用于氢/溴电池的添加剂的制作方法与工艺

文档序号:11868311阅读:300来源:国知局
用于氢/溴电池的添加剂本发明涉及适合作为用在氢/溴电池(cell)中的电解质的添加剂的化合物,用于络合在这样的电池中形成的单质溴。在涉及单质溴的产生的电化学液流电池中存在如下需要:将溴以可在宽的温度范围内容易地存储和泵送的形式保持,使得其可在不妨碍液流电池运行的情况下使用。氢/溴电池是再生燃料电池的实例。氢/溴再生燃料电池的运行基于溴化氢的电解、以及电解产物即氢气和单质溴转化回溴化氢。在充电期间,从外部电源供应的电流驱动溴化氢的电解,产生氢气(H2)和单质溴(Br2),其分开地存储在位于电池外部的合适的罐中。在放电期间H2和Br2被供给回电池并且反应以得到溴化氢,从而产生电能。典型的氢/溴电池图解地示于图1中。虽然该图描绘了单个电池,但是注意,可将多个这样的电池串联组装。数字1和2分别表示氢电极和溴电极,和数字3表示位于电极之间的隔板(例如,离子交换膜)。术语“氢电极”在本文中用于表示其中氢气(在充电期间)形成和(在放电期间)被氧化的电极。术语“溴电极”在本文中用于表示其中单质溴(在充电期间)形成和(在放电期间)被还原的电极。用于收集氢气的第一存储罐由数字4表示。包含浓的溴化氢水溶液的第二存储罐由数字5表示。图1中还示出了将氢气存储罐4和HBr存储罐5连接至相应的电池侧的流动路径4a和5c、以及用于沿着所述流动路径驱动流体的泵。充电/放电循环由以下化学方程对表示:在充电期间,将包括氢溴酸的电解质从存储罐5供给至其中放置溴电极2的电池侧(其在充电状态下为电池的阴极侧)。氢溴酸经历电解,导致在阴极处形成单质溴。富含单质溴的电解质被从电池的阴极侧除去并且被输送至存储罐5。氢离子同时穿越膜3至阳极侧,其中氢气在阳极1处析出并且被收集在罐4中。在放电期间,氢气和含溴电解质分别从它们的存储罐4和5供给至其中安置氢电极和溴电极的相应的电池侧(注意,阳极侧/阴极侧相对于先前阶段是反转的)。氢气和溴之间的反应产生氢溴酸,且从电池引出电流。应理解,电解阶段以其开始的电解质未必不含单质溴。实际上,电解阶段以除了氢溴酸之外还包含最高达10%单质溴的电解质开始。例如,电解之前在含水电解质中HBr和Br2的浓度可分别为5%-52%(更优选10%-45%)和0%-10%(更优选0.1%-5%)。在电解阶段(即充电过程)期间,电解质中氢溴酸的浓度逐渐降低,同时单质溴的浓度增加。在充电状态完成时,电解质典型地包含5%-35%HBr和0.2M-3.5MBr2。由此可见,电解质的组成在充电/放电循环期间显著变化。溴是暗红色的发烟液体。其是反应性的和腐蚀性的并且在室温下具有高的蒸气压。在利用溴作为电化学活性元素的电池中,需要使溴钝化(deactivate),即将其转化为具有降低的蒸气压的形式,该形式较少可能妨碍电池的运行。本领域中已知,该目的可通过向电解质添加溴络合剂而实现。溴络合剂与溴分子组合以形成多溴化合物络合物。结果,络合的溴溶液上方的蒸气压降低。在再生燃料电池中,电解质储蓄器是与电极堆分开的,其中电解质从储蓄器向电极泵送和从电极向储蓄器泵送。对于与不同的充电状态对应的不同组成并且在整个运行温度范围(典型地-15℃至50℃)内,必须保持电解质的流动性。换而言之,在电池的整个运行中,在电解质中形成固相是不可接受的。过去,针对在锌溴液流电池(battery)中单质溴的钝化研究了溴络合剂。在这些电池中的溴钝化可通过使用溴化环状季铵盐(简写为quat)作为络合剂而实现。在它们最一般的形式中,这些盐由下式表示:其中R1和R2表示烷基(其通常彼此不同)和X表示卤根抗衡离子。应特别注意,在该式中,阳离子为非芳族的杂环体系。特别地,为此目的,商业上使用溴化N-甲基-N-乙基吡咯烷(简写为MEP)和溴化N-甲基-N-乙基吗啉(简写为MEM)两者。然而,以下报道的实验结果表明,由于如下原因,溴化N-甲基-N-乙基吡咯烷和溴化N-甲基-N-乙基吗啉均不适合用在氢/溴再生燃料电池中:它们在这样的电池中采用的一些工作条件下结晶。现已发现,溴化1-烷基-2-烷基吡啶例如溴化1-乙基-2-甲基吡啶(简写为2-MEPy)、溴化1-烷基-3-烷基吡啶例如溴化1-乙基-3-甲基吡啶(简写为3-MEPy)、和溴化1,3二烷基咪唑例如溴化1-丁基3-甲基咪唑(简写为BMIBr)、以及其混合物作为用于氢/溴电池例如氢/溴再生燃料电池的络合剂是有效的。已经试验了具有与在氢/溴电池的充电/放电循环期间随之发生的不同状态对应的变化组成的包含HBr/溴的电解质,已惊讶地发现,所述化合物在电解质中的存在容许形成在相关工作条件下不凝固的多溴化合物络合物。迄今为止,在本领域中提出卤化1-烷基-2-甲基吡啶(也称为N-烷基皮考啉)盐用于以下用途。例如,US5,260,148描述了通过将N-甲基皮考啉离子添加至作为碳酸亚丙酯和1,2-二甲氧基乙烷的等摩尔混合物的溶剂而制备用于锂二次电池的电解质溶液。Barlet,R.等[JournaldeChimiePhysiqueetdePhysico-ChimieBiologique(1984),81(5),349-54]描述了卤化吡啶作为室温电池电解质的用途。EP0404188公开了非水电解质铝电镀浴组合物,其特别包括卤化物例如卤化N-烷基皮考啉Shlyapnikov,D.S.[KhimiyaGeterotsiklicheskikhSoedinenii(1972),(7),966-9]描述了与季型卤化物盐(例如α-皮考啉的季型卤化物盐)的SO2络合物。因此,本发明主要涉及其中卤化优选为溴化的卤化1-烷基-2-烷基吡啶卤化1-烷基-3-烷基吡啶卤化1,3二烷基咪唑或它们的混合物在选自氢/溴电池和钒/溴电池的电化学液流电池中作为溴络合剂的用途。连接至芳环的烷基独立地选自C1-C5烷基。优选地,所述烷基彼此不同。在溴化1-烷基-2-烷基吡啶和溴化1-烷基-3-烷基吡啶的情况下,优选具有连接至氮原子的乙基和连接至碳环(即,吡啶环的2位或3位处)的甲基。在另一方面中,本发明提供适合用于选自氢/溴电池和钒溴电池的电化学液流电池中的电解质,所述电解质包括含水溴化氢和液体络合物,所述液体络合物由与一个或多个溴分子组合的、如下的至少一种构成:卤化(例如溴化)1-烷基-2-烷基吡啶卤化(例如溴化)1-烷基-3-烷基吡啶或卤化(例如溴化)1,3二烷基咪唑该液体络合物优选由如下构成:溴化1-乙基-2-甲基吡啶溴化1-乙基-3-甲基吡啶或溴化1-丁基3-甲基咪唑和溴分子。在另一方面中,本发明涉及用于运行选自氢/溴和钒溴电池的电化学液流电池的方法,包括向所述电池的包含HBr的电解质添加如上所述的卤化(例如溴化)1-烷基-2-烷基吡啶卤化(例如溴化)1-烷基-3-烷基吡啶卤化(例如溴化)1,3二烷基咪唑或它们的混合物。根据本发明的优选络合剂溴化1-乙基-2-甲基吡啶和溴化1-乙基-3-甲基吡啶是通过分别使2-皮考啉或3-皮考啉与溴乙烷反应而制备的,如以下反应方案所示:2-皮考啉3-皮考啉该反应通过如下进行:向压力反应器中加入反应物且还任选地加入溶剂,所述溶剂可为水性(含水)溶剂或有机溶剂。替代地,该反应是无溶剂的,其中反应物之一任选地过量使用。可将全部量的反应物引入到反应器中,然后通过加热反应混合物而开始反应。然而,也可在加热下在不少于1小时的时期内将反应物的一种或多种(例如溴乙烷)逐渐供给到反应器中。加热反应混合物,优选加热至不低于90℃的温度,并且使反应在压力下进行几小时。产物是以水溶液的形式方便地收集的,其可直接用作用于根据本发明的HBr电解质溶液的添加剂。为此,在反应完成时,通过本领域中已知的方法例如蒸馏从反应容器除去有机溶剂和/或残留量的起始材料。然后可将水添加到反应器中,以提供含水形式的络合剂。可用作用于HBr电解质的添加剂的2-MEPy或3-MEPy或它们的混合物的水溶液的浓度优选为50-90重量%。适合根据本发明使用的另一络合剂溴化1-丁基3-甲基咪唑是可从ChemadaIsrael商购得到的,并且也可通过本领域中已知的方法制备。根据本发明的电解质通过如下制备:将含水溴化氢、络合剂(例如溴化1-乙基-2-甲基吡啶溴化1-乙基-3-甲基吡啶溴化1-丁基3-甲基咪唑或其混合物)、以及电化学地产生的溴(其是在充电时在电池中原位形成的)或者化学地(例如过氧化物)产生的溴组合在一起。向具有5重量%-52重量%(例如10-45重量%)的HBr浓度的溴化氢水溶液添加络合剂,使得其在所得溶液中的浓度为不小于0.25M直到能够络合最大溴含量的浓度。在充电时,溴化氢被消耗并且产生溴。在放电时,电解质的水相再次对于HBr富集,并且溴的浓度降低。如上所注意到的,本发明的溴络合剂可以单独的形式使用或者以混合物(例如二元混合物,其中该混合物的两种组分之间的摩尔比可为1:5-5:1、更优选1:4-4:1且甚至更优选1:3-3:1)的形式使用。一种优选的混合物由1:2-1:4的摩尔比的溴化1-乙基-2-甲基吡啶和溴化1-乙基-3-甲基吡啶构成。络合剂优选地以其中络合剂的浓度可为40-92重量%、例如65-90重量%的浓的水溶液的形式添加至电解质。利用以上参照图1描述的类型的氢/溴电池进行本发明的方法,其中将络合剂添加至用于容纳含水HBr的存储罐(图1中由数字5表示)中。本发明的方法中可使用的氢/溴电池的另一实例说明在US4,520,081中。可根据本发明运行的钒/溴电池例如说明在US7,320,844或US2006/0183016中。以下非限制性工作实施例说明本发明的各方面。实施例方法1)包含络合剂的氢溴酸溶液的比电导率是在室温下、在向样品添加溴之前使用具有石墨电导池的Innolab740仪器测量的。2)电解质溶液中发生固相形成时的温度是通过如下测定的:将样品从RT(约25-30℃)逐渐冷却至-15℃。冷却方式如下:将温度从RT以0.2℃/分钟的冷却速率冷却至15℃,并且在15℃保持4小时并且之后如此冷却至-15℃。在以下温度:15℃、10℃、5℃、0℃、-5℃、-10℃和-15℃的每一个处,将该溶液在恒定温度下保持4小时。该冷却试验在聚乙二醇溶液中进行,直至观察到晶体的形成。3)多溴化合物络合物油相上方的水相中的溴浓度是通过常规的碘量滴定技术测定的。在室温下对各小瓶取样三次。4)包含络合剂的电解质溶液上方的蒸气压是根据“Vaporpressuresofbromine-quaternaryammoniumsaltcomplexesforzinc-brominebatteryapplications”SatyaN.Bajpal,J.Chem.Eng.Data1981,26,2-4在20-26℃下测量的。实施例1在水性介质中制备2-MEPy2-皮考啉压力反应器装有机械搅拌器以及磁继电器和热电偶管。将反应器用氮气吹扫,向其中加入2-皮考啉(101.3g)和去离子水(DIW)(20ml),将其密封并且将混合物加热至92℃。将溴乙烷(97.9g)在92-100℃下在3小时期间缓慢加入。将混合物在94-100℃下再加热2小时,然后冷却,和释放压力。将粗制溶液用DIW(24ml)稀释,并且在减压下将过量的2-皮考啉作为含水共沸物蒸馏掉。最后,将残留物用DIW稀释。最终产物:251g;66.1重量%(银量滴定);产率,91.5%。实施例2在作为溶剂的乙腈中制备2-MEPy压力反应器装有机械搅拌器以及磁继电器和热电偶管。将反应器用氮气吹扫,向其中加入2-皮考啉(57.9g)、溴乙烷(69g)和乙腈(69g)。将反应器密封并且将混合物加热至97℃。在97℃下的加热持续6小时。通过反应器的上部阀门控制溶剂的蒸馏,之后真空蒸馏(无冷却)。加入DIW(31mL)以溶解粗制混合物,并且施加真空以除去残留的乙腈。最后,将溶液用DIW(10.5g)稀释。最终产物:149g;80.0重量%(银量滴定);产率,95%。实施例3用过量溴乙烷制备2-MEPy压力反应器装有机械搅拌器以及磁继电器和热电偶管。将反应器用氮气吹扫,向其中加入2-皮考啉(95g)和溴乙烷(145g)。将反应器密封并且将混合物加热至97℃。在97℃下的加热持续18小时。通过反应器的上部阀门控制过量溴乙烷的蒸馏,之后真空蒸馏。最后,将溶液用DIW(47g)稀释。最终产物:250g;79.3重量%(银量滴定);产率,96%。实施例43-MEPy或4-MEPy的制备3-皮考啉压力反应器装有机械搅拌器以及磁继电器和热电偶管。将反应器用氮气吹扫,向其中加入3-皮考啉(101.3g)和DIW(25ml)。将反应器密封并且将混合物加热至96℃。将溴乙烷(97.9g)在96-104℃下在2小时期间缓慢加入。将混合物在100℃下再加热3.5小时,在该时间之后释放压力。将粗制溶液用DIW稀释,并且在减压下将过量的3-皮考啉作为含水共沸物蒸馏掉。最后,将残留物用DIW稀释。最终产物:260g;66.6重量%(银量滴定);产率,95.6%。从4-皮考啉开始,以类似的方式制备4-MEPy。实施例5-7(本发明)和8-10(对比)与充电阶段开始时的电解质溶液对应的电解质溶液的制备和性质测量以如下制备包含络合剂(简写为Quat)的氢溴酸溶液的样品:最终的34重量%HBr浓度、0.8MQuat和0.2M溴,即与在氢/溴电池中的充电过程开始时的电解质的组成对应的组成。各样品的总体积为在封闭小瓶中12ml。在制备之后,在进行任何测量之前,将样品在室温(RT)下存储24小时。测试样品的以下性质:在电解质中形成固相时的温度,游离溴浓度,电导率和蒸气压。结果在下表中给出:表1结果显示,2-MEPy、3-MEPy和BMIBr适合用作充电状态开始时的氢/溴电池的电解质溶液中的溴络合剂。实施例11-13(本发明)和14-16(对比)与充电阶段结束时的电解质溶液对应的电解质溶液的制备和性质测量重复如在先前实施例中阐述的程序和测量。但是,调节HBr和单质溴的量以形成表现出在充电过程结束时的电解质组成的电解质溶液的样品。因此,以最终的22重量%HBr浓度、0.8MQuat和1M溴制备样品。各样品的总体积为在封闭小瓶中12ml。在制备之后,在进行任何测量之前,将样品在室温下存储24小时。测试样品的以下性质:在电解质中形成固相时的温度,游离溴浓度,电导率和蒸气压。结果示于表2中。表2结果显示,2-MEPy、3-MEPy和BMIBr适合用作充电阶段结束时的氢/溴电池的电解质溶液中的溴络合剂。实施例17-21(本发明)和22-23(对比)在该组实施例中,在具有与在充电过程开始时的电解质溶液的组成对应的组成的电解质溶液中测试络合剂的多种混合物(参见实施例5-10的程序)。结果列表于表3中。表3实施例24-29(本发明)和30(对比)在该组实施例中,在具有与在充电过程结束时的电解质溶液的组成对应的组成的电解质溶液中测试络合剂的多种混合物(参见实施例11-16的程序)。结果列表于表4中。表4实施例31-36以10重量%的HBr浓度制备样品。所测试的络合剂为2-MEPy。各样品中2-MEPy的浓度为0.8M。向样品添加不同量的单质溴并且在两个温度:22℃和45℃下测量感兴趣的一些性质(水相中单质溴的浓度,电导率和蒸气压)。对于与该组实施例(31-36)以及接下来的两组实施例(37-42和43-48)有关的测量,注意以下事项:在制备之后,在进行任何测量之前,将样品在25℃下存储至少24小时。电导率测量是在22-24℃下对包含溴的溶液进行的。用于碘量滴定的样品制备以及该滴定自身是在22-24℃下进行的。在所需温度下在电解质上方的平衡总压力已使用水银压力计相对于如下液体的平衡压力测量:其平衡蒸气压的精确值在所有温度范围内是公知的。使用蒸馏水作为参照物。将相同容积且具有相同体积的所测量电解质和水、通过真空阀门封闭的两个圆底烧瓶连接至水银压力计。将各烧瓶在所需温度下精确地平衡并且打开真空阀门。在体系平衡之后,测量在压力计管的两侧中水银高度(level)之间的差值。在水烧瓶的温度下的水压力的精确值是已知的。将所测得的水银高度的差值加上该值。结果列表于表5中。表5实施例37-42以10重量%的HBr浓度制备样品。所测试的络合剂为由3:1摩尔比的2-MEPy和3-MEPy组成的混合物。各样品中2-MEPy和3-MEPy的混合物的浓度为0.8M。向样品添加不同量的单质溴并且在三个温度:22℃、45℃和60℃下测量感兴趣的一些性质(水相中单质溴的浓度,电导率和蒸气压)。结果列表于表6中。表6实施例43-48以10重量%的HBr浓度制备样品。所测试的络合剂为由1:3摩尔比的2-MEPy和3-MEPy组成的混合物。各样品中2-MEPy和3-MEPy的混合物的浓度为0.8M。向样品添加不同量的单质溴并且在三个温度:22℃、45℃和60℃下测量感兴趣的一些性质(水相中单质溴的浓度,电导率和蒸气压)。结果列表于表7中。表7由表5、6和7明晰的是,在22℃和45℃的温度下,电解质中单质溴的量的升高未导致蒸气压的升高,表明本发明的添加剂与HBr溶液中的单质溴形成强络合物。应注意,在60℃的温度下,观察到蒸气压小的升高,但是该温度超出了电化学电池通常运行时的温度范围。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1