半导体装置及其制造方法

文档序号:7231147阅读:138来源:国知局
专利名称:半导体装置及其制造方法
技术领域
本发明涉及半导体装置及其制造方法。
背景技术
随着半导体技术的细小化,半导体装置中的绝缘膜进一步呈薄膜化。SiO2是优良的绝缘膜材料,一直在使用中。但是,例如在栅绝缘膜,因为薄膜化进展到SiO2膜的厚度达到几个原子层的尺寸,所以控制通过绝缘膜漏出的电流量在原理上是困难的。如果取代SiO2采用介电常数比较高的物质作为绝缘膜,认为在电性能上还是起薄的SiO2膜那样的作用。即使比SiO2膜情况下几个原子层的膜厚还厚,由于在电性能上是同等的,所以认为可以抑制漏出电流。
另外,在闪存等方面,存在隔开控制栅极和浮动栅极之间的电极间绝缘膜,这些伴随着元件的小型化也要求高的介电常数。
从这样的背景来研究介电常数高的绝缘膜(high-k膜),现在认为含有铪的栅绝缘膜是有希望的。但是,含有铪的栅绝缘膜的介电常数的最大值也就是25左右。实际上,因为使用铪比例更低的组成的可能性也高,所以即使称为high-k膜也只实现12左右的比介电常数。
由第一原理计算,可以把氧化锆或氧化铪作成正方晶的结晶结构,可以大幅增加比介电常数,例如在G.-M.Ringanese,X.Gonze,G.Jun,K.Cho,A.Pasquarello,Phys.Rev.B69,184301(2004)(以下称文献1)中揭示。以实验方式确定其可能性为主要目的,通过在氧化锆或氧化铪中添加钇进行了形成正方晶结构的实验(例如参照H.Kita,L.Kyuno,A.Toriumi,Appl.Phys.Lett.86,102906(2005)(以下称文献2))。
另外,在富田一行、喜多浩之、弓野健太郎、鸟海明、2006年春应用物理学术讲演会预备稿集25p-V-3(以下称文献3)中公开了可通过在氧化铪中添加硅来增加介电常数。
但是,在文献2所述的技术中,如由X射线衍射图所示,没有成功地制成显示出具有最大比介电常数的结晶结构的正方晶。
另外,在文献2中,在半导体加工中使用了不经常使用的稀土类元素和碱土类元素来增大介电常数。这些元素由于固溶在氧化锆或氧化铪中,可以认为很容易提高介电常数。但是,在特别要防止污染的现有的半导体生产线中,不容易预见到由导入稀土类和碱土类元素而可能发生的副作用和不良的影响。为此,可预想到由导入稀土类元素和碱土类元素使成本大幅增加。
在文献3所述的电介质,如后面所述,作为栅绝缘膜若实际用于LSI制造,则有可能产生例如由对直接接触的频道区域的应力而使移动度下降,或栅绝缘膜晶格松弛而回到原来的比介电常数,进而栅绝缘膜由应力引起自我损坏,元件性能有可能恶化。

发明内容
本发明考虑到上述情况,其目的在于提供尽量提高介电带数且降低制造成本的半导体装置及其制造方法。
本发明第一方面的半导体装置的制造方法,具有以下步骤在半导体基板上形成包含(HfzZr1-z)xSi1-xO2-y(0.81≤x≤0.99、0.04≤y≤0.25、0≤z≤1)的非晶态膜的步骤;在含有氧的气氛中,对所述非晶态膜进行大于等于750℃的退火处理,形成含有正方晶(HfzZr1-z)xSi1-xO2的绝缘膜的步骤;所述组成中的x、y、z的范围是由XPS法测定的值。
另外,本发明第二方面的半导体装置,具有设置在半导体基板上的包含(HfzZr1-z)xSi1-xO2(0.81≤x≤0.99、0≤z≤1)的绝缘膜,所述绝缘膜以正方晶的萤石型结晶结构为主相,所述绝缘膜中的正方晶的分子容积Vm,以所述(HfzZr1-z)xSi1-xO2计,处于0.03353nm3≤Vm≤0.03424nm3的范围,所述绝缘膜的物理膜厚小于等于110nm,所述组成中的x、z的范围是由XPS法测定的值。
本发明第三方面的半导体装置的制造方法,具有以下步骤在半导体基板上形成包含(HfzZr1-z)xSi1-xO2-y(0.76≤x≤0.985、0.04≤y≤0.25、0≤z≤1)的非晶态膜的步骤;在含有氧的气氛中,对所述非晶态膜进行大于等于750℃的退火处理,形成含有正方晶(HfzZr1-z)xSi1-xO2的绝缘膜的步骤;所述组成中的x、z的范围是由RBS法测定的值,所述组成中的y的范围是由XPS法测定的值。
另外,本发明第四方面的半导体装置,具有以下步骤在半导体基板上形成包含(HfzZr1-z)xSi1-xO2-y(0.76≤x≤0.985、0.04≤y≤0.25、0≤z≤1)的非晶态膜的步骤;在含有氧的气氛中,对所述非晶态膜进行大于等于750℃的退火处理,形成含有正方晶(HfzZr1-z)xSi1-xO2的绝缘膜的步骤;所述组成中的x、z的范围是用RBS法测定的值,所述组成中的y的范围是由XPS法测定的值。


图1是表示由本发明的各实施方式的半导体装置制造方法工序的流程图。
图2是表示由本发明的第1实施方式的制造方法制造的绝缘膜结晶状态为正方晶的X射线衍射图。
图3表示对多形态氧化锆结晶结构计算的X射线衍射峰强度。
图4是氧化锆的温度-压力相图。
图5是表示由本发明的第2实施方式的制造方法制造的绝缘膜结晶状态为正方晶的X射线衍射图。
图6是氧化铪的温度-压力相图。
图7是表示通过由本发明的第4实施方式的制造方法制造的缺氧的绝缘膜的XPS的Zr-Si结合存在的图。
图8是表示由本发明的第4实施方式的制造方法制造的绝缘膜膜厚为10nm或5nm的薄膜也能得到正方晶的X射线衍射图。
图9是表示由本发明的第4实施方式的制造方法制造的绝缘膜由检测电性能确认的比介电常数的图。
图10是HfO2和ZrO2的全比例相图。
图11是本发明的第6实施方式的第1具体例的CMOS部件。
图12是表示第6实施方式的第2具体例的闪存的。
图13是表示氧化铪的结晶单位晶格体积与压力相关性的图。
图14是由XPS法测定的Zr组成x为0.86、0.90、0.94、0.98、1.00情况的含有ZrxSi1-xO2的绝缘膜的X射线衍射图。
具体实施例方式
以下,参照附图详细说明本发明的实施方式。
本发明的各实施方式,在氧化锆和氧化铪等中,通过导入认为一般不固溶的Si而实现增加介电常数。在通过XPS(X-rayphotoelectron Spectroscopy)法的测定中添加6原子%~14原子%的范围的Si,在通过RBS(Rutherford Backscattering Spectrometry)法的测定中,添加8原子%~19原子%的范围的Si,来制造晶格常数比现有公知的正方晶约小1%的正方晶的薄膜。该薄膜具有使正方晶的氧离子的作用范围增大的结晶结构。为此,通过使极化率增大约8%,实现比通常的氧化锆和氧化铪的比介电常数17高的达到大于等于20小于等于26的介电常数。
在以下的实施方式中,在XPS法测定中,作为Si2p峰值的相对感度系数采用0.37,作为Zr3d的相对感度系数采用2.40,Hf4f的相对感度系数采用2.56。另外,在RBS法测定中,使用加速电压2.275MeV,散射角为160度,剂量为40μC的He+离子。
(第1实施方式)说明本发明第1实施方式的半导体装置制造方法。
首先,如图1的步骤S1所示,在由稀氟酸除去自然氧化膜的单晶硅基板上,形成由XPS法测定的含有Zr0.86Si0.14O1.75的氧比化学量理论比少的非晶态绝缘膜。成膜方法是溅射法,使用Zr和Si的靶,在氩和氧的混合气氛中成膜。其中,缺氧量是由相当于Zr3d的Zr-O结合的XPS法测定的峰强度和相当于Zr-Zr或Zr-Si结合的XPS法测定的峰强度之比,假定相当于Zr-Zr或Zr-Si结合的峰全部来源于缺氧而求出的值。
接着,如图1的步骤S2所示,把形成含有Zr0.86Si0.14O1.75的非晶态绝缘膜的基板放到热处理腔中,进行热处理。热处理的温度为800℃,热处理的时间为30秒,热处理的气氛气体为氮和氧的混合气,氧仅以1ppm的比例含有,氮为主体气体。另外,热处理的压力为大气压。含有Zr0.86Si0.14O1.75的非晶态绝缘膜由上述热处理补偿缺氧,成为含有Zr0.86Si0.14O2的绝缘膜。在热处理后的试样中不存在缺氧的事实,是由不出现相当于Zr-Zr或Zr-Si结合的XPS法测定的峰而作出的结论。
接着,进行对含有Zr0.86Si0.14O2的绝缘膜的X射线衍射测定。测定的结果得到的X射线衍射图在图2中表示。图2中表示的X射线衍射图与在图3所示的计算出的正方晶的氧化锆的X射线衍射图类似。为此,在本实施方式制造方法制造的含有Zr0.86Si0.14O2的绝缘膜也认为是正方晶的氧化锆。但是,由X射线衍射对本实施方式制造方法制造的含有Zr0.86Si0.14O2的绝缘膜的晶格常数进行测定,例如与Acta Cryst.15,1187,62所述的正方晶的氧化锆的晶格常数(a=b=0.3640nm、c=0.5270hm)进行比较,成为小约1%的值(a=b=0.3605nm±0.0003nm、c=0.5206nm±0.0006nm)。另外,图3表示对多形态氧化锆结晶结构计算的X射线衍射峰强度。
作为过去很困难的用本实施方式制造方法可以制造正方晶的氧化锆型结晶的理由被认为是在绝缘膜存在施加于其上的应力。即,用本实施方式制造方法,首先制作氧比化学量理论比少的含有Zr0.86Si0.14O1.75的非晶态绝缘膜。其后,通过进行补偿缺氧的退火来增大绝缘膜的体积。但是由于绝缘膜附着在基板上,所以不能向面内方向膨胀。为此,在绝缘膜施加压缩应力,结果认为绝缘膜的结晶晶格常数缩小约1%。
以下,在图4表示氧化锆的温度-压力的相图(参照J.M.Leger,P.E.Tomaszewski,A.Atouf,and A.S.Pereira,Phys.Rev.B47,14075(1993))。如图4所示,氧化锆随着高压化,正方晶作为结晶状态降低为可稳定存在的温度。从而,在本实施方式所示的制造方法中,由于满足在室温正方晶稳定的条件,所以认为可成功地制造正方晶。
在此,分析在现有技术所述的文献3中所述的绝缘膜。在该文献3中所述的绝缘膜通过在氧化铪中添加硅使介电常数增加。在文献3中所述的绝缘膜的原子的摩尔极化率为大于等于0.00669nm3小于等于0.00673nm3的范围,几乎不变;形成通过使分子容积(或摩尔体积)缩小约9%而实现增加介电常数的结构。根据本发明人的计算,为实现这样小的分子容积,当然绝缘膜中由变形产生的应力约为9GPa这样的相当大的值。例如,分析在氧化铪中施加压力并改变晶格常数的结果在图13表示(参照Osamu Ohtaka,Hiroshi Fukui,Taichi Kunisada,Tomoyuki Fujisawa,Kenichi Funakoshi,Wataru Utsumi,TetsuoIrifune,Koji Kuroda,and Takumi Kikegawa,J.Am.Ceram.Soc.,84[6]1369-73(2001))。图13的横轴表示施加的压力,纵轴表示施加上述压力下的氧化铪的结晶的单位晶格体积V与在大气压下的氧化铪的结晶的单位晶格体积V0之比。如图13所示,在热平衡状态,在大气压下单斜晶的氧化铪在高压下向斜方晶I相转移,进而在高压下相转移到斜方晶II。这些结晶结构与正方晶不同,例如表示为在单斜晶使分子容积缩小约9%,必须施加达到约10GPa的相当大的压力。换句话说,意味着在缩小9%的分子容积的氧化铪中,产生达到10GPa的相当大的压力,在天然产出的矿石中在金刚石其后第二硬的兰宝石巨大的尺寸结晶中难以承受该应力。更严密的估计膜中应力不低于8GPa。为此,若把文献3中所述的绝缘膜作为栅绝缘膜用于实际的LSI,则有可能产生例如由对直接接触的频道区域的应力而使移动度下降,或栅绝缘膜晶格松弛而回到原来的比介电常数,进而栅绝缘膜由应力引起自我损坏的担心。
相反,在本实施方式的绝缘膜中的应力小于等于1GPa,比文献3中所示的绝缘膜中的应力小很多。为此,元件特性没有恶化。
另外,在本实施方式中,由于在半导体加工中使用非常常用的Si作为氧化锆的添加元素,所以可尽量使制造成本降低。
另外,本实施方式制造的绝缘膜,如后所述,比介电常数实现比通常的氧化锆和氧化铪的比介电常数17高的达到大于等于20小于等于26的介电常数,具有非常高的介电常数。
直接用RBS法求上述试样热处理后的组成,得到含有Zr0.81Si0.19O2的组成值。限于我们所进行的测定,认为[Si]/([Zr]+[Si])摩尔比用RBS法获得直接的值具有较高的可靠性。对此用XPS法的半定量的方法,由于有试样暴露在大气中产生的表面污染等的影响,所以认为难以具有高的可靠性。其中,对于缺氧量在用RBS法,氧的峰强度非常弱,所以认为采用前述XPS方法的精度高。从而,若对热处理前的不稳定状态的试样用RBS法测定[Si]/([Zr]+[Si])摩尔比,用XPS法测定缺氧量,推定得到含有Zr0.81Si0.19O1.75的组成。
(第2实施方式)说明本发明第2实施方式的半导体装置制造方法。
首先,如图1的步骤S1所示,在由稀氟酸除去自然氧化膜的单晶硅基板上,形成由XPS法测定的含有Zr0.81Si0.18O1.80的氧比化学量理论比少的非晶态绝缘膜。成膜方法是溅射法,使用Zr和Si的靶,在氩和氧的混合气氛中成膜。
接着,如图1的步骤S2所示,把形成含有Zr0.81Si0.18O1.80的非晶态绝缘膜的基板放到热处理腔中,进行热处理。热处理的温度为800℃,热处理的时间为8分钟,热处理的气氛气体为氮和氧的混合气,氧仅以10ppm的比例含有,氮为主体气体。另外,热处理的压力为大气压。所述含有Zr0.81Si0.19O1.80的非晶态绝缘膜由该热处理补偿缺氧,成为含有Zr0.81Si0.19O2的绝缘膜。
接着,进行对含有Zr0.81Si0.9O1.80的绝缘膜的X射线衍射测定。测定的结果得到的X射线衍射图在图5中表示。在图5中表示的X射线衍射图与图3所示的计算出的正方晶的氧化锆的X射线衍射图类似。为此,在本实施方式制造方法制造的含有Zr0.81Si0.19O2的绝缘膜也认为是正方晶的氧化锆。但是,由X射线衍射对本实施方式制造方法制造的含有Zr0.81Si0.19O2的绝缘膜的晶格常数进行测定,例如与Acta Cryst.15,1187,62所述的正方晶的氧化锆的晶格常数(a=b=0.3640nm、c=0.5270nm)进行比较,成为小约1%的值(a=b=0.3595nm±0.0005nm,c=0.5190nm±0.0007nm)。这与第1实施方式同样,在用本实施方式制造方法制造的绝缘膜施加压缩应力,结果认为绝缘膜的结晶晶格常数缩小约1%。
从而,与第1实施方式同样,得到尽量提高介电带数且降低制造成本、元件性能不恶化的半导体装置。
另外,对图5所示的X射线衍射图进行具体分析后,明确了仅混入单斜晶氧化锆的峰(用编号10表示)。其理由被认为是混入Si的量增加,由Si/(Si+Zr)比成为19原子%。但是,仅混入这种程度的单斜晶,依然可以作为高介电常数的膜,利用价值高。
用RBS法的直接方法求上述热处理后的膜的组成,得到含有Zr0.76Si0.24O2的组成值。若对热处理前的不稳定状态的试样用RBS法测定[Si]/([Zr]+[Si])摩尔比,用XPS法测定缺氧量,推定得到含有Zr0.76Si0.24O1.80的组成。
(第3实施方式)接着,说明本发明第3实施方式的半导体装置制造方法。
首先,如图1的步骤S1所示,在由稀氟酸除去自然氧化膜的单晶硅基板上,形成由XPS法测定的含有Zr0.9Si0.01O1.90的氧比化学量理论比少的非晶态绝缘膜。成膜方法是溅射法,使用Zr和Si的靶,在氩和氧的混合气氛中成膜。
接着,如图1的步骤S2所示,把形成含有Zr0.99Si0.01O1.90的非晶态绝缘膜的基板放到热处理腔中,进行热处理。热处理的温度为1050℃,热处理的时间为2分钟,热处理的气氛气体为纯氧气。另外,热处理的压力为大气压。由该热处理,含有Zr0.99Si0.01O1.90的非晶态绝缘膜成为含有Zr0.99Si0.01O2的绝缘膜。
对本实施方式的制造方法制造的含有Zr0.99Si0.01O2的绝缘膜进行X射线衍射测定,与正方晶的氧化锆的X射线衍射图类似。为此,在本实施方式制造方法制造的含有Zr0.99Si0.01O2的绝缘膜也认为是正方晶的氧化锆。
从而,本实施方式与第1实施方式同样,可以得到尽量提高介电带数且降低制造成本、元件性能不恶化的半导体装置。
如上所述可以理解,热处理时间在30秒到8分钟范围的任一时间中,热处理温度在800℃到1050℃范围的任一温度,气氛气体的氧浓度在1ppm到100%范围的任意浓度都能形成正方晶。另外,气氛气体压力即使在10-2Pa到105Pa(大气压)变化,也可形成正方晶。
为进行比较,作为比较例,成膜不缺氧的含有Zr1-xSixO2的绝缘膜,则只会出现单斜晶或立方晶。而且,可以理解对该比较例的含有Zr1-xSixO2的绝缘膜进行热处理时,则可简单改变单斜晶和立方晶的比例。
从而,根据上述第1乃至第3实施方式,在非常宽的热处理条件范围可以保持正方晶。可以认为,由这样的上述第1乃至第3实施方式的制造方法制造的正方晶的ZrSiO热处理条件范围宽,在实际的半导体装置制造中,即使在各类制造阶段进行各种热处理,也可以充分保持正方晶。这就意味着完全不会出现在文献3中所示的材料要担心的不能在实际的LSI工艺中应用的问题,实用价值非常大。
另外,在第1乃至第3实施方式中,对作为由XPS法测定的值ZrxSi1-xO2-y(其中,0.81≤x≤0.99、0.10≤y≤0.25)的缺氧的非晶态绝缘膜进行了成膜,也可以代替Zr而用Hf,对HfxSi1-xO2-y(其中,0.81≤x≤0.99、0.10≤y≤0.25)的缺氧的非晶态绝缘膜进行成膜,也可以出现完全同样的正方晶。
其原因是因为,Zr和Hf的化学性质相互类似,现状是即使以2006年现在的科学技术,也是在通常可得到的Zr中要混入1%左右的Hf,将它们相互分离是可以的,但是必须采用有很高的成本(明显区分两者微小的差别)的方式。在Hf中混入1%左右的Zr也与Zr完全相同。从这个事实也可以理解两者的差别是微小的。例如,比较Zr的氧化物和Hf的氧化物时,如图6所示,(参照0.Ohtaka,H.Fukui,T.Kunisada,T.Fujisawa,K.Funakoshi,W.Utsumi,T.Irifune,K.Kuroda,T.Kikegawa,J.Am.Ceram.Soc.,84[6]1369-73(2001))对Hf的氧化物也得到几乎很完全相似的相图。从而,可以容易推断使用与使Zr的氧化物的正方晶稳定化的机构完全相同的机构也可实现稳定的Hf的氧化物的正方晶。
另外,在用RBS法的直接方法求取上述热处理后的膜组成时,得到含有Zr0.985Si0.02O2的组成值。热处理前的不稳定状态的试样[Si]/([Zr]+[Si])摩尔比用RBS法测定,用XPS法测定缺氧量,则推定得到含有Zr0.985Si0.0224O1.90的组成。另外,把上述HfSiO膜对[Si]/([Hf]+[Si])摩尔比用RBS法直接方法测定,用XPS法测定缺氧量,则推定得到具有HfxSi1-xO2-y(其中,0.76≤x≤0.985、0.10≤y≤0.25)的值。
(第4实施方式)说明本发明第4实施方式的半导体装置制造方法。
首先,如图1的步骤S1所示,在由稀氟酸处理剥离界面氧化层的硅基板上成膜ZrxSi1-xO2-y膜。作成的膜用XPS法测定,则(x,y)的组成为具有(1.00,0.046)、(0.99,0.056)、(0.98,0.053)、(0.94,0.053)、(0.90,0.043)、(0.86,0.047)、(0.86,0.049)、(0.86,0.057)、(0.86,0.059)、(0.86,0.061)、(0.86,0.062)、(0.86,0.116)、(0.81,0.083)组成的缺氧的绝缘膜和x成为具有1.00、0.99、0.98、0.90、0.87、0.70组成的不缺氧的绝缘膜。
另外,上述作成的膜的组成,对[Si]/([Zr]+[Si])摩尔比用RBS法测定,用XPS法测定缺氧量,则具有(1.00,0.046)、(0.985,0.056)、(0.97,0.053)、(0.92,0.053)、(0.86,0.043)、(0.81,0.047)、(0.81,0.049)、(0.81,0.057)、(0.81,0.059)、(0.81,0.061)、(0.81,0.062)、(0.81,0.116)、(0.76,0.083)组成的缺氧的绝缘膜和x成为具有1.00、0.985、0.97、0.86、0.81、0.66组成的不缺氧的绝缘膜。
另外,对缺氧的绝缘膜用XPS法进行测定,确认观察到图7所示的由缺氧造成的Zr-Si结合。
在不缺氧的绝缘膜情况,即使堆积施加退火后,只能制作非晶态或单斜晶或立方晶。
以下,如图1的步骤S2所示,对缺氧的绝缘膜进行退火。此时,在(750℃,氮气中,30秒)、(750℃,氮气中,60秒)、(750℃,氮气中,2分钟)、(750℃,氮气中,4分钟)、(750℃,氮气中,8分钟)、(750℃,氧气3%氮气97%,30秒)、(750℃,氧气3%氮气97%,60秒)、(750℃,氧气3%氮气97%,2分钟)、(750℃,氧气3%氮气97%,4分钟)、(750℃,氧气3%氮气97%,8分钟)、(750℃,氧气中,30秒)、(750℃,氧气中,1分钟)、(750℃,氧气中,2分钟)、(750℃,氧气中,4分钟)、(750℃,氧气中,8分钟)、(1000℃,氮气中,30秒)、(1000℃,氮气中,60秒)、(1000℃,氮气中,2分钟)、(1000℃,氮气中,4分钟)、(1000℃,氮气中,8分钟)、(1000℃,氧气3%氮气97%,30秒)、(1000℃,氧气3%氮气97%,60秒)、(1000℃,氧气3%氮气97%,2分钟)、(1000℃,氧气3%氮气97%,4分钟)、(1000℃,氧气3%氮气97%,8分钟)、(1000℃,氧气中,30秒)、(1000℃,氧气中,1分钟)、(1000℃,氧气中,2分钟)、(1000℃,氧气中,4分钟)、(1000℃,氧气中,8分钟)中的任一退火条件下,可以制造几乎纯粹的正方晶。
此时退火处理有两个目的第一个目的是补偿缺氧,第二个目的是确认结构对于热处理的稳定性,即不产生松弛和自体损坏。本实施方式的结果表明已达到上述两个目的。特别是第二个目的,经过上述范围宽的热处理的条件仍然保持完全相同的正方晶这一结果,在认为适用于经过各种热处理过程的实际的LSI工艺情况下是非常有用的。
另外,仔细分析退火条件,通过把气氛中的氧浓度定为大于等于1%,可以确认能完全控制在与硅基板作为栅绝缘膜的所不希望的细小的硅化物结晶的成长。从而,把气氛中的氧浓度定为大于等于1%是更优选的退火条件。
特别是在按XPS法测定具有(0.86,0.049)组成,按RBS法测定具有(0.81,0.049)组成的绝缘膜,准备具有110nm、50nm、20nm、10nm、5nm的膜厚的试样,具有在(750℃,氧气中,30秒)、(800℃,氮气中,30秒)、(1000℃,氧气中,30秒)条件进行退火而补偿缺氧。在10nm、5nm的绝缘膜中进行感应X射线衍射实验,分析结晶结构后,成为没有如图8所示的散乱的正方晶的荧石型结晶结构。另外,对于膜厚为10nm的绝缘膜,在(800℃,氮气中,30秒)的条件下,只对退火的结构进行感应X射线衍射实验,其结果如图8所示。
制作正方晶的添加硅的氧化锆膜的例,过去有很多,多数是粉末试样和烧结试样,是用溶胶凝胶法制造的1μm左右的厚膜。
从而,如本实施方式所示,可适于5nm、10nm的栅绝缘膜和内聚绝缘膜的例子现在还没曾有过。由X射线衍射数据(晶格常数)计算的这些膜的分子容积Vm以ZrxSi1-xO2计,是0.03353nm3≤Vm≤0.03424nm3的范围,而分子容积缩小率为3%。为此,进一步确认与分子容积缩小率为9%的文献3中所述的绝缘膜不同,膜中应力可以承受LSI加工的程度。
根据本实施方式的制造方法,膜中应力可以承受LSI加工的程度的理由推测是由于制造方法的不同。认为在本实施方式的制造方法中,推测制成非晶态的ZrSiO膜后,因为由作为准热平衡的过程的退火使正方晶出现,所以准热平衡的过程降低膜中应力。
另外,在文献3的方法中,用由HfO2靶和SiO2靶的溅射制作HfSiO膜。非热平衡的溅射过程会产生大的膜中应力是众所周知的。
在本实施方式中,对在退火后补偿缺氧的绝缘膜测定比介电常数。退火前用XPS法测定的组成是(1.00,0.046)、(0.99,0.056)、(0.98,0.053)、(0.94,0.053)、(0.90,0.043)、(0.86,0.047),退火后用XPS法测定的组成分别为顺序(1.00,0.00)、(0.99,0.00)、(0.98,0.00)、(0.94,0.00)、(0.90,0.00)、(0.86,0.00),补偿缺氧。
另外,[Si]/([Zr]+[Si])摩尔比用RBS法,对缺氧量用XPS法的退火前试样的组成推定为(1.00,0.046)、(0.985,0.056)、(0.97,0.053)、(0.92,0.053)、(0.86,0.043)、(0.81,0.047),退火后用XPS法测定试样的组成分别为顺序(1.00,0.00)、(0.985,0.00)、(0.97,0.00)、(0.92,0.00)、(0.86,0.00)、(0.81,0.00),对缺氧量用XPS法预测的结果补偿缺氧。
为检测电性能,在上述退火后的膜上形成金电极,在确认电极电阻充分低的基础上进行。
比介电常数的测定结果如图9所示。在图9中,横轴表示由XPS测定的(Si/(Si+Zr))×100(原子%),纵轴表示绝缘膜的比介电常数,即绝缘膜的介电常数ε和真空的介电常数ε0之比。如图9所示,在ZrxSi1-xO2膜由XPS测定的0.86≤x≤0.94的范围(在Zr1-zSizO2膜的0.06≤2≤0.14的范围),比介电常数在大于等于20小于等于26的范围。因为在现有已知的ZrO2膜的比介电常数为17左右,所以可确认有增大介电常数的效果。
另外,在本实施方式,对在退火后补偿缺氧的绝缘膜,上述测定的比介电常数和晶格常数,采用克劳修斯-莫索第公式计算原子的摩尔极化α时,增大到0.00679nm3<α≤0.00735nm3的值。结果,很清楚地显示出如文献3所示的即使通过使结晶系变成正方晶而增加介电常数,原子的摩尔极化也几乎不变的结果不同,因此认为很成功地制作了与文献3不同的物质。
对由本实施方式得到的含有ZrxSi1-xO2的绝缘膜的结晶结构进行深入分析,认为不只得到正方晶,而且得到可有效利用介电常数高的结晶轴的取向。即,对实际装置作为晶体管的栅电极、闪存的电极间绝缘膜、电容器绝缘膜的介电常数的影响是膜厚方向的介电常数。从而,如果把更高介电常数的结晶轴向膜厚方向取向,则会得到更高的介电常数。
作为实验的结果,Zr的组成x的由XPS法测定的值为0.90的试样确认为作为在正方晶的介电常数高的结晶轴[110]方向,即a′轴方向取向成与膜厚方向大致平行,实际介电常数也是最大(参照图9)。此时用RBS法测定的值的Zr的组成x为0.86。在此,通过分析晶胞两倍的胞,把晶胞的[110]方向作为晶胞两倍的胞的a′轴。另外,也有省略这样的a′轴描述,只写a轴的文献。
另外,Zr的组成x的由XPS法测定的值为0.94的试样确认为与作为在正方晶的介电常数低的结晶轴的c轴膜厚方向取向大致平行,实际介电常数作为正方晶也是最低值(参照图9)。此时用RBS法测定的值的Zr的组成x为0.92。在本实施方式得到的含有ZrxSi1-xO2的绝缘膜晶胞两倍的胞的c′轴与晶胞c轴完全一致,且a′轴与c′轴长度的差别例如有3%左右,而且a′轴长度一定小于c′轴长度。
进而,由XPS法测定的Zr的组成x为0.86的试样,用RBS法测定x是0.81,确认是正方晶但取向几乎是不能被看出的状态,实际的介电常数是比用XPS法测定Zr的组成x为由0.90的试样即按RBS法测定x=0.86的试样介电常数低,比用XPS法测定Zr的组成x为0.94的试样即按RBS法测定x=0.92的试样高的值(参照图9)。由第一原理的计算的设想尽管与定量的实验值相当不同,但在定性方面得到实验的验证。
在图14表示用XPS法测定Zr的组成x为0.86、0.90、0.94、0.98、1.00的情况下,即按RBS法测定Zr的组成x为0.81、0.86、0.92、0.97、1.00的情况下含有ZrxSi1-xO2的绝缘膜的X射线衍射图。另外,图14的峰强度由于是对数曲线,所以在比较峰强度时应予以注意。另外,在本说明书中,只在该图14所示的X射线衍射图使用晶胞2倍的胞进行衍射峰值指数的添加。即,不是称为abc的衍射指数,而是称为a′b′c的衍射指数。即,在图14中,111,002,200,112,202,220,113,311,222表衍射指数a′b′c。
用XPS法测定Zr的组成x为0.86的试样,即按RBS法测定的x=0.81的试样相互等价的a′轴衍射峰200与b′轴方向的衍射峰020之和的地方的衍射指数200的衍射峰比作为单体c轴方向衍射指数002的峰大,同样,作为衍射指数311的峰是与等价的衍射指数131之和,而比作为单体的衍射指数113的峰大。这些峰强度由于也对细微的原子位置位移等有影响,所以不一定会成为2∶1的强度比,但如果是无取向试样,几乎不存在强度比随大小关系的逆转而变化。实际上,强度比接近2∶1,从而,可以说用XPS法测定的Zr的组成x为0.86的试样,即按RBS法测定的x=0.81的试样是无取向的。另外,Zr的组成x为0.90的试样在衍射指数200等的a′轴方向的衍射峰非常强,且a′轴向着膜厚方向。用XPS法测定Zr的组成x为0.94的试样,即按RBS法测定的x=0.92的试样,衍射指数为002、112、202、113,进入c轴方向成分的峰比较强,向c轴方向配向。
可以容易推测由与使Zr氧化物的正方晶稳定的机构同样的机构稳定Hf的氧化物的正方晶是与上述情况相同的。
另外,在本实施方式,热处理温度是大于等于750℃小于等于1000℃,也可以在大于等于750℃小于等于1100℃的范围。
(第5实施方式)接着,说明本发明第5实施方式的半导体装置。本实施方式的半导体装置是把由第1乃至第4实施方式的制造方法制造的半导体装置的绝缘膜置换成具有(Zr1-zHfz)xSi1-xO2-y(其中,用XPS法测定,0≤z≤1、0.86≤x≤0.99,即,按RBS法测定,0≤z≤1、0.81≤x≤0.985、0.04≤y≤0.25)的绝缘膜而构成的。
ZrO2和HfO2在任何比例可制成混晶是众所周知的。所有比例的HfO2和ZrO2相图在图10中表示(参照Ruh,H.J.Garrett,R.F.Domagla,and N.M.Tallan,J.Amer.Ceram.Soc.,51,[1]27(1968))。该图10所示的相图是极其单纯的图,例如,称为正方晶、立方晶、单斜晶的各相区域在从ZrO2经过(HfzZr1-z)xO2到HfO2的所有组成中存在,各相的边界线实际不互相交叉。被认为由于Zr和Hf的化学性质极为相似,所以可得到这样的相图。
从而,与第1乃至第4实施方式相同,通过对具有(Zr1-zHfz)xSi1-xO2-y(其中,用XPS法测定,0≤z≤1、0.86≤x≤0.99,即,对[Si]/([Zr]+[Hf]+[Si])摩尔比和对[Hf]/([Zr]+[Hf])摩尔比按RBS法测定,对缺氧量用XPS法测定是0≤z≤1、0.81≤x≤0.985,0≤z≤1、0.86≤x≤0.99、0.04≤y≤0.25)的非晶态绝缘膜进行退火,补偿缺氧,以形成(HfzZr1-z)xSi1-xO2(0≤z≤1、用XPS法测定,0.86≤x≤0.99、即用RBS法测定0.81≤x≤0.985),可以出现正方晶。由正方晶的介电常数的增加即使在ZrO2、HfO2也可得到,在两者连续的中间状态也可以得到(Zr1-zHfz)O2,而且与通过添加微量Si(在此是x)正方晶的情况相同。
从而,如本实施方式,把(Zr1-zHfz)xSi1-xO2的材料用于绝缘膜,可得到第1实施方式乃至第4实施方式同样的效果。
如以上所说明的,根据本发明第1乃至第5实施方式,在氧化锆系、氧化铪系或它们的混合系的高介电常数的绝缘膜中,通过添加与现有的半导体加工整合性高的Si,可以实现现有的氧化锆系或氧化铪系高介电常数的绝缘膜达不到的高介电常数的绝缘体。
另外,根据本发明第1乃至第5实施方式,膜中应力为小于等于1GPa,相对于介电常数增大机构的分子容积的影响小,所以膜中变形少,可以防止松弛问题和由应力产生的自身破坏问题。
(第6实施方式)以下,说明本发明的第6实施方式的半导体装置。
本实施方式的半导体装置,其构成是把在第1乃至第5实施方式中任一个所示的补偿了缺氧的绝缘膜用于例如MOS栅绝缘膜,或特别是CMOS栅绝缘膜或闪存中的电极间绝缘膜。
按本实施方式第1具体例具有CMOSFET的半导体装置的图如图11所示。该第1具体例的半导体装置具有在半导体基板20上形成的n通道MOSFET32和p通道MOSFET33。n通道MOSFET32具有设置在形成于半导体基板20的p阱区域22,在p阱区域22上形成的栅绝缘膜24;形成于该栅绝缘膜24上的栅电极25;在栅电极25两侧的p阱区域22上形成含有n+杂质区域的源极·漏极区域28;形成于栅电极25的侧面具有绝缘体的栅极侧壁27。
另外,p通道MOSFET33具有设置在形成于半导体基板20的n阱区域23,在n阱区域23上形成的栅绝缘膜24;形成于该栅绝缘膜24上的栅电极26;在栅电极26两侧的n阱区域23上形成含有p+杂质区域的源极·漏极区域29;形成于栅电极26的侧面具有绝缘体的栅极侧壁27。另外,p阱区域22和n阱区域23由分离元件区域21分离元件。另外,源极·漏极区域28、29具有延伸到各个栅绝缘膜24下方的外延区域。
在该第1具体例的半导体装置,作为n通道MOSFET22和p通道MOSFET23的栅绝缘膜24使用上述第1乃至第5实施方式中任一个所示的补偿了缺氧的绝缘膜。
接着,参照图12说明本实施方式第2具体例的半导体装置。该具体例的半导体装置是闪存,在图12中表示存储单元50的图。该存储单元50具有形成于半导体基板40上的栅绝缘膜42;形成于该栅绝缘膜42上的栅电极44;形成于栅电极44两侧的半导体基板40上的源极·漏极区域49;形成于栅电极44的侧面具有绝缘体的栅极侧壁48。栅电极44具有形成于栅绝缘膜42上的浮动栅极45;形成于浮动栅极46上的电极间绝缘膜46;形成于电极间绝缘膜46上的控制栅极47。另外,在本具体例中,作为电极间绝缘膜,使用上述第1乃至第5实施方式中任一个所示的补偿了缺氧的绝缘膜。
本实施方式第1具体例的栅绝缘膜24及第2具体例的电极间绝缘膜由于使用上述第1乃至第5实施方式中任一个所示的补偿了缺氧的绝缘膜,所以膜中应力为小于等于1GPa,相对于介电常数增大机构的分子容积的影响小,所以膜中变形少,可以防止松弛问题和由应力产生的自身破坏问题,可以防止元件特性恶化。
在上述第1乃至第6实施方式的各绝缘膜中Si的组成的、由XPS法和RBS法测定结果如下表1所示。
表1

权利要求
1.半导体装置的制造方法,其特征在于,具有在半导体基板上形成包含(HfzZr1-z)xSi1-xO2-y(0.81≤x≤0.99、0.04≤y≤0.25、0≤z≤1)的非晶态膜的步骤;在含有氧的气氛中对所述非晶态膜进行大于等于750℃的退火处理,形成含有正方晶(HfzZr1-z)xSi1-xO2的绝缘膜的步骤;所述组成中的x、y、z的范围是由XPS法测定的值。
2.如权利要求1所述的半导体装置的制造方法,其特征在于,进行所述退火处理时的气氛压力是大气压。
3.如权利要求1所述的半导体装置的制造方法,其特征在于,所述含有氧的气氛中的氧含有量大于等于1%。
4.半导体装置的制造方法,其特征在于,具有在半导体基板上形成包含(HfzZr1-z)xSi1-xO2-y(0.76≤x≤0.985、0.04≤y≤0.25、0≤z≤1)的非晶态膜的步骤;在含有氧的气氛中对所述非晶态膜进行大于等于750℃的退火处理,形成含有正方晶(HfzZr1-z)xSi1-xO2的绝缘膜的步骤;所述组成中的x、z的范围是由RBS法测定的值,所述组成中的y的范围是由XPS法测定的值。
5.如权利要求4所述的半导体装置的制造方法,其特征在于,进行所述退火处理时的气氛压力是大气压。
6.如权利要求4所述的半导体装置的制造方法,其特征在于,所述含有氧的气氛中的氧含有量大于等于1%。
7.半导体装置,其特征在于,具有设置在半导体基板上的包含(HfzZr1-z)xSi1-xO2(0.81≤x≤0.99、0≤z≤1)的绝缘膜,所述绝缘膜以正方晶的萤石型结晶结构为主相,所述绝缘膜中的正方晶的分子容积Vm,以所述(HfzZr1-z)xSi1-xO2计,处于0.03353nm3≤Vm≤0.03424nm3的范围,所述绝缘膜的物理膜厚小于等于110nm,所述组成中的x、z的范围是由XPS法测定的值。
8.如权利要求7所述的半导体装置,其特征在于,所述绝缘膜中的正方晶的单位晶格的晶格常数a、b、c分别为0.3590nm≤a≤0.3608nm、0.3590nm≤b≤0.3608nm、0.5183≤c≤0.5212nm的范围。
9.如权利要求7所述的半导体装置,其特征在于,所述绝缘膜的比介电常数大于等于20,小于等于26,构成所述绝缘膜的原子的摩尔极化α为0.00679nm3<α≤0.00735nm3。
10.如权利要求7所述的半导体装置,其特征在于,所述绝缘膜中的正方晶的a′轴实际与所述绝缘膜膜厚方向平行。
11.如权利要求7所述的半导体装置,其特征在于,所述绝缘膜是CMOSFET的栅绝缘膜。
12.如权利要求7所述的半导体装置,其特征在于,所述绝缘膜是闪存的电极间绝缘膜。
13.半导体装置,其特征在于,具有设置在半导体基板上的包含(HfzZr1-z)xSi1-xO2(0.76≤x≤0.985、0≤z≤1)的绝缘膜,所述绝缘膜以正方晶的萤石型结晶结构为主相,所述绝缘膜中的正方晶的分子容积Vm,以所述(HfzZr1-z)xSi1-xO2计,处于0.03353nm3≤Vm≤0.03424nm3的范围,所述绝缘膜的物理膜厚小于等于110nm,所述组成中的x、z的范围是由RBS法测定的值。
14.如权利要求13所述的半导体装置,其特征在于,所述绝缘膜中的正方晶的单位晶格的晶格常数a、b、c分别为0.3590nm≤a≤0.3608nm、0.3590nm≤b≤0.3608nm、0.5183≤c≤0.5212nm的范围。
15.如权利要求13所述的半导体装置,其特征在于,所述绝缘膜的比介电常数大于等于20,小于等于26,构成所述绝缘膜的原子的摩尔极化α为0.00679nm3<α≤0.00735nm3。
16.如权利要求13所述的半导体装置,其特征在于,所述绝缘膜中的正方晶的a′轴实际与所述绝缘膜膜厚方向平行。
17.如权利要求13所述的半导体装置,其特征在于,所述绝缘膜是CMOSFET的栅绝缘膜。
18.如权利要求13所述的半导体装置,其特征在于,所述绝缘膜是闪存的电极间绝缘膜。
全文摘要
本发明提供尽量提高介电常数且降低制造成本的半导体装置及其制造方法。该方法具有在半导体基板上形成包含(Hf
文档编号H01L29/51GK101064252SQ20071010093
公开日2007年10月31日 申请日期2007年4月28日 优先权日2006年4月28日
发明者井野恒洋, 中崎靖 申请人:株式会社东芝
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1