一类锂离子电池用复合负极材料及制备方法

文档序号:6928903阅读:225来源:国知局

专利名称::一类锂离子电池用复合负极材料及制备方法
技术领域
:本发明涉及一类锂离子电池用复合负极材料及制备方法,属于化学电源领域。
背景技术
:锂离子电池因具有开路电压高,能量密度大,循环寿命长,无污染,无记忆效应等诸多优点,在各种便携式移动工具、数码产品等诸多领域得到了广泛地应用。目前,商用锂离子电池广泛采用石墨及改性石墨作为负极材料,其理论容量较低,进一步研究的空间不大。高容量锂离子电池负极材料的研究与应用已经成为提高锂离子电池性能的关键。近年来,电化学可逆嵌/脱锂负极材料的研究十分活跃。其中硅、锡基负极材料由于具有很高的理论比容量(Si-4008mAh/g,Sn-992mAh/g)和较低的嵌/脱锂电位而成为国内外负极材料研究的热点。但该类材料也存在着嵌脱锂过程中体积变化大,导电性差,长期循环性能较差等问题。研究表明,降低活性颗粒的尺寸到亚微米或纳米级能显著改善电极的充放电稳定性(H.Li,X.J.Huang,L.Q.Chen,etal.,Electrochem.Solid-Lett.,2(1999)547),但纳米级的活性颗粒在嵌脱锂过程中容易发生团聚;高分散的多相或无定型合金构造也能增强活性材料的结构稳定性(P.P.Ferguson,A.D.W.Todd,J.R.Dahn,Electrochem.Comm皿.10(2008)25),但是材料的制备成本较高,难以实用化,且材料的首次效率不够理想。1997年日本的Fujifilm公司报道了一种玻璃态氧化锡复合负极材料(Y.Idota,T.Kubota,etal.,Science,276(1997)1395),得到了比石墨类碳材料高50%的比容量,掀起了氧化物负极材料研究的热潮。随后的研究发现,一系列的氧化物如CuO、Fe203、Sb203、ln203、PbO及ZnO等均具有较高的充放电比容量,该类材料的嵌脱锂机理可表示为首次嵌锂M0+2Li—M+Li20,随后充放电循环M+xLioLixM在首次嵌锂时的反应为不可逆反应,生成活性成分M和电化学惰性的Li20,该结构中1^20能有效的缓冲嵌锂过程中的体积效应,从而维持电极结构的完整性。这类材料存在的最大问题就是首次嵌锂时生成不可逆的锂的氧化物,使得这类复合氧化物材料首次库仑效率很低,正极的利用率也因此大打折扣。此外,进一步的研究发现,高分散的低熔点金属锡在此结构中随锂的合金化和去合金化有团聚倾向(I.A.Courtney,J.R.Dahn,J.electrochem.Soc.,144(1997)2943)。此外,以SiO为活性储锂母体的多相复合负极材料也得到了较好的电化学循环稳定性,但同样存在着首次效率较低的问题(T.Morita,N.Takami,J.electrochem.Soc.,153(2)(2006)A425);X.Y.Wang,Z.Y.Wen,Y.Liu,etal.,J.PowerSourcesxxx(2008)xxx)
发明内容本发明的目的在于针对氧化物负极材料首次嵌锂存在不可逆反应,首次库伦效率低等问题,提出一类锂离子电池用复合负极材料及制备方法本发明中,所涉及的锂离子电池用复合负极材料由单质M(M二Sb、Ge、In、Sn、Zn)与1^20两相(二者的摩尔比为l:11:2)或者是由单质Si、金属Li、Li20和Li4Si04(四者的摩尔比为4:o:i:i4:4:i:i)四相组成;所制备的复合负极材料首次效率均在80%以上,最高可达95%以上,且具有良好的电化学循环稳定性。制备本发明中M/含锂相复合材料的方法包括以下步骤(1)将前驱体M0(M二Si、Sb、Ge、In、Sn、Zn等)与还原剂金属锂,在保护气氛下,按化学计量配比M/Li=5/6-1/8,作为原料加入到高能球磨罐内;(2)加入链状烷烃剂作为球磨介质,具体加入量以浸润金属锂为宜;(3)将球磨所得的粉料在真空气氛下加热去除链状烷烃剂,加热温度为50150。C,时间为5-48h.本发明所采用的制备技术为高能球磨技术,转速范围为475850rpm(revolutionsperminute转/分钟);本发明中涉及的球磨介质的链状烷烃为C;Hm,其中n=8-15;本发明中所采用的磨球原料比为6:120:1;所用磨球为通常高能球磨用球均可。本发明所涉及的高能球磨时间为5-15小时。本发明所涉及的保护气氛为氩气或氮气气氛。本发明加热过程中采用真空或者保护气氛。保护气体可以是氩气、氮气或者氩氢或氮氢混合气。本发明所得到的M/Li20/(Li4Si04)复合材料的特征包括(1)原位生成的活性颗粒均匀分布在含锂相基体(Li20、Li4M04等)中;(2)复合材料中活性嵌锂颗粒的微观尺寸介于几十到几百纳米之间;(3)复合材料的储锂容量由材料中活性物质M的含量来调节;(4)复合材料的电化学性能具备M基材料的电化学性能;与现有的各种复合负极材料制备方法相比,本发明的特点在于1)制备工艺简单,操作方便,成本低,具有普适性;2)所涉及的前驱物——可嵌锂氧化物MO,涉及范围广,资源充足。3)所得到的复合材料可以达到纳米级,且高度分散,可以有效地提高了复合材料电极的首次库伦效率和长期循环稳定性。4)制备过程中引入有机介质作球磨溶剂,可以有效抑制产物的团聚,均化材料的组分。5)所制备的复合材料具有很高的首次充放电库仑效率,首次效率均在80%以上,最高达95%以上且具有较好的电化学循环稳定性。图1为实施例14所得到的复合材料的X-射线衍射图谱。从图谱中可以看出,四种组分物相大部分呈现出多晶或无定型状态;对比四种组分,随着Li/Si比的增加,所得到的复合材料更趋于无定型化。图2为以比较例1得到的活性材料组装成电池进行充放电实验的首次容量电压曲线。从图中可以看出,纯SiO电极首次嵌/脱锂容量分别为2228.7和1183.5mAh/g,首次效率为53.1%,4图3为以实施例3得到的活性材料组装成电池进行充放电实验的首次容量电压曲线。从图中可以看出,所得的复合材料电极首次嵌/脱锂容量分别为972.l和905.5mAh/g,首次效率93.2X,较纯Si0电极提高了40%。图4为分别以比较例1和实施例3得到的活性材料组装成电池进行充放电实验的充放电比容量随循环次数的变化情况。从中可以看出,复合材料电极的循环性能较纯SiO电极有了很大提高。具体实施例方式为了进一步阐述本发明的
发明内容、实质特点和显著进步,列举以下对比例和实施例进行详细说明,但不仅仅限于实施例。对比例1将球磨10h的SiO粉体与乙炔黑和聚偏氟乙烯(PVDF)按6:2:2的质量比在N-甲基吡咯烷酮(NMP)介质中制成浆料,涂布于铜箔上并进行干燥,由此制成电极膜。以金属锂箔为对电极,美国Celgard公司聚丙烯膜为隔膜,lMLiPFe/(PC+DMC)(1:1)为电解液,在0.02-1.5V的电压范围内,O.lmA/cm2的电流密度下进行充放电实验。测试数据见表l,从表中数据可以看出,以纯SiO为活性物质的电极,首次效率很低,容量衰减迅速。对比例2将球磨10h的SnO粉体按照对比例1的方法制备电极。电池组装及测试条件同比较例1。测试数据见表1,由此可以看出,以纯SnO为活性物质的电极同样存在着首次效率低,容量衰减快等问题。实施例1将5.045gSiO与O.953g金属锂(Si/Li的摩尔比为5:6)以及5gi^—烷加入到球磨罐内,高能球磨10h(惰性保护气氛下进行),然后将所得到的粉料在IO(TC下真空干燥24h,即得Si/Li^/Li^iOj摩尔比4:1:1)复合材料。电极制备方法及电池组装、测试条件均同对比例l。测试数据见表l。实施例2将4.916gSiO与1.084g金属锂(Si/Li的摩尔比为5:7)以及8g十二烷,按照实施例i的方法得到si〃Li/Li20/Li4Si04(摩尔比4:i:i:i)复合材料。测试数据见表1。实施例3将4.812gSiO与1.213g金属锂(Si/Li的摩尔比为5:8)以及10g的十烷,按照实施例i的方法得到si〃Li/Li20/Li4Si04(摩尔比4:2:i:i)复合材料。测试数据见表l。实施例4将4.589gSiO与1.443g金属锂(Si/Li的摩尔比为1:2)以及15g十三烷,按照实施例i的方法得到si〃Li/Li20/Li4Si04(摩尔比为4:4:i:i)三相复合材料。测试数据见表l。实施例5将4.971gSnO与0.128g金属锂(Sn/Li的摩尔比为1:2)以及4g的十烷,按照实施例l的方法得到Sn/Li^(摩尔比为l:1)复合材料。测试数据见表l。实施例6将5.374gSb203与0.773g金属锂(Sb/Li的摩尔比为1:3)以及9g的十四烷按照实施例l的方法得到Sb/Li^(摩尔比为2:3)复合材料。电极制备方法及电池组装、测试条件均同对比例l。测试数据见表l。实施例7将5.31gZn0与0.906g金属锂(Zn/Li的摩尔比为1:2)以及13g的i^一烷按照实施例1的方法得到Zn/Li^(摩尔比为1:1)复合材料。电极制备方法及电池组装、测试条件均同对比例l。测试数据见表l。实施例8将5.58gGe02与1.481g金属锂(Ge/Li的摩尔比为1:4)以及15g的十三烷按照实施例1的方法得到Ge/Li^(摩尔比为1:2)复合材料。电极制备方法及电池组装、测试条件均同对比例l。测试数据见表l。表1中可以看出,复合材料电极的首次效率较对比例中的电极材料均有了大幅度的提高,循环稳定性(容量保持率)也得到了明显的改善;且随着里含量的增加,性能改善愈明显。表1<table>tableseeoriginaldocumentpage6</column></row><table>权利要求一类锂离子电池用复合负极材料,其特征在于,由单质M与Li2O两相,其中M=Sb、Ge、In、Sn、Zn,M与Li2O的摩尔比为1∶1~1∶2。2.—类锂离子电池用复合负极材料,其特征在于,由单质Si、金属Li、Li^和Li4Si04组成,单质si、金属Li、Li20和Li4Si04的摩尔比为4:(o4):i:i。3.—类锂离子电池用复合负极材料的制备方法,包括以下步骤(1)将前驱体MO与还原剂金属锂,在保护气氛下,按化学计量配比M/Li=5/6-1/8配比作为原料,其中M=Si、Sb、Ge、In、Sn或Zn,(2)采用高能球磨方式,加入链状烷烃剂作为球磨介质,具体加入量以浸润金属锂为且;(3)将球磨所得的粉料在真空气氛下加热去除链状烷烃剂,加热温度为5015(TC,时间为5-48h。4.按权利要求3所述的一类锂离子电池用复合负极材料的制备方法,其特征在于,高能球磨转速范围为475850转/分钟。5.按权利要求3所述的一类锂离子电池用复合负极材料的制备方法,其特征在于,所述链状烷烃剂为CnH^2,其中n=8-15;6.按权利要求4或5所述的一类锂离子电池用复合负极材料的制备方法,其特征在于,所述高能球磨中的磨球与原料比为6:120:1;7.按权利要求4或5所述的一类锂离子电池用复合负极材料的制备方法,其特征在于,所述高能球磨时间为5-15小时。8.按权利要求4或5所述的一类锂离子电池用复合负极材料的制备方法,其特征在于,所述步骤(1)中保护气氛为氩气或氮气气氛。9.按权利要求4或5所述的一类锂离子电池用复合负极材料的制备方法,其特征在于,所述步骤(3)加热过程中采用真空或者保护气氛。10.按权利要求9所述的一类锂离子电池用复合负极材料的制备方法,其特征在于,保护气体可以是氩气、氮气或者氩氢或氮氢混合气。全文摘要本发明涉及一类锂离子电池用复合负极材料及制备方法,属于化学电源领域。本发明针对氧化物负极材料首次嵌锂存在不可逆反应,首次库伦效率低等问题,将前驱体MO与还原剂金属锂以及适量的有机溶剂进行湿法机械化学原位还原,将所得的粉料在真空气氛下加热去除有机溶剂,即得复合材料。该方法工艺简单,成本低,应用范围广,所制备的复合负极材料首次效率均在80%以上,最高可达95%以上,且具有良好的电化学循环稳定性。文档编号H01M4/04GK101789506SQ20091004590公开日2010年7月28日申请日期2009年1月22日优先权日2009年1月22日发明者刘宇,宋树丰,张群喜,李宁,林久,温兆银,王秀艳,黄颖申请人:中国科学院上海硅酸盐研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1