具高质子传导率的质子交换膜的制作方法

文档序号:6934125阅读:541来源:国知局
专利名称:具高质子传导率的质子交换膜的制作方法
技术领域
本发明涉及一种质子交换膜,特别涉及一种可在高温下运行的质子交换膜。
背景技术
燃料电池(Fuel Cell,FC)是一种利用化学能直接转换为电能的发电装置,与传统 发电方式比较之下,燃料电池具有低污染、低噪音、高能量密度以及较高的能量转换效率等 优点,是极具未来前瞻性的干净能源,可应用的范围包括携带式电子产品、家用发电系统、 运输工具、军用设备、太空工业以及大型发电系统等各种领域。燃料电池的运作原理依其种 类的不同会有些许差异,以质子交换膜燃料电池(Proton Exchange Membrane fuel Cell, PEMFC)为例,氢气在阳极催化剂层进行氧化反应,产生氢离子(H+)以及电子(e_),其中氢离 子可以经由质子传导膜传递至阴极,而电子则经由外部电路传输至负载作功之后再传递至 阴极,此时供给阴极端的氧气会与氢离子及电子于阴极催化剂层进行还原反应并产生水。图IA为传统具有膜电极组的燃料电池的立体分解图,图IB为图IA中膜电极组的 剖面图。如图IA及图IB所示,传统燃料电池10的组成包括一个由阳极催化剂电极121、 质子交换膜122 (Proton Exchange Membrane,PEM)加上阴极催化剂电极123所组合而成的 膜电极组12 (Membrane ElectrodeAssembly, MEA),以及作为个别膜电极组12串联的双极 板13(Bipolar Plate)和两端电极板11所组合而成的电池组。此外,端电极板11及双极 板13的功能除了作为电池串联连接之外,内部还设计有流道111及131作为氢气及氧气的 供应通道。质子交换膜燃料电池(Proton exchange membrane fuel cells, PEMFCs)最常使 用Nafion作为其质子传导膜,然而Nafion必须含有足够高的水含量才能具展现有效的质 子导电度,因此其操作温度都在90°C以下(大都为70 80°C)。但是PEMFC在较低温度下 操作常会引发两大问题其一是低温操作时Pt催化剂极易被氢气燃料中极微量的CO毒化 造成催化剂效率变差;其二是水管理困难的问题,低电流密度时质子传导膜较易脱水而降 低了离子传导度。故而常需将燃料加湿,不过在高电流密度运作时又容易造成阴极淹水,进 而导致氧气无法传导致催化剂表面,造成了质传限制(mass transport limitation)的问 题。质子交换膜的主要质子传导机理有二 一为运载机理(Vehicularmechanism);另 一者为 Grotthuss 机理(Grotthuss mechanism)。运载机理(Vehicular mechanism)是禾丨J 用强酸所解离出的质子与水分子形成水合氢离子H3O+(hydronium ion),质子靠着水分子间 的传递而传导,应用运载机理传导质子的质子交换膜,在高温时会因水分子的散逸(较低 的相对湿度)而大幅降低其质子导电度,因此这类的质子交换膜如欲提升其高温质子导电 度特性,其关键是如何在高温下保有质子交换膜内的水份保存能力;Nafion等具磺酸根的 质子交换膜即属于运载机理的代表。Grotthuss机理则是利用质子于交换膜上不同的质子 供给位置之间,作连续跳跃(hopping)而传导,以及不需水存在即具有一定的质子传导能 力,此类质子交换膜的结构上,通常具有布忍斯特酸碱对(Br0nsted acid base pairs)(离子液体,Ionic liquids)或掺杂过量的质子酸,温度愈高则其离子导电度愈高(尤其 是130°C以上),因此其应用于高温PEMFCs系统的特性较低温操作系统为佳,聚苯并咪唑 (Polybenzimidazole, PBI)即是应用Grotthuss机理的传导机制的主要代表,但其于高温 时(160°C)的离子导电度仍然不如Nafion在80°C的质子导电度。整体而言,高温质子交 换膜的技术瓶颈,在于高温操作下如何能持续具有良好的保水能力、电化学及抗化性的稳 定度以及可挠曲性和机械强度。德国PEMFCS GmbH所提出的新型质子传导膜Celtec,其 主要成分为聚苯并咪唑(PBI),并掺杂磷酸或硫酸用以提升其离子导电度。虽然使用PBI 作为质子交换膜的PEMFCs可将操作温度提升至150 200°C,且在160°C的高温下操作, PEMFCs对氢气燃料的CO含量的容许度可以提升至1 %,系统也不需要额外的水管理设计, 的确有其很好的竞争优势。不过,无论是以磷酸掺杂或硫酸掺杂的PBI膜,其离子导电度仅 约lmS/Cm@12(rC,虽然其温度愈高导电度会呈现大幅的上升,但仍低于全湿的Nafion导电 度(60mS/cm@80°C),而 Celtec-MEAs 的功率密度(Power density)也较Nafion-MEAs 为差。 由于PBI的质子传导度仍未达到lXK^S/cmOlSiTC可有效运用的规格,而供应传导机制的 磷酸也会渐渐析出被移除,导致质子传导度的减降及效率变差的结果,且其所制作的膜电 极组(MEA)也无法满足系统的需求特性,诸多上述问题均限制其应用的层次与领域。因此,为解决已知技术的缺失,目前业界急需发展出一种新颖的高温质子交换膜 来取代传统Nafion质子交换膜,并克服传统高温质子交换膜在使用上的问题。

发明内容
本发明的目的在于基本上克服传统高温质子交换膜在使用上的问题,从而提供一 种高质子传导率的质子交换膜,可用于较高的操作温度,以取代传统Nafion质子交换膜。本发明提出一种质子交换膜,其是以一高支化聚合物作为基材,并导入具有传导 离子能力的有机高分子,使其均勻分布于该高分子基材间,利用分子间自组合技术形成纳 米级离子或质子传递通道,可以制作比传统质子交换膜更佳的结构强度及耐温性,也有助 于质子传输率的提升。本发明所述的质子交换膜包含一高支化聚合物基材,其中该高支化聚合物基材 其具有一支化度大于0. 5 ;以及一具有传导离子能力的有机高分子,均勻分布于该高分子 基材,其中该高支化聚合物基材占该质子交换膜整体的固含量不小于5%。此外,本发明也提供一种膜电极组,其包含上述的质子交换膜。再者,该膜电极组 除了适用于燃料电池(氢气或甲醇燃料电池)外,也可应用在锂离子电池以及生物电池。本发明的质子交换膜的优点在于本发明的质子交换膜是利用分子间自组合技术 形成纳米级离子或质子传递通道,由此强化质子交换膜在高温操作时的保水能力、抗化学 与电化学稳定性、机械强度、耐热性和挠曲性,同时能提增质子的传导率及避免酸浸出,用 以达到高性能、品质佳且成本低的高温质子交换膜的功能规格要求。以下通过数个实施例及比较实施例,以更进一步说明本发明的方法、特征及优点, 但并非用来限制本发明的范围,本发明的范围应以所附的权利要求书的范围为准。


图IA为传统具有膜电极组的燃料电池的立体分解4
图IB为图IA中膜电极组的剖面图;图2为本发明一较佳实例所述的质子交换膜的化学结构与水分子及质子的传导 关系示意图;图3为本发明一较佳实例所述的膜电极组,该膜电极组包含图2所述的质子交换 膜;图4为本发明实施例13所述的热机械分析仪(Thermal MechanicalAnalyzer, TMA)的测量图谱;图5为本发明实施例15所述的质子交换膜燃料电池的电压及功率与电流的关系 图;其中,主要组件符号说明10 -传统具有膜电极组的燃料电池;11 y端电极板;
111 流道;12 --膜电极组;
121 阳极催化剂电极;122 质子传导膜
123 阴极催化剂电极;13 --双极板;
131 流道;200 膜电极组;
201 阳极催化剂电极;202 质子交换膜
203 阴极催化剂电极;204 氢气;
205 氧气;206 水;
207 碳粒;208 催化剂;
211 氢质子;212 电子。
具体实施例方式本发明提出一种质子交换膜,其是以一高支化聚合物(例如本发明以下所述的 STOBA (Self-terminated Oligomer with hyper-branched architecture,具有高支化结构 的自终结型低聚物)聚合物作为基材,并导入具有传导离子能力的有机高分子,使其均勻分 布于该高分子基材间,形成兼具机械强度及质子通道的semi-IPN(semi-interpenetrating network,半互穿网络)结构。此外,本发明所述的质子交换膜由于利用分子间自组合技术 (含双马来酰亚胺基团化合物与巴比土酸的自组装反应)形成纳米级离子或质子传递通 道,可以制作比传统质子交换膜更佳的结构强度及耐温性,也有助于质子传输率的提升。该质子交换膜包含一高支化聚合物基材及一具有传导离子能力的有机高分子,均 勻分布于该高分子基材。其中,本发明所述的高支化聚合物定义为一具有支化度(degree of branching, DB)大于0. 5的聚合物,而支化度可由以下的公式计算所得DB = ( Σ D+ Σ Τ) / ( Σ D+ Σ L+ Σ T)其中,DB 支化度、D 树状单元(dendritic unit,至少具有三个延伸连结键 (linkage bonds),单元内不含任何反应性基团)、L 线性单元(linear unit,单元两个末端 为可延伸的连结键)、T 终端单元(terminal unit,单元含有一个末端连结键和至少一个 具反应性基团)。根据本发明一较佳实施例,该高支化聚合物,可为STOBA聚合物,例如由含双马来 酰亚胺(Bismaleimide)基团化合物与巴比土酸(Barbituric acid)的反应物所构成的高支化度高分子材料。该含双马来酰亚胺基团化合物包含取代或未取代的双马来酰亚胺单体或双马来 酰亚胺寡聚合物,可具有以下结构
素、氰基、-R" > -CO2H, -CO2R" , -COR“、-R" CN、-CONH2、-CONHR“ , -CONR“ -OCOR“或
所取代,其中R"是视需要可择自由含有1-12碳原子的经取代或未经取代的烷基、硫
烷基、炔氧基、烷氧基、烷烯基、烷炔基、烯氧基、杂环基、芳基、芳烷基、杂芳基、脂族多环基 及其组合物所组成的族群中。此外,该双马来酰亚胺可具有以下公式所示结构 其中 R1 为-RCH2-(烧基),-RNH2R-, -C(O)CH2-, -CH2OCH2-, -C(O)-, _0_,-0-0-, -S", -S-S-,-S (0)-, -CH2S(O) CH2-, -(O)S(O)", -C6H4-, -CH2 (C6H4) CH2-, -CH2 (C6H4) (0)-,苯 撑基,联苯撑基,取代的苯撑基或取代的联苯撑基,及R2为-RCH2-, -C(O)-, -C(CH3)2-, -0-, -0-0-,-S-, -S-S-,- (O)S(O)-,或-S(O)-,例如可择自由 N,N,_ 双马来酰亚胺 _4,4’ -二 苯基代甲烧(N, N,-bismaleimide-4,4,-diphenylmethane)、1,1,-(亚甲基双 _4,1-亚 苯基)双马来酰亚胺[1,1,-(methylenedi-4,1-phenylene)bismaleimide], N, N,-(1, 1,- 二苯基-4,4,-二亚甲基)双马来酰亚胺[N,N,_(1,1,-biphenyl-4,4' -diyl) bismaleimide]、N,N,-(4-甲基-1,3-亚苯基)双马来酰亚胺[N,N,-(4-methyl-l, 3-phenylene) bismaleimide] ,1,1' _(3,3,- 二甲基 _1,1’ - 二苯基 _4,4,-二亚甲基) 双马来酰亚胺[1,1,_(3,3,dimethyl-1,1' -biphenyl-4,4,-diyl)bismaleimide]、N, N,_ 乙烯基二马来酰亚胺(N,N,-ethylenedimaleimide)、N,N,_(1,2_ 亚苯基)二马来 酰亚胺[N, N,- (1, 2-phenylene) dimaleimide], N, N,-(1,3_ 亚苯基)二马来酰亚胺[N, N,-(1,3-phenylene) dimaleimide]、N,N,-双马来酰亚胺硫(N, N,-thiodimaleimid)、 N,N,-双马来酰亚胺二硫(N,N,-dithiodimaleimid)、N,N,-双马来酰亚胺酮(N, N,-ketonedimaleimid)、N,N,-亚甲基双马来酰亚胺(N,N,-methylene-bis-maleinimid)、
.或
其中上述化合物的碳原子上的氢,可视需要被氟原子、卤双马来酰亚胺甲-醚(bis-maleinimidomethyl-ether)、l,2-双马来酰亚胺基-1,2-乙二 醇[1,2-bis-(Hialeimido)-I,2-ethandiol]、N,N,-4,4,-二苯醚-双马来酰亚胺(N,N,-4, 4,-diphenylether-bis-maleimid)、及 4,4,-双马来酰亚胺-二苯(4,4,-bis (maleimido )-diphenylsulfone)所组成的族群。此外,该巴比土酸可具有以下公式所示的结构 其中,R1、R2、R3及R4为相同或不同的取代基,包括H,CH3, C2H5,C6H5,CH(CH3)2,
CH2CH (CH3) 2,CH2CH2CH (CH3) 2,或 | 上述的ST0BA(由含双马来酰亚胺基团化合物与巴比土酸的反应物)聚合物,其制 备方式可为将含双马来酰亚胺基团化合物及巴比土酸在一溶剂系统下进行聚合反应,其中 该反应页可在一引发剂的存在下进行。其中,该含双马来酰亚胺基团化合物与巴比土酸的 摩尔比可介于20 1至1 5之间,较佳介于5 1至1 2之间。该溶剂系统并无限定,可例如为Y-丁内酯(y-butyrolactone, GBL)、N-甲基 吡咯烷酮(l-methyl-2-pyrrolidinone、NMP)、N,N-二甲基乙酰胺(dimethylacetamide、 DMAC)、二甲基甲酰胺(N,N-dimethylformamide, DMF)、二甲基亚砜(Dimethyl sulfoxide、DMS0)、二 甲胺(Dimethylamine、DMA)、四氢呋喃(tetrahydrofuran、THF)、 丁酮(methyl ethyl ketone、MEK)、碳酸丙烯酉旨(propylene carbonate、PC)、7_K、异丙醇 (isopropylalcohol、I PA)、或是其混合。而该引发剂可为能产生自由基的化合物,比如过氧化物自由基引发剂或是偶氮 化合物自由基引发剂,可例如为2,2' _偶氮双(异丁腈)、2,2' _偶氮双(2-氰基-2-丁 烷)、二甲基_2,2'-偶氮双(异丁酸甲酯)、4,4'-偶氮双(4-氰基戊酸)、1,1'-偶氮 双(环己烷腈)、2-(叔丁基偶氮)-2-氰基丙烷、2,2 ‘-偶氮双[2-甲基-N- (1,1)-双(羟 甲基)-2_羟乙基]丙酰胺、2,2'-偶氮双[2-甲基-N-羟乙基]-丙酰胺、2,2'-偶氮双 (N,N' - 二亚甲基丁腈)二氢氯酸、2,2'-偶氮双(2-腈丙烷)二氢氯酸、2,2'-偶氮双 (N,N' -二亚甲基异丁胺)、2,2'-偶氮双(2-甲基-N-[l,l-双(羟甲基)-2_羟乙基]丙 酰亚胺)、2,2'-偶氮双(2-甲基-N-[l,l-双(羟甲基)乙基]丙酰亚胺)、2,2'-偶氮 双[2-甲基-N-(2-羟乙基)丙酰亚胺]、2,2'-偶氮双(异丁酰胺)二水合物、2,2'-偶 氮双(2,2,4_三甲基戊烷)、2,2'-偶氮双(2-甲基丙烷)、过乙酸叔丁酯、叔丁基过氧醋酸 酯、叔丁基过氧苯甲酸酯、叔丁基过氧辛酸酯、叔丁基过氧新癸酸酯、叔丁基过氧异丁酸酯、 叔戊基过氧叔戊酸酯、叔丁基过氧叔戊酸酯、二异丙基过氧二碳酸酯、二环己基过氧二碳酸酯、二枯基过氧化物、二苯酰基过氧化物、二月桂酰基过氧化物、过氧二硫酸钾、过氧二硫酸 铵、二叔丁基过氧化物、二叔丁基次亚硝酸盐、二枯基次亚硝酸盐。根据本发明的较佳实施例,该有机高分子为具有传导离子能力的有机高分子,例 如全氟磺酸树脂(Nafion)、磺酸化的聚醚醚酮(sulfonated poly (ether etherketone、 s-PEEK)、磺酸化的聚酰亚胺(sulfonated polyimides、s_PI)、聚磷酸/聚苯并咪唑 高分子(Phosphoric Acid/Polybenzimidazole Polymer、ρ-ΡΒΙ)、磺酸化的聚氧化二 甲苯(sulfonated poly (phenylene oxide)、s_PP0)、磺酸化的聚芳醚砜(sulfonated poly(arylene ether sulfone)、s-PES)、磺酸化的聚 4-苯氧基-1,4-苯基节基酯 (sulfonated poly (4-phenoxybenzoyl-l, 4-phenylene)、s-PPBP)或其混合。该包含高支化聚合物作为基材,且具有传导离子能力的有机高分子是均勻分布于 该高支化聚合物基材的质子交换膜,其制备方式可为将高支化聚合物与该具有传导离子 能力的有机高分子溶解于一溶剂系统中,并利用涂布或压制方式成膜,其中,该溶剂系统可 例如为Y-丁内酯(GBL)、N-甲基吡咯烷酮(NMP)、N,N-二甲基乙酰胺(DMAC)、二甲基甲 酰胺(DMF)、二甲基亚砜(DMSO)、二甲胺(DMA)、四氢呋喃(THF)、丁酮(MEK)、碳酸丙烯酯 (PC)、水、异丙醇(IPA)、或是其混合。值得注意的是,该高支化聚合物基材占该质子交换膜 整体的固含量(重量)不小于5%,可介于5%至30%,较佳为10%至25%。此外,该质子 交换膜还可包含一催化剂层,该催化剂层为钼(Pt)、钌(Ru)、或钼钌合金。请参照图2,其为本发明一较佳实例所述的质子交换膜的化学结构与水分子及质 子的传导关系示意图,其中该质子交换膜是由STOBA与s-PEEK所制备而成s-PEEK链段长 约20人,而该STOBA约由9000至12000的双马来酰亚胺(BMI)基团所构成。此外,请参照 图3,其为本发明一较佳实例所述的膜电极组200,其包含图2所述的质子交换膜202。该膜 电极组包含一阳极催化剂电极201及一阴极催化剂电极203,其中该质子交换膜202配置 于该阳极催化剂电极201及该阴极催化剂电极203之间,由图中可知,氢气204进入阳极催 化剂电极201后经依附在碳粒207上的催化剂208反应生成氢质子211 (反应式为H2- > 2H++2e_),而产生的氢质子211经由阳极催化剂电极201与质子交换膜202的接触区220进 入质子交换膜;此外,氧气205则导入阴极催化剂电极203中,并在阴极催化剂电极203与 质子交换膜202的接触区230与质子211及电子212反应(反应式为1/202+2Η++2θ_- > H2O),产生水206。通过上述可知,运用改性型具高支化结构自终结型高分子(STOBA)作 为结构基质,并导入于磺酸化的聚醚醚酮(s-PEEK),可筑构成兼具发梳结构(Comb-like structure)和质子通道(protonchannel)的半互穿网络(semi-IPN)结构,由此强化质子交 换膜(proton exchange membrane)在高温操作时的保水能力、抗化学与电化学稳定性、机 械强度、耐热性和挠曲性,同时能提增质子的传导率及避免酸浸出(acidleaching out),用 以达到高性能、品质佳且成本低的高温质子交换膜的功能规格要求。本发明的质子交换膜的工作温度是介于25°C至150°C之间。其高温电导度可达到 0. lS/cmil00°C /100% RH,而常温也高于 0. 03S/cmi25°C /100% RH。以下通过下列实施例及比较实施例来说明本发明所述的质子交换膜的制备及其 性质,用以进一步阐明本发明的技术特征。高支化聚合物(STOBA)的制备实施例1
8
取18. 6668 克的双马来酰亚酸化合物(4,4,-bismaleimidodi-phenylmethane) 置于250ml圆底三颈瓶中,加入50ml的GBL作为溶剂,在加热至130°C后充分搅 拌,使双马来酰亚酸化合物溶解于GBL中。接着,取1. 3341克巴比土酸(2,4, 6-trioxohexahydropyrimidine)溶于30克GBL中,并充分搅拌使巴比土酸均勻分散于溶剂 中。接着,将含巴比土酸的溶液均分为8等分,以分批方式,每间隔30分钟加一次料于上述 130°C含双马来酰亚酸化合物的溶液中。当含巴比土酸的溶液完全添加完毕后,持续反应4 小时。当反应完全后,冷却至室温,即得到高支化聚合物(A)(双马来酰亚酸与巴比土酸的 摩尔比为5 1,固含量为20wt% )。实施例2 取20. 0002 克的双马来酰亚酸化合物(4,4,-bismaleimidodi-phenylmethane) 置于250ml圆底三颈瓶中,加入62ml的GBL作为溶剂,在加热至130°C后充分搅 拌,使双马来酰亚酸化合物溶解于GBL中。接着,取3. 5752克巴比土酸(2,4, 6-trioxohexahydropyrimidine)溶于32克GBL中,并充分搅拌使巴比土酸均勻分散于溶剂 中。接着,将含巴比土酸的溶液均分为4等分,以分批方式,每间隔60分钟加一次料于上述 130°C含双马来酰亚酸化合物的溶液中。当含巴比土酸的溶液完全添加完毕后,持续反应4 小时。当反应完全后,冷却至室温,即得到高支化聚合物(A)(双马来酰亚酸与巴比土酸的 摩尔比为2 1,固含量为20wt% )。实施例3 取17. 8712 克的双马来酰亚酸化合物(4,4,-bismaleimidodi-phenylmethane) 置于250ml圆底三颈瓶中,加入50ml的GBL作为溶剂,在加热至130°C后充分搅 拌,使双马来酰亚酸化合物溶解于GBL中。接着,取6. 9090克巴比土酸(2,4, 6-trioxohexahydropyrimidine)溶于30克GBL中,并充分搅拌使巴比土酸均勻分散于溶剂 中。接着,将含巴比土酸的溶液均分为8等分,以分批方式,每间隔30分钟加一次料于上述 130°C含双马来酰亚酸化合物的溶液中。当含巴比土酸的溶液完全添加完毕后,持续反应4 小时。当反应完全后,冷却至室温,即得到高支化聚合物(A)(双马来酰亚酸与巴比土酸的 摩尔比为1 1,固含量为20wt% )。实施例4 取19. 9991 克的双马来酰亚酸化合物(4,4,-bismaleimidodi-phenylmethane) 置于250ml圆底三颈瓶中,加入62ml的PC作为溶剂,在加热至130°C后充分搅 拌,使双马来酰亚酸化合物溶解于PC中。接着,取3. 5757克巴比土酸(2,4, 6-trioxohexahydropyrimidine)溶于32克PC中,并充分搅拌使巴比土酸均勻分散于溶剂 中。接着,将含巴比土酸的溶液均分为4等分,以分批方式,每间隔60分钟加一次料于上述 130°C含双马来酰亚酸化合物的溶液中。当含巴比土酸的溶液完全添加完毕后,持续反应4 小时。当反应完全后,冷却至室温,即得到高支化聚合物(A)(双马来酰亚酸与巴比土酸的 摩尔比为2 1,固含量为20wt% )。实施例5 取19. 9997 克的双马来酰亚酸化合物(4,4,-bismaleimidodi-phenylmethane) 置于250ml圆底三颈瓶中,加入72ml的PC作为溶剂,在加热至130°C后充分搅 拌,使双马来酰亚酸化合物溶解于PC中。接着,取7. 1498克巴比土酸(2,4, 上述所得的S-PEEK化合物(磺酸化程度为63% )可进一步依需要溶于一溶剂中, 例如为NMP。依据本发明其它实施例,聚醚醚酮的磺酸化程度较佳在50 70%的范围内,高于 70%易产生高温热熔的现象,但若低于50%,则会有较差的电导度。实施例7 经磺酸化的聚酰亚胺的制备将280g 的间-甲酚(m-cresol)及 7. 29g (0. 02mol) 4,4 ‘ - 二甲基-2, 2 ‘ - 二苯基 二磺酸(4,4 ‘ -Dimethyl-2,2 ‘ -biphenyldisulfonic acid)置于 500ml的反应瓶中,之后在加入5. 35g (0. 053mol)的三乙胺(triethylamine),并加 上述反应溶液加热至90°C以完全溶解反应物。在充分搅拌后,将上述反应溶液降温 到30 °C。接着,加入10. 5g(0.039mol)的1,4,5,8_萘撑基四甲酸二酸酐(1,4,5, 8-Naphthalenetetra-carboxylic dianhydride)>7. 21g(0. 020mol)的 4,4'- 二 (4- M
6-trioxohexahydropyrimidine)溶于36克GBL中,并充分搅拌使巴比土酸均勻分散于溶剂 中。接着,将含巴比土酸的溶液均分为8等分,以分批方式,每间隔30分钟加一次料于上述 130°C含双马来酰亚酸化合物的溶液中。当含巴比土酸的溶液完全添加完毕后,持续反应4 小时。当反应完全后,冷却至室温,即得到高支化聚合物(A)(双马来酰亚酸与巴比土酸的 摩尔比为1 1,固含量为20wt% )。具有传导离子能力的有机高分子的制备实施例6 经磺酸化的聚醚醚酮的制备将聚醚醚酮(poly(ether ether ketone)粉末(购于 Vitrex,商品编号为 PF450) 置于烘箱中,以110°C烘烤2小时。接着,将烘干后的聚醚醚酮粉未置于单颈瓶中,并缓慢 加入浓硫酸(浓度为95 98%),其中该聚醚醚酮与浓硫酸的重量比为1 10。接着,将 上述所获得的溶液以机器搅拌器搅拌(转速为9rpm)。接着,升温至45°C,并在氮气下反 应。在续反应7小时后,接着将上述溶液倒入冰水中并同时搅拌,以让所形成的磺酸化聚醚 醚酮(S-PEEK)沉淀。接着,以去离子水清洗沉淀物至溶液的pH值大于6以上。接着,将所 得的磺酸化聚醚醚酮(S-PEEK)置于80°C烘箱烘烤,以移除大部份的水份。接着,再升温至 110°C并抽真空2小时,即可得黄色磺酸化聚醚醚酮(S-PEEK)固体。经测量后,得知其磺酸 化程度为63%。本实施例所述的磺酸化聚醚醚酮其反应式如下所示
PEEK
10基-苯氧基)联苯[4,4,-bis(4-amino-phenoxy)biphenyl]以及 6. 79g(0. 056mol)的安息 香酸(benzoicacid)等反应物料到上述反应溶液中,总体固含量约在8wt%。接着,将反应 溶液加热到80°C反应3小时后,升温至180°C并反应20小时,可观察到粘度会随着反应时 间而逐渐增加。将反应冷却至室温后,获得磺酸化的聚酰亚胺溶液(SPI-MCL-I)(粘度极高 的棕红色聚合物溶液)。经测量后,得知其磺酸化程度为50%。本实施例所述的磺酸化的 聚酰亚胺溶液(SPI-MCL-I)其反应式如下所示 质子交换膜的制备比较实施例1 =S-PEEK质子交换膜的制备将实施例6所得的S-PEEK黄色固体溶于NMP中,所获得的S-PEEK-NMP溶液的固含 量为20wt%。选用400um间隙的刮刀,放置在平移式涂布机固定位置的洁净玻璃基板上,调 整并设定涂布速度在17. Scm/min。接着,取适量的S-PEEK-NMP溶液均勻倒在刮刀的前端处 (避免引入气泡),进行涂料的涂布作业。待涂布完毕后,将上有涂料湿膜层的玻璃基板,从 平移式涂布机上尽量平行取出,并将其放置于60°C的热板(Hot-plate)上预烘烤45分钟。 完成预烘烤的具涂料半干膜层的玻璃基板,再将其放置于烘箱中(可以使用加温梯度程序 来进行热聚合反应)。待时间终了并冷却后,将具涂料干膜层的玻璃基板自烘箱中取出。 将S-PEEK膜自玻璃基板上小心缓慢取下,或浸泡于去蒸馏水中一段时间后,即可轻易剥离 取出。所得到的S-PEEK膜呈现黄棕色且澄清透光,厚度约在25 35um范围间。将SPEEK 膜先以80°C 90 V的热蒸馏水清洗2 3次。之后,再将SPEEK膜浸泡于70 V 80 V的 5% H2O2溶液中1小时,用以去除表面的有机杂质。然后将SPEEK膜在浸泡于70°C 80°C 的0. 5M H2SO4中1小时,除去含于S-PEEK膜结构中的H2S04。再以沸水重复清洗S-PEEK膜 2 3次。最后将S-PEEK膜置入于蒸馏水中至少放置24小时,取出并烘干后,得到S-PEEK 质子交换膜。实施例8 :S-PEEK-ST0BA质子交换膜的制备将实施例1-5所得的STOBA分别与实施例6所得的S-PEEK-NMP溶液(固含量为 20wt% )以表1的比例进行混合,所得的S-PEEK-ST0BA溶液均能达到互溶,溶液均呈现棕 黄色透光澄清液。表 1 本实施例所述的S-PEEK-ST0BA质子交换膜的制备步骤如下将混合后的 S-PEEK-ST0BA溶液均勻倒在刮刀的前端处(避免引入气泡)。选用400um间隙的刮刀,放 置在平移式涂布机固定位置的洁净玻璃基板上,调整并设定涂布速度在17. Scm/min。接着, 待涂布完毕后,将上有涂料湿膜层的玻璃基板,从平移式涂布机上尽量平行取出,并将其放 置于60°C的热板上预烘烤45分钟。完成预烘烤的具涂料半干膜层的玻璃基板,再将其放置 于烘箱中(可以使用加温梯度程序来进行热聚合反应)。待时间终了并冷却后,将具涂料干 膜层的玻璃基板自烘箱中取出。将S-PEEK-ST0BA膜自玻璃基板上小心缓慢取下,或浸泡于 去蒸馏水中一段时间后,即可轻易剥离取出。所得到的S-PEEK膜呈现棕黄色且澄清透光, 厚度约在25 35um范围间。将S-PEEK-ST0BA膜先以80°C 90°C的热蒸馏水清洗2 3次。之后,再将S-PEEK-ST0BA膜浸泡于70°C 80°C的5% H2O2溶液中1小时,用以去除表 面的有机杂质。然后将S-PEEK-ST0BA膜在浸泡于70°C 80°C的0. 5M H2SO4中1小时,除 去含于S-PEEK-ST0BA膜结构中的H2S04。再以沸水重复清洗S-PEEK-ST0BA膜2 3次。最 后将S-PEEK-ST0BA膜置入于蒸馏水中至少放置24小时,取出并烘干后,得到S-PEEK-ST0BA 质子交换膜。比较实施例2 =S-PI质子交换膜的制备选用400um间隙的刮刀,放置在平移式涂布机固定位置的洁净玻璃基板上,调整 并设定涂布速度在17. Scm/min。接着,取实施例7所得的SPI-MCL-I溶液,均勻倒在刮刀的 前端处(避免引入气泡),进行涂料的涂布作业。待涂布完毕后,将上有涂料湿膜层的玻璃 基板,从平移式涂布机上尽量平行取出,并将其放置于60°C的热板上预烘烤45分钟。完成 预烘烤的具涂料半干膜层的玻璃基板,再将其放置于烘箱中(可以使用加温梯度程序来进 行热聚合反应)。待时间终了并冷却后,将具涂料干膜层的玻璃基板自烘箱中取出。将S-PI 膜自玻璃基板上小心缓慢取下,或浸泡于去蒸馏水中一段时间后,即可轻易剥离取出。所 得到的S-PI膜呈现红棕色且不透光,厚度约在20 25um范围间。将S-PI膜先以80°C 900C的热蒸馏水清洗2 3次。之后,再将S-PI膜浸泡于70°C 80°C的5% H2O2溶液中 1小时,用以去除表面的有机杂质。然后将S-PI膜在浸泡于70°C 80°C的0. 5M H2SO4中1 小时,除去含于S-PI膜结构中的H2S04。再以沸水重复清洗S-PI膜2 3次。最后将S-PI 膜置入于蒸馏水中至少放置24小时,取出并烘干后,得到S-PI质子交换膜。实施例9 =S-PI-STOBA质子交换膜的制备将实施例1-5所得的STOBA分别与实施例7所得的SPI_MCL_1溶液以表2的比例 进行混合,所得的S-PI-STOBA溶液均能达到互溶,溶液均呈现红棕色不透光。表2
14 本实施例所述的S-PI-STOBA质子交换膜的制备步骤如下将混合后的 S-PI-STOBA溶液均勻倒在刮刀的前端处(避免引入气泡)。选用400um间隙的刮刀,放置 在平移式涂布机固定位置的洁净玻璃基板上,调整并设定涂布速度在17. Scm/min。接着,待 涂布完毕后,将上有涂料湿膜层的玻璃基板,从平移式涂布机上尽量平行取出,并将其放置 于60°C的热板上预烘烤45分钟。完成预烘烤的具涂料半干膜层的玻璃基板,再将其放置于 烘箱中(可以使用加温梯度程序来进行热聚合反应)。待时间终了并冷却后,将具涂料干膜 层的玻璃基板自烘箱中取出。将S-PI-STOBA膜自玻璃基板上小心缓慢取下,或浸泡于去蒸 馏水中一段时间后,即可轻易剥离取出。所得到的S-PI-STOBA膜呈现红棕色不透光,厚度 约在20 25um范围间。将S-PI-STOBA膜先以80°C 90°C的热蒸馏水清洗2 3次。之 后,再将S-PI-STOBA膜浸泡于70°C 80°C的5% H2O2溶液中1小时,用70°C 80°C的0. 5M H2SO4中1小时,除去含于S-PI-STOBA膜结构中的H2S04。再以沸水重复清洗S-PI-STOBA 膜2 3次。最后将S-PI-STOBA膜置入于蒸馏水中至少放置24小时,取出并烘干后,得到 S-PI-STOBA质子交换膜。质子交换膜的性质测试实施例10:导电度测量分别将Nafion 112质子交换膜、比较实施例1所得的S-PEEK质子交换膜、实施例 8所得的S-PEEK-ST0BA质子交换膜(10)、比较实施例2所得的S-PI质子交换膜、以及实施 例9所得的S-PI-STOBA质子交换膜(10)进行质子导电度的测量(采用四极法(IN-PLANE) 检测方式,环境条件为饱合水蒸气下),测量结果如表3所示表3 如表3所示,将STOBA添加至S-PEEK及S-PI中筑构形成具半互穿网络(semi_IPN) 结构的质子交换膜的导电度仍具有一定的水准,因此能在不影响质子传导能力下加强膜的 机械强度、尺寸稳定性及耐热性,因此与传统质子交换膜相比具有较佳的竞争优势。实施例11 :S-PEEK-ST0BA质子交换膜对水吸附系数对实施例8所得的S-PEEK-ST0BA质子交换膜(10)进行材料热重分析(TGA)测 试(在中高温环境),计算出S-PEEK-ST0BA结构中,每种基团(磺酸基团sulfonic group、 STOBA基团、PEEK基团、BMI基团)对水吸附系数(对水的单位重量百分率的吸附贡献百分 比系数),请参照表4:表 4 由表4可知,STOBA基团对自由水(free water)及结合水(bound water)的吸附 系数均不错,在中高温下对结合水(bound water)的吸附力更优于其它结构,可用作高温膜 的添加材料。实施例12 机械性质测量分别将Nafion 112质子交换膜、比较实施例1所得的S-PEEK质子交换膜、实施例8所得的S-PEEK-ST0BA质子交换膜(10)、比较实施例2所得的S-PI质子交换膜、以及实施 例9所得的S-PI-STOBA质子交换膜(10)进行机械性质(抗张强度及延长性的测量),测量 结果如表5所示表 5 由表5可知,含有STOBA的S-PEEK-ST0BA质子交换膜或S-PI-STOBA质子交换膜 与单纯S-PEEK或S-PI相比,可明显发现其抗张强度有明显的增加,且含有STOBA的质子交 换膜的抗张强度约为传统Nafion 112质子交换膜的两倍。实施例13 尺寸稳定性测量分别将Nafion 112质子交换膜、比较实施例1所得的S-PEEK质子交换膜、实施例 8所得的S-PEEK-ST0BA质子交换膜(10)、比较实施例2所得的S-PI质子交换膜、以及实施 例9所得的S-PI-STOBA质子交换膜(10)浸泡于100°C沸水中90分钟后,测量膜三轴前后 的尺寸变化,测量结果如表6所示表6 (AL、Aff, ΔΤ分别表示材料在长、宽、厚的膨胀百分比)从三轴的尺寸变化结果,以可看出加入STOBA于S-PEEK及S-PI内并筑构成半互 穿网络(semi-IPN)结构,的确对质子交换膜的耐沸水性能及减降膨润程度有相当明显的 增益效果(效果可达15%以上)。S-PI-STOBA质子交换膜(10)浸泡于100°C的热水中1. 5 小时后,膜本身并没有被热水渗透产生严重的膨胀(swelling)现象。此外,利用热机械分析仪(ThermalMechanical Analyzer、TMA)分别对 Nafion 112质子交换膜、比较实施例1所得的S-PEEK质子交换膜、实施例8所得的S-PEEK-ST0BA 质子交换膜(10)、比较实施例2所得的S-PI质子交换膜、以及实施例9所得的S-PI-STOBA 质子交换膜(10)进行测量(拉伸力为0.5N),测量结果如图4所示。由TMA检析谱图可知Nafion 112在80°C以上时,其膜即会软化,尺寸变化很大。此外,结构中若含有STOBA的 SPEEK与SPI,其膜的耐温性和尺寸稳定性均有提升的效果。实施例14 保水能力比较将Nafion 117质子交换膜(Du Pont)、比较实施例1所得的S-PEEK质子交换膜、 以及实施例8所得的S-PEEK-ST0BA质子交换膜分别置于60°C去离子水中浸泡6小时,并在 室温下的去离子水浸泡10分钟,擦干进行突升等温式TGA(jump-isothermal TGA)检析,其 测量结果所表7所示表7 单位重量吸水率以Nafion 117最少(21. 12 % ),而加入STOBA的S-PEEK最多 (43. 04% )。此外,在上测量中可观察到,纯S-PEEK质子交换膜在60°C去离子水浸泡下,磺 酸基有相当程度的溶出(leaching out),而加入STOBA的S-PEEK的确有明显减降磺酸基溶 出(leaching out)程度的功效。实施例15 质子交换膜燃料电池将实施例9所得的S-PI-STOBA质子交换膜(10)与一对具有催化剂的气体扩散电 极(材质为E-TEK Carbon Cloth、催化剂为Pt/XC-72 (0. 4mg/cm2))组合而成一膜电极组 (Membrane Electrode Assembly,MEA),并测量电压及功率与电流的关系,其结果如图5所不。从上述结果可以证实,本发明所述的质子交换膜(以STOBA搭配s-PEEK或是 S-PI)无论是固水系数及机械强度,都优于单纯以s-PEEK或s-PI作为材料的质子交换膜, 且也较不易在高温的水中膨胀变形。此代表STOBA确实将s-PEEK或s_PI改性且增益其 效能,可明显改善膜在高温湿下(100°C/100%RH)的膨润及脆性。此外,发明所述的质子 交换膜与传统Naflon 112质子交换膜相比,抗张强度明显提高,且在高温水中也不会软化 及脆化。再者,在电导度的测试下,本发明所述的质子交换膜的25°C的电导度(1X10—2 5Xl(T2S/cm)与 Nafion 相当,而在 120°C 的电导度为 1 X IO"1 5 X lO—S/cm,与 Naf ion 或 其它传统质子交换膜相比,十分具竞争优势。虽然本发明已以较佳实施例公开如上,然其并非用以限定本发明,任何熟悉此技 术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范 围当视后附的权利要求书所界定的范围为准。
权利要求
一种具高质子传导率的质子交换膜,包含一高支化聚合物基材,其中所述高支化聚合物基材具有支化度大于0.5;以及一具有传导离子能力的有机高分子,均匀分布于所述高支化聚合物基材,其中所述高支化聚合物基材占所述质子交换膜整体的固含量不小于5%。
2.根据权利要求1所述的具高质子传导率的质子交换膜,其中所述高支化聚合物为含 双马来酰亚胺基团化合物与巴比土酸的反应物所构成的高分子材料。
3.根据权利要求2所述的具高质子传导率的质子交换膜,其中所述含双马来酰亚胺基 团化合物与巴比土酸的摩尔比介于20 1至1 5之间。
4.根据权利要求2所述的具高质子传导率的质子交换膜,其中所述含双马来酰亚胺基 团化合物与巴比土酸的摩尔比介于51至12之间。
5.根据权利要求2所述的具高质子传导率的质子交换膜,其中所述含双马来酰亚胺基 团化合物为取代或未取代的双马来酰亚胺单体或双马来酰亚胺寡聚合物。
6.根据权利要求2所述的具高质子传导率的质子交换膜,其中所述含双马来酰亚胺基 团化合物为
7.根据权利要求1所述的具高质子传导率的质子交换膜,其中所述高支化聚合物基材 占所述质子交换膜整体的固含量介于5 %至30 %。
8.根据权利要求1所述的具高质子传导率的质子交换膜,其中所述高支化聚合物基材 占所述质子交换膜整体的固含量介于10 %至25 %。
9.根据权利要求1所述的具高质子传导率的质子交换膜,其中所述具有传导离子能力 的有机高分子为全氟磺酸树脂、经磺酸化的聚醚醚酮、经磺酸化的聚酰亚胺、聚磷酸/聚苯 并咪唑高分子、经磺酸化的聚氧化二甲苯、经磺酸化的聚芳醚、或磺酸化的聚4-苯氧基-1, 4-苯基节基酯。
10.根据权利要求1所述的具高质子传导率的质子交换膜,其中所述质子交换膜还包含一催化剂层。
11.根据权利要求10所述的具高质子传导率的质子交换膜,其中所述催化剂层为钼、 钌、或钼钌合金。
12.根据权利要求1所述的具高质子传导率的质子交换膜,其中所述质子交换膜的工 作温度是介于25°C至150°C之间。
全文摘要
本发明涉及一具高质子传导率的质子交换膜,该质子交换膜包含至少一具传导质子能力的有机高分子基材,以及一具高支化结构的高分子,两种型态的高分子均匀混和,其中该高支化高分子占质子交换膜整体的固含量不小于5%。该质子交换膜的高温电导度可达到0.1S/cm@100℃/100%RH,而常温也高于0.03S/cm@25℃/100%RH。
文档编号H01M8/02GK101887979SQ20091013843
公开日2010年11月17日 申请日期2009年5月13日 优先权日2009年5月13日
发明者张中良, 徐雅亭, 施志哲, 李文钦, 林月微, 潘金平, 王宗雄 申请人:财团法人工业技术研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1