电子元件封装体及其形成方法

文档序号:7003093阅读:106来源:国知局
专利名称:电子元件封装体及其形成方法
技术领域
本发明有关于一种电子元件封装体及其制法,且特别有关于一种以由液态固化的材料层作为上封装层及/或具有穿硅通孔(TSV)的电子元件封装体。
背景技术
光感测元件或发光元件等光电元件在撷取影像或照明的应用中扮演着重要的角色,这些光电元件均已广泛地应用于例如数字相机(digital camera)、数字摄录像机 (digital video recorder)、手机(mobile phone)、太阳能电池、屏幕、照明设备等消费电子元件和携带型电子元件中。随着上述各种电子元件愈来愈轻巧化,使得光电元件封装体的尺寸也愈来愈缩小化。传统的半导体封装主要是将半导体晶片封装于一不透明的电子元件封装体中,以避免半导体晶片受到外界的污染,且保护半导体晶片不受外界撞击的影响。反之,光电元件 (例如CMOS影像感应器或发光二极管元件)必须封装于具有至少一透明基板(如玻璃基板)作为上封装层的电子元件封装体中以接受外界的光线或输出光线。通常所采取的封装方式是将透明基板整面涂以粘着剂而接合至具有光感测元件或发光元件的晶圆上而完成封装。然而,粘着剂可能会造成光线折射而影响光线的接收或输出。为了避免粘着剂影响光线的接收或输出,目前已发展出一种利用围堰结构(dam) 撑起透明基板并围出空穴(cavity)的技术。在此技术中,围堰结构取代整面涂以粘着剂而将透明基板固定于光电元件上(仅于围堰结构涂上粘着剂),光电元件对于光线的接收或输出是通过所围出的空穴与透明基板,不需经由透光率不佳的粘着剂,具较佳的光线接收与输出。然而,围堰结构的结构强度较差,容易于接面处(例如与透明基板的接合处)发生裂痕(crack)、脱层(delaminate)、弯曲(bending)等现象。此外,所使用的透明基板一般为玻璃基板,除了价格不菲,亦增加封装体的重量。此外,随着半导体制程技术的不断进步,可于更小的晶片中形成更多的半导体元件。除了使晶片的效能更为提升外,还能节省晶圆面积而降低成本。然而,随着晶片尺寸缩小化与元件密度的增加,其输出/输入连接(1/0)的数目与密度亦增加,因而造成封装上的困难。因此,业界亟需一种新颖的封装技术及结构以改善光电元件的封装。

发明内容
本发明提供一种电子元件封装体的形成方法,包括提供一承载基底,具有一上表面及一相反的下表面;于承载基底的该上表面形成至少一凹槽;于凹槽中设置一具有导电电极的晶片,晶片并由一上封装层所覆盖;于承载基底的凹槽中形成一填充层,填充层围绕上述晶片;自下表面薄化承载基底至一既定深度;于晶片内或承载基底内形成至少一穿孔;以及于穿孔的侧壁上形成一导电层,且导电层与导电电极形成电性接触。本发明所述的电子元件封装体的形成方法,还包括通过自该下表面薄化该承载基底至一既定深度以露出部分的该晶片以及该承载基底的一薄化后下表面。本发明所述的电子元件封装体的形成方法,该穿孔位于该晶片内的导电电极下方。本发明所述的电子元件封装体的形成方法,还包括于该填充层上形成一线路重布层,该线路重布层电性连接至该导电电极,且延伸至该上表面上,其中该穿孔位于该承载基底内且该穿孔的底部露出部分的该线路重布层。本发明所述的电子元件封装体的形成方法,在形成该导电层之前,还包括于该穿孔的侧壁与底部形成一绝缘层,并于该绝缘层上形成一第一开口,该第一开口露出该导电电极。本发明所述的电子元件封装体的形成方法,该承载基底为一晶圆,且在自该下表面薄化该承载基底之前,还包括将该承载基底的上表面固定于一可回收的辅助基底上。本发明所述的电子元件封装体的形成方法,该承载基底的上表面通过一可脱离粘着层固定于该可回收的辅助基底上,且在形成该导电层之后,还包括移除该可回收的辅助基底,移除步骤包括将该承载基底沿切割道切穿至可脱离粘着层为止;及移除该可回收的辅助基底而获得多个晶片封装体,同时保留完整的该可回收的辅助基底进行回收。本发明所述的电子元件封装体的形成方法,该上封装层自该晶片上直接液态固化形成,该上封装层与该晶片之间不含粘着剂。本发明另提供一种电子元件封装体,包括一承载基底,具有至少一开口,此开口是自承载基底的上表面向下延伸;一填充层,位于开口中;一晶片,位于开口中,且被填充层围绕,此晶片具有一导电电极;一上封装层,覆盖上述晶片;至少一穿孔,位于晶片内或承载基底内;以及一导电层,位于穿孔的侧壁上,且导电层与导电电极形成电性接触。本发明所述的电子元件封装体,该开口自该承载基底的上表面贯穿至与该上表面相反的下表面。本发明所述的电子元件封装体,还包括一绝缘层,位于该穿孔的侧壁与该导电层之间。本发明所述的电子元件封装体,还包括一保护层,位于该下表面及该导电层上。本发明所述的电子元件封装体,该穿孔位于该晶片内,且该穿孔底部露出该导电电极。本发明所述的电子元件封装体,该上封装层自该晶片上直接液态固化形成,该上封装层与该晶片之间不含粘着剂。本发明所述的电子元件封装体,还包括一线路重布层,位于该填充层上且延伸至该上表面上,并且与该导电电极电性连接;其中该穿孔位于该承载基底内且贯穿该上表面及该下表面,该穿孔底部露出部分的该线路重布层。本发明所述的电子元件封装体,该由液态固化的上封装层包括酚醛环氧树脂。本发明所述的电子元件封装体,该由液态固化的上封装层还包括Y-丁内酯、三芳基硫六氟锑酸盐、碳酸丙烯酯或前述的组合。
本发明可有效舒缓过于密集的导电通路布局。


图1A-1D显示本发明实施例的电子元件封装体的一系列制程剖面图。图2A-2C显示本发明另一实施例的电子元件封装体的一系列制程剖面图。图3A-3L显示本发明实施例中具有穿硅通孔的封装结构的一系列制程剖面图。图4A-4L显示本发明另一实施例中,具有穿硅通孔的封装结构的一系列制程剖面图。图5显示本发明另一实施例中,具有穿硅通孔的封装结构剖面图。
具体实施例方式为让本发明之上述和其他目的、特征和优点能更明显易懂,下文特举出较佳实施例,并配合所附图式,作详细说明如下。本发明的一实施例是提供一种具有以由液态固化的材料层为上封装层的电子元件封装体,利用将液态材料固化以形成透明的上封装层。本发明的另一实施例还提供具有穿硅通孔(TSV)的封装结构,利用穿硅通孔与线路重布层(redistribution layer,RDL)形成晶片与封装结构外部的导电通路,其中线路重布层即为用以将导电通路重新分布的导电层。本发明实施例的各阶段制程将以图式表示。在本发明实施例的图式与叙述中,相似的元件将以相似的标号标示。图1A-1D显示本发明实施例的电子元件封装体的一系列制程剖面图。如图IA所示,首先提供一包含电子元件的基底100,其具有第一表面102与一相反的第二表面104。 基底100可为硅基底、半导体基底、化合物半导体基底、半导体晶圆、蓝宝石基底或前述的组合。本发明实施例的电子元件封装体包括晶圆级封装,主要是指在晶圆阶段完成封装步骤后,再予以切割成独立的封装体。然而,在一特定实施例中,例如将已分离的半导体晶片重新分布在一承载晶圆上,再进行封装制程,亦可称之为晶圆级封装制程。上述晶圆级封装制程亦适用于借堆叠(stack)方式安排具有集成电路的多片晶圆,以形成多层集成电路 (multi-layer integrated circuit device)白勺封装体。在一实施例中,基底100中具有于第一表面102露出的电子元件106,其可为各种光电元件。例如,电子元件106可为光感测元件、太阳能电池或发光元件等。电子元件 106 亦可为微机电系统(micro electro mechanical system,MEMS)、微流体系统(micro fluidic systems)或利用热、光线及压力等物理变化量来测量的物理感测器(physical sensor)、身寸频元件(RF circuit)、力口速计(accelerators)、陀螺仪(gyroscopes)、微制云力器(micro actuators)、表面声波元件、压力感测器(pressure sensors)或喷墨头(ink printer heads)等。为了保护电子元件106免于受到外界的污染或伤害,需于其上形成透明的上封装层,以提供保护并使光线能顺利地进入与输出。接着,进行本发明实施例的一特征步骤,直接于第一表面102上液态固化形成一材料层,其具有大抵平坦的上表面,且其透光率约大于90%。由液态固化的材料层可作为本发明实施例的电子元件封装体的上封装层,可取代已知的玻璃基板、粘着剂或围堰结构。在一实施例中,上封装层与第一表面102之间不含额外的粘着剂。
请参照图1B-1C,其显示本发明实施例中的由液态固化的上封装层108的形成过程。如图IB所示,首先将具流动性的液态材料108a直接涂布于基底100的第一表面102上, 利用液态材料108a本身的披覆性形成大抵平坦的涂膜。液态材料108a可以各种湿式涂布法直接涂布于第一表面102上,例如刮刀涂布(bar coating)、旋转涂布(spin coating)、
(curtain coating) g^Bjti^ (spray coating)等。液态材料108a包括固化后为透明的高分子材料,较佳为热固性高分子材料,可使固化后的上封装层108具有足够的硬度(例如大于约诺氏(Rockwell) 100度)与耐热性。 适合的液态材料108a例如包括(但不限于)酚醛环氧树脂,如CAS编号为28906-96-9的 Novolac phenol epoxy resin。在其他实施例中,可将酚醛环氧树脂与例如丁内酯 (Gamma Butyrolactone, CASNo. 96-48-0)混合以作为液态材料108a。或者,亦可进一步添加其他的添加剂,例如三芳基硫六氟锑酸盐(triarylsulfonium hexafIuoroantimonate salt,CAS No. 109037-75-4)或/及碳酸丙烯酯(propylene carbonate,CAS No. 108-32-7)寸。在一实施例中,可将适合用作液态材料108a的高分子材料加热至约大于其玻璃转换温度而使具有流动性,接着将具流动性的液态材料108a涂布至第一表面102上。在一实施例中,可利用液态材料108a本身的披覆性形成大抵平坦的涂膜。此外,亦可将基底100 放置在可旋转平台上,利用类似旋转涂布的方式,使液态材料108a均勻地覆盖于第一表面 102上,并具有大抵平坦的上表面。由于高分子材料即使处于略高于玻璃转换温度下,其仍具有一定的粘度,因而不致于完全从第一表面上流失。然亦可于基底100的第一表面102的边缘上形成阻挡结构(未显示)以避免液态材料108a于固化前流失。或者,阻挡结构(未显示)亦可形成在放置基底100的平台上,用以围住基底100。此外,液态材料108a中亦可加入适当的溶剂,以调控其涂布性质。接着,例如可于液态材料108a上方照射紫外光10而使液态材料108a产生交联而固化形成上封装层108 (如图IC所示)。经固化后的上封装层108亦可保有大抵平坦的上表面。此外,在一实施例中,由液态固化的上封装层108的厚度大于约10 μ m,较佳为约1 μ m 至5μπι之间。此外,以上述方法制成的上封装层固化后由于其热膨率较小,因此可以确保电子元件封装体的稳定性。在上述实施例中,上封装层108具有大抵平坦的上表面,此处的大抵平坦是指上封装层108表面最高处与最低处的高低差很小,而不影响光线的输入或输出。例如,在一实施例中,上封装层108表面最高处与最低处的高低差小于约3 μ m,较佳者,其高低差小于约lym。然应注意的是,随着所传送光线波长的不同或封装体的尺寸与种类不同,上封装层108表面的高低差可能会有差异,不限于前述的高低差范围。由于由液态固化的上封装层108包括选用透明的高分子材料且又具大抵平坦的上表面,电子元件106可通过透明的由液态固化的上封装层108接收或输出光线,而不致产生折射或散射等问题。此外,可于由液态固化的上封装层108中加入其他添加剂。例如,可加入硬化剂 (hardener)等,例如可直接加在液态材料108a中。再者,亦可于由液态固化的上封装层108 中添加荧光材料(例如荧光粉),可用以调变输出或输入光线的波长。荧光材料除了加入上封装层108中,亦可加在上封装层108上,例如可于上封装层108上形成荧光粉层。此外, 其余各种光学元件亦可形成在电子元件106上或由液态固化的上封装层108上,以符合各种需求。例如,可视情况设置微透镜阵列结构(microlens array)、滤光片、抗反射层、偏光膜、分色膜(dichroic filter)、光栅(optical grating)、光波导(optical wave guide) 等于电子元件106上。请接着参照图1D,可以各种已知技术于基底100的第二表面104上形成导电结构 114,例如是导电凸块。导电结构114与电子元件106之间可设置有各种导电通路(未显示),其与基底100之间可还包括绝缘层110及防焊层112。在一实施例中,以导电凸块作为导电结构114,可将防焊层112图案化以形成终端接触垫开口于导电通路(未显示)的表面上,接着通过图案化的光致抗蚀剂层进行焊料电镀或是通过网版印刷涂布焊料而填入终端接触垫开口中,最后去除种晶层或光致抗蚀剂层以及进行回焊形成焊球,完成导电凸块制程。电性连接至电子元件106的导电结构114,可作为电子元件106与电子元件封装体的外部电路间的信号沟通桥梁。其中,绝缘层110的材质可为环氧树脂、防焊材料或其他适合的绝缘物质,例如无机材料的氧化硅层、氮化硅层、氮氧化硅层、金属氧化物或前述的组合; 或亦可为有机高分子材料的聚酰亚胺树脂(polyimide)、苯环丁烯(butylcyclobutene, B CB,道氏化学公司)、聚对二甲苯(parylene)、萘聚合物(polynaphthalenes)、氟碳化物 (fluorocarbons)、丙烯酸酯(acrylates)等。绝缘层110的形成方式可包含涂布方式,例如方 转涂布(spin coating)、喷涂(spray coating)或淋幕涂布(curtain coating),或其他适合的沉积方式,例如,液相沉积、物理气相沉积、化学气相沉积、低压化学气相沉积、等离子增强式化学气相沉积、快速热化学气相沉积或常压化学气相沉积等制程。前述实施例,是将具流动性的液态材料108a直接涂布至第一表面102上,然本发明实施例的形成方式不限于此。图2A-2C显示本发明另一实施例的电子元件封装体的一系列制程剖面图。如图2A所示,将固态的粒状材料108b铺于第一表面102上。接着,如图2B所示, 于粒状材料108b上照射红外光20以加热粒状材料108b。当受热后的粒状材料108b温度高于其玻璃转换温度时,会转变为具流动性的液态材料108c (如图2B所示)。接着,可类似于图IB所述的实施例,使具流动性的液态材料108c自然流动或通过旋转基底100而使具有大抵平坦的上表面(如图2C所示)。在一实施例中,将图2B中所示的结构放置于可旋转平台(未显示)上并旋转之,此时可同步照射红外光20。通过调整可旋转平台的转速及红外光20的波长与强度,可调控液态材料108c的表面型态,使具有大抵平坦的上表面(如图2C)。例如,随着液态材料108c的上表面渐渐平坦化时,可逐渐减小红外光20的强度及 /或可旋转平台的转速,使液态材料108c的流动性逐渐减低而定形。最后,如图2C所示,可以紫外光10照射液态材料108c,使固化为如图IC所示的由液态固化的上封装层108,以作为本发明实施例的电子元件封装体的上封装层。同样地,在其他实施例中,可通过对温度的控制来调控液态材料的流动性,以获得具大抵平坦上表面且透明的上封装层。之后的制程同图ID所示,可进行导电结构的形成,在此不予赘述。本发明实施例具有许多优点,例如第一表面102上或由液态固化的上封装层108 上不具有玻璃基板,而以由液态固化的上封装层108取代玻璃基板,可有效避免已知技术中,粘着剂对透光率的影响,并可避免强度较弱的围堰结构所造成可靠度上的疑虑。本发明一实施例中,不需要于第一表面102或由液态固化的上封装层108上设置玻璃基板的制程, 除了大幅减少成本外,还能节省许多制程时间。在一些实施例中,采用透明的热固性高分子材料作为上封装层108,可具有较高的耐热性,使上封装层108即使在较高的操作温度下, 仍能维持透明且大抵平坦。此外,由液态固化的上封装层108的重量较玻璃基板轻许多,更适于各种携带式电子产品的应用。上述液态固化的材料层或上封装层可适用于各种封装结构,为方便说明起见,以下是以具有穿硅通孔(TSV)的封装结构为例,但其不应以此为限。请接着参照图3A-3L,其显示本发明实施例中,具有穿硅通孔(TSV)的封装结构的一系列制程剖面图。首先,如图3A所示,提供承载基底300,具有上表面302及相反的下表面304。承载基底300可包括硅基底、半导体基底、化合物半导体基底、半导体晶圆、蓝宝石基底或前述的组合。接着,于承载基底300的上表面302形成至少一凹槽306。应注意的是,在一较佳实施例中,承载基底300较佳选用硅晶圆,且较佳形成多个凹槽306。可于晶圆中的多个凹槽放置多个晶片,再经过后续的封装与切割制程后,获得多个电子元件封装体。凹槽306可例如以光刻及蚀刻制程形成。请接着参照图3B,将具有导电电极的晶片308设置于凹槽306中,例如可通过(但不限于)粘着层314而将晶片308固定于凹槽306中。在此实施例中,晶片308具有导电电极310,并由上封装层312所覆盖,其中上封装层312位于导电电极310之上。导电电极 310可作为晶片308中的电子元件与封装体之间的导电通路,例如导电电极310可由半导体晶片的金属内连线构成。晶片308中的电子元件可包括(但不限于)微机电系统、微流体系统或利用热、光线及压力等物理变化量来测量的物理感测器、射频元件、加速计、陀螺仪、 微制动器、表面声波元件、压力感测器或喷墨头等。上封装层312可用于保护晶片308中的电子元件。当所欲保护的电子元件属光电元件时,例如包括发光二极管元件、光感测元件、 光伏电池(photovoltaic cell),上封装层312较佳选用透明的材质。例如,在一实施例中, 上封装层312采用图IC实施例中的由液态固化的上封装层。在另一实施例中,由液态固化的上封装层具有大抵平坦的上表面,且具有透光率约大于90 %。在又一实施例中,上封装层 312与晶片308之间不含粘着剂。接着,如图3C所示,于承载基底300上形成填充层316。填充层316可将凹槽306 填满,并围绕晶片308。填充层316的材质包括高分子材料,例如是环氧树脂、有机高分子材料的聚酰亚胺树脂(polyimide)、苯环丁烯(butylcyclobutene,BCB,道氏化学公司)、硅胶或前述的组合。其次,如图3D及3E所示,自下表面304薄化承载基底300至一既定深度。在此实施例中,承载基底300薄化后露出部分的晶片308以及承载基底300的薄化后下表面304a。 请参照图3D,为了使承载基底300的薄化及后续制程能较顺利地完成,较佳将承载基底300 固定于一可回收的辅助基底318上。在一实施例中,可先于承载基底300或辅助基底318 上涂上可脱离粘着层320。接着,通过可脱离粘着层320使承载基底300与辅助基底318接合。可脱离粘着层320例如包括可脱离胶或胶带。可脱离胶包括受热脱离型、受光脱离型或溶剂洗去型等。请接着参照图3E,以辅助基底318为支撑,自承载基底300的下表面304将承载基底300薄化至一既定深度以露出部分的晶片308及薄化后下表面304a。承载基底300的薄化可例如采用机械研磨(mechanical griding)或化学机械研磨(CMP)等,而经此薄化步骤之后,即可直接对露出的晶片下表面进行穿孔步骤,而不必使用多道蚀刻制程。在一实施例中,可以进一步湿式清理薄化后下表面304a。接着,如图3F所示,于露出的晶片308上形成至少一穿孔322,穿孔322可位于晶片308内的导电电极310下方。穿孔322的形成方式例如包括光刻及蚀刻制程或激光穿孔制程等。在一实施例中,穿孔322露出至少部分的导电电极310。在后续于穿孔322的侧壁
形成导电层时,导电层可进一步与导电电极310电性连接,而形成晶片308与外部电路的桥梁。如图3G所示,为了避免导电层直接与晶片308中的基底直接接触而造成短路, 或者避免导电层的材质扩散进入晶片308中的电子元件而影响运作,较佳于形成导电层之前,先于穿孔322的侧壁与底部上形成绝缘层324。绝缘层324的材质可为环氧树脂、防焊材料或其他适合的绝缘物质,例如无机材料的氧化硅层、氮化硅层、氮氧化硅层、 金属氧化物或前述的组合;或亦可为有机高分子材料的聚酰亚胺树脂(polyimide)、苯环丁烯(butylcyclobutene,BCB,道氏化学公司)、聚对二甲苯(parylene)、萘聚合物 (polynaphthalenes)、氟碳化物(fluorocarbons)、丙烯酸酯(acrylates)等。绝缘层 324 的形成方式可包含涂布方式,例如旋转涂布(spin coating)、喷涂(spray coating)或淋幕涂布(curtain coating),或其他适合的沉积方式,例如,液相沉积、物理气相沉积、化学气相沉积、低压化学气相沉积、等离子增强式化学气相沉积、快速热化学气相沉积或常压化学气相沉积等制程。在形成绝缘层324之后,较佳于绝缘层324上形成露出导电电极310的第一开口 326。第一开口 326的形成包括使用能量束移除部分的绝缘层324,例如使用激光、电子束、 离子束等。或者,当绝缘层324的材质属光致抗蚀剂材料时,可直接通过曝光及显影制程形成第一开口 326。请接着参照图3H,于穿孔322的侧壁上形成导电层328。导电层328与导电电极 310之间形成电性接触。在此实施例中,还进一步延伸至承载基底300的薄化后下表面304a 上。导电层328的材质包括金属材料、导电高分子材料、导电陶瓷材料或前述的组合,可采用物理气相沉积、化学气相沉积或电化学电镀等方法来形成导电层328。在一实施例中,导电层328例如通过绝缘层324上所预先形成的第一开口 326而与导电电极310电接触。因此,晶片308中的电子元件可通过导电电极310及导电层328而输出或接收电子信号。通过由穿孔322的侧壁向下延伸至薄化后下表面304a上的导电层 328,可增加封装体内连线的布局区域,使输出/输入连接(1/0)的密度降低。此外,虽然图式中的导电层328是顺应性地沉积于穿孔322的侧壁上,但在其他实施例中,导电层328亦可大抵完全填满穿孔322,再通过线路重布层而将导电通路延伸至薄化后下表面304a上。请接着参照图31,在一实施例中,可选择性于薄化后下表面304a及导电层328上形成保护层330。保护层330的材质例如是高分子材料。保护层330的形成例如包括喷涂法、喷墨法、浸镀法、化学气相沉积、网印(printing)或前述的组合。接着,移除部分的保护层330以形成至少一第二开口 332。保护层330的移除可使用任何已知的方法或亦可以能量束移除。第二开口露出部分延伸在薄化后下表面304a上的导电层328,提供与外部电路连接的接触区。例如,在一实施例中,如图3J所示,于第二开口 332中形成导电结构334。 例如,可于露出的导电层328上进行凸块化制程而形成焊球(即导电结构334)。所形成的电子元件封装结构可保护晶片308,并可提供与外部电路间的导电通路。接着,如图3K所示,将辅助基底318及可脱离粘着层320自承载基底300上移除, 而获得本发明一实施例的电子元件封装体。在一实施例中,承载基底300为晶圆,其封装有多个晶片308。在此实施例中,还包括切割承载基底300以分离出至少一晶片封装体。此外,切割承载基底300的步骤可于移除辅助基底318之前或之后进行。例如,当以可脱离胶带作为粘着层320时,较佳将承载基底300沿预定的切割道切穿至可脱离粘着层320为止, 但不整个切穿可脱离粘着层320。接着,再一次移除辅助基底318而获得多个晶片封装体, 如此,可留下完整的辅助基底318并继续回收使用。在其他实施例中,是先将辅助基底318 整体移除后,才切割承载基底300以分离出多个晶片封装体。图3L显示本发明一实施例中的电子元件封装体340。电子元件封装体340包括承载基底300,具有至少一开口 301,开口 301是自承载基底300的上表面302向下延伸。在此实施例中,开口 301自承载基底300的上表面302贯穿至相反的下表面304a。开口 301 中填有填充层316,且设置有晶片308,其中晶片308被填充层316围绕。晶片308具有导电电极310及至少一穿孔322,且由上封装层312所覆盖。穿孔322的侧壁上形成有导电层 328,导电层328可进一步延伸至下表面304a,且电性连接至导电电极310。如图3L所示, 导电层328将导电通路自晶片308的导电电极310延伸至承载基底300的下表面304a上, 可增加封装体内连线的布局区域,使输出/输入连接(I/O)的密度降低。随着晶片308尺寸不断地缩小化,本发明实施例所提供的方法及结构,更可有效舒缓过于密集的导电通路布局,使电子元件封装体的制作难度降低而有较高的良率。图4A-4L显示本发明另一实施例中,具有穿硅通孔的封装结构的一系列制程剖面图。有别于图3所示实施例将穿硅通孔形成于晶片中,此实施例将穿硅通孔形成于承载基底中。在图4A-4L的实施例中,相似的元件将以相似的标号标示。首先,如图4A所示,提供承载基底400,其具有上表面402及相反的下表面404。承载基底400可包括硅基底、化合物半导体基底、半导体晶圆、蓝宝石基底或前述的组合。接着,于承载基底400的上表面402形成至少一凹槽406。如图4B所示,将具有导电电极的晶片408设置于凹槽406中,例如可通过(但不限于)粘着层414而将晶片408固定于凹槽 406中。在此实施例中,晶片408具有导电电极410,并部分由上封装层412所覆盖,其中上封装层412可位于导电电极410之上。晶片408中的电子元件可包括(但不限于)微机电系统、微流体系统或利用热、光线及压力等物理变化量来测量的物理感测器、射频元件、加速计、陀螺仪、微制动器、表面声波元件、压力感测器或喷墨头等。上封装层412可用于保护晶片408中的电子元件。当所欲保护的电子元件属光电元件时,例如包括发光二极管元件、 光感测元件、光伏电池,上封装层412较佳选用透明的材质。例如,在一实施例中,上封装层 412采用图IC实施例中的由液态固化的上封装层。在另一实施例中,由液态固化的上封装层具有大抵平坦的上表面,且透光率约大于90%。在又一实施例中,上封装层412与晶片 408之间不含粘着剂。接着,如图4C所示,于承载基底400上形成填充层416。填充层416围绕晶片408。 接着,于填充层416上形成线路重布层417,线路重布层417电性连接至导电电极410,且延伸至上表面402上。线路重布层417的材质包括金属材料、导电高分子材料、导电陶瓷材料或前述的组合,可采用物理气相沉积、化学气相沉积或电化学电镀等方法来形成线路重布层 417。接着,如图4D及4E所示,自下表面404薄化承载基底400至一既定深度。在此实施例中,薄化后的承载基底400露出部分的晶片408以及承载基底400的薄化后下表面 404a。请参阅图4D,为了使承载基底400的薄化及后续制程能较顺利地完成,较佳将承载基底400固定于辅助基底418上。在一实施例中,可先于承载基底400或辅助基底418上涂上可脱离粘着层420。接着,通过粘着层420使承载基底400与辅助基底418接合。粘着层 420例如包括可脱离胶或胶带。可脱离胶包括受热脱离型、受光脱离型或溶剂洗去型等。请接着参照图4E,以辅助基底418为支撑,自承载基底400的下表面404将承载基底400薄化至露出部分的晶片408及薄化后下表面404a。承载基底400的薄化可例如采用机械研磨(mechanical griding)或化学机械研磨(CMP)等。在一实施例中,可以进一步湿式清理薄化后下表面404a。接着,如图4F所示,于露出的薄化后下表面404a上形成至少一穿孔422。穿孔422 的形成方式例如包括光刻及蚀刻制程或激光穿孔制程等。在一实施例中,穿孔422露出至少部分的线路重布层417。在后续于穿孔422的侧壁形成导电层时,导电层可进一步与导电电极410电性连接(通过线路重布层417),而形成晶片408与外部电路的桥梁。如图4G所示,为了避免导电层与晶片408中的基底直接接触而造成短路,或者避免导电层的材质扩散进入晶片408中的电子元件而影响运作,较佳于形成导电层之前,先于穿孔422的侧壁与底部上形成绝缘层424。在形成绝缘层424之后,较佳于绝缘层424上形成露出线路重布层417的第一开口 426。第一开口 426的形成包括使用能量束移除部分的绝缘层424,例如使用激光、电子束、离子束等。或者,当绝缘层424的材质属光致抗蚀剂材料时,可直接通过曝光及显影制程形成第一开口 426。请接着参照图4H,于穿孔422的侧壁上形成导电层428。导电层428通过线路重布层417而电性连接至导电电极410,且可延伸至承载基底400的薄化后下表面404a上。 导电层428的材质包括金属材料、导电高分子材料、导电陶瓷材料或前述的组合,可采用物理气相沉积、化学气相沉积或电化学电镀等方法来形成导电层428。在一实施例中,导电层428例如通过绝缘层424上所预先形成的第一开口 426而与线路重布层417及导电电极410电性接触。因此,晶片408中的电子元件可通过导电电极410、线路重布层417、及导电层428而输出或接收电子信号。通过由穿孔422的侧壁向下延伸至薄化后下表面404a上的导电层428,可增加封装体内连线的布局区域,使输出/输入连接(I/O)的密度降低。此外,虽然图式中的导电层428是顺应性地沉积于穿孔422的侧壁上,但在其他实施例中,导电层428亦可大抵完全填满穿孔422。请接着参照图41,在一实施例中,可选择性于薄化后下表面404a及导电层428上形成保护层430。保护层430的材质例如是高分子材料。保护层430的形成例如包括喷涂法、喷墨法、浸镀法、化学气相沉积、网印(printing)或前述的组合。接着,移除部分的保护层430以形成至少一第二开口 432。保护层430的移除可使用任何已知的方法或亦可以能量束移除。第二开口 432露出部分延伸在薄化后下表面404a上的导电层428,提供与外部电路连接的接触区。例如,在一实施例中,如图4J所示,于第二开口 432中形成导电结构 434。例如,可于露出的导电层428上进行凸块化制程而形成焊球(即导电结构434)。所形
11成的电子元件封装结构可保护晶片408,并可提供与外部电路间的导电通路。接着,如图4K所示,将辅助基底418及粘着层420自承载基底400上移除,而获得本发明一实施例的电子元件封装体。在一实施例中,承载基底400为晶圆,其封装有多个晶片408。在此实施例中,还包括切割承载基底400以分离出至少一晶片封装体。此外,切割承载基底400的步骤可于移除辅助基底418之前或之后进行。例如,当以可脱离胶带作为粘着层420时,较佳将承载基底400沿预定的切割道切穿,但不整个切穿粘着层420。接着, 再一次移除辅助基底418而获得多个晶片封装体,如此,可留下完整的辅助基底318并继续回收使用。在其他实施例中,是先将辅助基底418整体移除后,才切割承载基底400以分离出多个晶片封装体。图4L显示本发明一实施例中的电子元件封装体440。电子元件封装体440包括承载基底400,具有至少一开口 401,开口 401是自承载基底400的上表面402向下延伸。在此实施例中,开口 401自承载基底400的上表面402贯穿至相反的下表面404a。开口 401中填有填充层416,且设置有晶片408,其中晶片408被填充层416围绕。晶片408具有导电电极410,并由上封装层412所覆盖。电子元件封装体440还包括线路重布层417,位于填充层416上且延伸至上表面402上。线路重布层417与导电电极410电性相连。电子元件封装体440还包括穿孔422,穿孔422侧壁上形成有导电层428,导电层428可进一步延伸至下表面404a上,且通过线路重布层417而电性连接至导电电极410。如图4L所示,导电层428将导电通路自晶片408的导电电极410延伸至承载基底400的下表面404a上,可增加封装体内连线的布局区域,使输出/输入连接(I/O)的密度降低。随着晶片408尺寸不断地缩小化,本发明实施例所提供的方法及结构,更可有效舒缓过于密集的导电通路布局, 使电子元件封装体的制作难度降低而有较高的良率。此外,还可进一步形成上保护层436 于承载基底400上,如图4L所示。当晶片408为光电元件时,上保护层436较佳不覆盖于透明的上封装层412上,以使光线能顺利进入或射出。在上述使用穿承载基底的穿孔结构的实施例中,由于不必对晶片进行穿孔制程, 可以降低损伤晶片的机率。同时,由于只对承载基底进行穿孔,因此在另一实施例中,薄化步骤可以省略或者实施薄化制程但并不需要露出晶片408的部分表面,如图5所示的封装体结构,其中相同的元件采用与图4相同的标号。本发明实施例具有许多优点,通过穿晶片或穿承载基底的穿孔,可将导电通路导引至其他平面,可有效舒缓过于密集的导电通路布局。在其他实施例中,通过由液态固化的上封装层作为所封装晶片的上封装层,更可使封装体的结构更为稳固可靠。尤其对光电晶片的封装,由液态固化的上封装层更可提供所需的透光率。虽然本发明已以多个较佳实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作任意的更动与润饰, 因此本发明的保护范围当视后附的申请专利范围所界定者为准。附图中符号的简单说明如下100 基底102 第一表面104 第二表面106:电子元件0082]108 上封装层
0083]108a、108c 液态材料
0084]10 紫外光
0085]114:导电结构
0086]110、324、424 绝缘层
0087]112:防焊层
0088]108b 粒状材料
0089]20 红外光
0090]300、400 承载基底
0091]302、402 上表面
0092]304、304a、404、404a 下表[
0093]306、406:凹槽
0094]308、408:晶片
0095]314、320、414、420 粘着层
0096]310、410:导电电极
0097]312,412 上封装层
0098]316,416 填充层
0099]318,418 辅助基底
0100]322、422:穿孔
0101]326、426:第一开口
0102]328、428:导电层
0103]330,430,436 保护层
0104]332、432:第二开口
0105]334、434:导电结构
0106]340、440 电子元件封装体
0107]301、401:开口
0108]417:线路重布层。
权利要求
1.一种电子元件封装体,其特征在于,包括一包含电子元件的基底,具有一第一表面及一与该第一表面相反的第二表面;以及一上封装层,直接液态固化形成于该第一表面上,且该上封装层与该第一表面之间不含粘着剂,其中该由液态固化的上封装层具有平坦的上表面,且该由液态固化的上封装层的透光率大于90%。
2.根据权利要求1所述的电子元件封装体,其特征在于,该由液态固化的上封装层包括酚醛环氧树脂。
3.根据权利要求2所述的电子元件封装体,其特征在于,该由液态固化的上封装层还包括Y-丁内酯、三芳基硫六氟锑酸盐、碳酸丙烯酯或前述的组合。
4.根据权利要求1所述的电子元件封装体,其特征在于,该第一表面上或该由液态固化的上封装层上不具有一玻璃基板。
5.根据权利要求1所述的电子元件封装体,其特征在于,该由液态固化的上封装层中还包括一荧光材料。
6.根据权利要求1所述的电子元件封装体,其特征在于,该由液态固化的上封装层上还包括一荧光材料。
7.一种形成电子元件封装体的方法,其特征在于,包括提供一包含电子元件的基底,该基底具有一第一表面及一与该第一表面相反的第二表面;以及直接于该第一表面上液态固化形成一上封装层,该上封装层与该第一表面之间不含粘着剂,且该由液态固化的上封装层的透光率大于90% ;其中,该由液态固化的上封装层的形成过程包括将一液态材料直接覆盖于该第一表面上;以及将该液态材料固化以形成该上封装层。
8.根据权利要求7所述的形成电子元件封装体的方法,其特征在于,还包括将一粒状材料铺于该第一表面上,并加热该粒状材料,以使该粒状材料成为直接覆盖于该第一表面上的该液态材料。
9.根据权利要求8所述的形成电子元件封装体的方法,其特征在于,该材料的加热方式包括使用红外光照射该材料。
10.根据权利要求7所述的形成电子元件封装体的方法,其特征在于,在该液态材料固化前,还包括旋转该基底,以使该液态材料平均涂布在该第一表面上,且具有大抵平坦的上表面。
11.根据权利要求7所述的形成电子元件封装体的方法,其特征在于,该液态材料的固化方式包括使用紫外光照射该液态材料。
12.根据权利要求7所述的形成电子元件封装体的方法,其特征在于,该由液态固化的上封装层包括酚醛环氧树脂。
全文摘要
本发明提供一种电子元件封装体及其形成方法,其中该电子元件封装体的形成方法包括提供一承载基底,具有一上表面及一相反的下表面;于承载基底的该上表面形成至少一凹槽;于凹槽中设置一具有导电电极的晶片,晶片并由一上封装层所覆盖;于承载基底的凹槽中形成一填充层,填充层围绕上述晶片;自下表面薄化承载基底至一既定深度;于晶片内或承载基底内形成至少一穿孔;以及于穿孔的侧壁上形成一导电层,且导电层与导电电极形成电性接触。本发明可有效舒缓过于密集的导电通路布局。
文档编号H01L23/29GK102222650SQ20111015777
公开日2011年10月19日 申请日期2009年3月13日 优先权日2009年3月13日
发明者倪庆羽, 张恕铭, 钱文正 申请人:精材科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1