液晶装置中使用半导体装置。
17.如权利要求10所述的半导体装置的制造方法,其特征在于,在EL显示装置中使用半导体装置。
18.如权利要求10所述的半导体装置的制造方法,其特征在于,在从由电视机、便携式书籍和蜂窝电话组成的群体中选择的一个中使用半导体装置。
19.半导体装置的制造方法包括步骤通过液滴流注的方法,在薄膜上选择性地形成是液体防护的第一有机薄膜;在没有形成第一有机薄膜的薄膜部分上形成第二有机薄膜;形成第二有机薄膜后,通过移除第一有机薄膜来在第一有机薄膜已形成的部分形成接触孔;和通过液滴流注的方法,在第二有机薄膜上和接触孔中形成导电薄膜。
20.如权利要求19所述的半导体装置的制造方法,其特征在于,第一有机薄膜由化学分子式Rn-Si-X4-n(n=1,2,3)的材料形成;其中R是烷基组、乙烯基族、氨基组或环氧族;X是卤素、含甲氧基族、含乙氧基族或醋酸基族。
21.如权利要求19所述的半导体装置的制造方法,其特征在于,第一有机薄膜由FAS(氟烷基硅烷)构成。
22.如权利要求19所述的半导体装置的制造方法,其特征在于,第二有机薄膜含有从由丙烯酸树脂、聚酰亚胺树脂和硅氮烷树脂构成的族中选择的一个。
23.如权利要求19所述的半导体装置的制造方法,其特征在于,半导体装置是顶部栅极TFT(薄膜晶体管)。
24.如权利要求19所述的半导体装置的制造方法,其特征在于,半导体装置是反向错开的TFT。
25.如权利要求19所述的半导体装置的制造方法,其特征在于,在液晶装置中使用半导体装置。
26.如权利要求19所述的半导体装置的制造方法,其特征在于,在EL显示装置中使用半导体装置。
27.如权利要求10所述的半导体装置的制造方法,其特征在于,在从由电视机、便携式书籍和蜂窝电话组成的群体中选择的一个中使用半导体装置。
28.半导体装置的制造方法包括步骤在薄膜上选择性地形成第一有机薄膜;对第一有机薄膜执行等离子体处理;在没有形成第一有机薄膜的薄膜部分上形成第二有机薄膜;和形成第二有机薄膜后,通过移除第一有机薄膜来在第一有机薄膜已形成的部分形成接触孔。
29.如权利要求28所述的半导体装置的制造方法,其特征在于,第一有机薄膜含有水溶性树脂。
30.如权利要求28所述的半导体装置的制造方法,其特征在于,第一有机薄膜含有PVA(聚乙烯醇)。
31.如权利要求28所述的半导体装置的制造方法,其特征在于,使用基于氟的气体执行等离子体处理。
32.如权利要求28所述的半导体装置的制造方法,其特征在于,使用CF4气体执行等离子体处理。
33.如权利要求28所述的半导体装置的制造方法,其特征在于,半导体装置是顶部栅极TFT(薄膜晶体管)。
34.如权利要求28所述的半导体装置的制造方法,其特征在于,半导体装置是反向错开的TFT。
35.如权利要求31所述的半导体装置的制造方法,其特征在于,半导体装置用于液晶装置中。
36.如权利要求28所述的半导体装置的制造方法,其特征在于,半导体装置用于EL显示装置中。
37.如权利要求28所述的半导体装置的制造方法,其特征在于,半导体装置用于从由电视机、便携式书籍和蜂窝电话组成的群体中选择的一个。
38.半导体装置的制造方法包括步骤选择性地在薄膜上形成第一有机薄膜;对第一有机薄膜执行等离子体处理;在没有形成第一有机薄膜的薄膜部分上形成第二有机薄膜;形成第二有机薄膜后,通过移除第一有机薄膜来在第一有机薄膜已形成的部分形成接触孔;和在第二有机薄膜上和接触孔中形成传导薄膜。
39.如权利要求38所述的半导体装置的制造方法,其特征在于,第一有机薄膜含有水溶性树脂。
40.如权利要求38所述的半导体装置的制造方法,其特征在于,第一有机薄膜含有PVA(聚乙烯醇)。
41.如权利要求38所述的半导体装置的制造方法,其特征在于,使用基于氟的气体执行等离子体处理。
42.如权利要求38所述的半导体装置的制造方法,其特征在于,使用CF4气体执行等离子体处理。
43.如权利要求38所述的半导体装置的制造方法,其特征在于,半导体装置是顶部栅极TFT(薄膜晶体管)。
44.如权利要求38所述的半导体装置的制造方法,其特征在于,半导体装置是反向错开的TFT。
45.如权利要求38所述的半导体装置的制造方法,其特征在于,在液晶装置中使用半导体装置。
46.如权利要求38所述的半导体装置的制造方法,其特征在于,在EL显示装置中使用半导体装置。
47.如权利要求38所述的半导体装置的制造方法,其特征在于,在从由电视机、便携式书籍和蜂窝电话组成的群体中选择的一个中使用半导体装置。
48.半导体装置的制造方法包括步骤通过液滴流注的方法,在薄膜上选择性地形成第一有机薄膜;对第一有机薄膜执行等离子体处理;在没有形成第一有机薄膜的薄膜部分上形成第二有机薄膜;形成第二有机薄膜后,通过移除第一有机薄膜来在第一有机薄膜已形成的部分形成接触孔;和通过液体流注的方法,选择性地在第二有机薄膜上和接触孔中形成传导薄膜。
49.如权利要求48所述的半导体装置的制造方法,其特征在于,第一有机薄膜含有水溶性树脂。
50.如权利要求48所述的半导体装置的制造方法,其特征在于,第一有机薄膜含有PVA(聚乙烯醇)。
51.如权利要求48所述的半导体装置的制造方法,其特征在于,使用基于氟的气体执行等离子体处理。
52.如权利要求48所述的半导体装置的制造方法,其特征在于,使用CF4气体执行等离子体处理。
53.如权利要求48所述的半导体装置的制造方法,其特征在于,半导体装置是顶部栅极TFT(薄膜晶体管)。
54.如权利要求48所述的半导体装置的制造方法,其特征在于,半导体装置是反向错开的TFT。
55.如权利要求48所述的半导体装置的制造方法,其特征在于,在液晶装置中使用半导体装置。
56.如权利要求48所述的半导体装置的制造方法,其特征在于,在EL显示装置中使用半导体装置。
57.如权利要求48所述的半导体装置的制造方法,其特征在于,在从由电视机、便携式书籍和蜂窝电话组成的群体中选择的一个中使用半导体装置。
58.半导体装置的制造方法包括步骤在薄膜上选择性地形成是液体防护的第一有机薄膜;在没有形成第一有机薄膜的薄膜部分上形成第二有机薄膜;和形成第二有机薄膜后,通过移除第一有机薄膜来在第一有机薄膜已形成的部分形成接触孔。
59.如权利要求58所述的半导体装置的制造方法,其特征在于,第一有机薄膜由化学分子式Rn-Si-X4-n(n=1,2,3)的材料形成;其中R是烷基组、乙烯基族、氨基组或环氧族;X是卤素、含甲氧基族、含乙氧基族或醋酸基族。
60.如权利要求58所述的半导体装置的制造方法,其特征在于,第一有机薄膜由FAS(氟烷基硅烷)构成。
61.如权利要求58所述的半导体装置的制造方法,其特征在于,第二有机薄膜含有从由丙烯酸树脂、聚酰亚胺树脂和硅氮烷树脂构成的族中选择的一个。
62.有源矩阵显示装置的制造方法包括步骤选择性地在薄膜上形成第一有机薄膜;对第一有机薄膜执行等离子体处理;在没有形成第一有机薄膜的薄膜部分上形成第二有机薄膜;和形成第二有机薄膜后,通过移除第一有机薄膜来在第一有机薄膜已形成的部分形成接触孔。
63.如权利要求62所述的半导体装置的制造方法,其特征在于,第一有机薄膜含有水溶性树脂。
64.如权利要求62所述的半导体装置的制造方法,其特征在于,第一有机薄膜含有PVA(聚乙烯醇)。
65.如权利要求62所述的半导体装置的制造方法,其特征在于,使用基于氟的气体执行等离子体处理。
66.如权利要求62所述的半导体装置的制造方法,其特征在于,使用CF4气体执行等离子体处理。
全文摘要
在通过半导体装置制造的传统过程形成接触孔的情况下,为了在没有形成接触孔的薄膜上形成抗蚀剂,要求形成几乎整个覆盖基片的抗蚀剂。因此,生产能力相当地低。此外,当所应用的抗蚀剂的数量和底基的表面状态没有被完全控制的时候,抗蚀剂扩展到接触孔的区域时,接触缺陷发生。因此要求改善。根据本发明,在形成半导体装置中,是半导体装置的接触孔的部分可能覆盖着液体防护的第一有机薄膜。随后,在没有形成第一有机薄膜的区域上,形成作为绝缘薄膜的第二有机薄膜,且随后移除第一有机薄膜来形成接触孔。
文档编号H01L21/00GK1607639SQ20041008314
公开日2005年4月20日 申请日期2004年9月30日 优先权日2003年10月2日
发明者藤井厳, 前川慎志 申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1