一种石墨烯负载花状多孔氧化镍复合材料的制备方法

文档序号:7044685阅读:160来源:国知局
一种石墨烯负载花状多孔氧化镍复合材料的制备方法
【专利摘要】本发明涉及一种石墨烯负载花状多孔氧化镍复合材料的制备方法。其典型特征为以石墨烯作为基体,片状多孔氧化镍自组装成花状氧化镍球生长在石墨烯基体上。作为基体骨架的石墨烯具有良好的导电性,花状氧化镍微球可以通过石墨烯实现其良好导电性,提高了复合材料的表观电导率。氧化镍片的宽度为200-300nm,长度为400-600nm,厚度为5-10nm,片层结构上布满2-10nm的介孔,形成的花状氧化镍微球的直径为1-3μm。本发明通过水热法制备的石墨烯负载花状多孔氧化镍复合材料,具有比表面积大、单电极电容高、循环性能好等特点,适用于超级电容器电极材料。
【专利说明】一种石墨烯负载花状多孔氧化镍复合材料的制备方法
【技术领域】
[0001]本发明涉及一种作为超级电容器材料的石墨烯/氧化镍复合材料的制备方法,特别是一种石墨烯负载花状多孔氧化镍的复合材料的制备方法,属于电化学和电容器材料制造领域。
【背景技术】
[0002]超级电容器是一种性能介于传统电容器和化学电池之间的新型储能元件,具有比传统电容器更高的能量密度及比普通电池更高的功率密度和更长的循环寿命。目前超级电容器被广泛的应用到工业大型UPS电源系统、电动汽车、军工及航空航天等领域,人们对超级电容器的研究主要集中在高性能的电极材料的制备上。
[0003]随着实际应用对储能设备的各项指标要求的不断的提高,当前的储能装置标准设计能力已经无法满足实际需求。电池长久以来在汽车、电子、通讯、军事、航空航天、医疗等领域广泛应用,电池的能量密度相对较大,能满足许多场合的应用需要。然而电池也存在一定缺陷:充电时间长、功率密度相对较低等。在一些高脉冲应用中,电池难以满足体系。与传统电池相比,超级电容器具有较高的能量密度、功率密度和长循环寿命等,作为一种清洁、高效的新型储能器件,受到越来越多研究人员的关注,在电动汽车、移动通讯、国防科技等领域具有广阔的应用和发展前景。
[0004]氧化镍作为一种金属氧化物,有着无毒害、原料丰富、价格低廉等优点,在许多领域有广泛应用,而其 作为超级电容器具有较高的容量。但氧化镍作为电容材料有着致命的缺点:导电性比较差,氧化镍材料容易团聚。这个问题解决后对新型绿色电容器制备具有重要的价值。
[0005]石墨烯(graphene)是一种由碳原子紧密堆积成的单层二维蜂窝状(只包括六角原胞)晶格结构,它是由Sp2杂化的碳原子紧密排列而成的单层石墨片。具有超强导电性、超强硬度、良好导热性,使其在复合材料领域得到很好的应用。

【发明内容】

[0006]本发明的目的在于克服氧化镍作为超级电容器存在的缺陷,做出高容量、绿色环保的超级电容器材料。本发明提供了石墨烯负载一种具有多孔结构的花状氧化镍复合材料及其制备方法,其典型特征为氧化镍片组装成花状结构与石墨烯片层的复合。作为基体骨架石墨烯具有良好的导电性,花状氧化镍微球可以通过负载在石墨烯片上,实现其良好导电性,提高了复合材料的表观电导率。
[0007]为达到上述目的,本发明采用如下技术方案。
[0008]本发明一种石墨烯负载花状多孔氧化镍复合材料的制备方法,具体步骤为:
a.量取体积比为1:7~1:1的甘油和去离子水,加入烧杯,搅拌0.5 h,使其成为均一的溶液;
b.将30mg^60 mg制备的石墨烯加入步骤a所得的混合溶液中,超声1~24 h ;C.待步骤b加入的石墨烯完全分散后,然后加入一定质量的水溶性镍盐,沉淀剂和表面活性剂,搅拌均匀;石墨烯和水溶性镍盐的质量比为1:12.5^1:16.7 ;水溶性镍盐为硝酸镍;沉淀剂为乙二胺;表面活性剂为十六烷基三甲基溴化铵。
[0009]d.将步骤c所得的溶液转入反应釜,在12(T200°C的条件下,恒温保持6~48 h,离心,醇洗三次,水洗三次,80°C下干燥12 h,得到前驱体样品;
e.将制备的前驱体放在石英舟中,转入管式炉,以1(T50 mL/min的速度通入気气惰性气体排除管内的空气;在400飞001:的温度下煅烧广24 h,最终得到花状多孔氧化镍/石墨烯复合材料。
[0010]本发明方法中所述的水溶性镍盐除硝酸镍外,还可用氯化镍或硫酸镍替代;所述的沉淀剂除乙二胺外,还可用尿素、氨水或碳酸氢铵替代;所述的表面活性剂除十六烷基三甲基溴化铵外,还可用十二烷基苯磺酸钠或聚乙烯吡咯烷酮替代。
[0011]本发明中所使用的石墨烯是采用传统公知的工艺方法制得,其制备方法如下: 将过硫酸钾(K2S2O8) 2.5 g,五氧化二磷(P2O5) 2.5 g,溶解于12 mL浓硫酸中,加热到
800C;然后将3 g天然石墨加入 上述溶液,保温80°C,4.5小时;冷却至室温,用500 mL去离子水稀释后,静置过夜;过滤,用0.2 mm filter浮去残留酸;60°C真空干燥箱中干燥;将得到的预氧化物加入到120 mL冰浴的浓硫酸中,在搅拌下慢慢加入15 g KMnO4,加的过程中保持温度在20°C以下。然后是温度控制在35°C搅拌2 h。加250 mL去离子水稀释,稀释过程中也要在冰浴中使温度低于50°C。再搅拌2 11,再加0.7 L去离子水,并立刻加入20mL30%的H2O2,混合物产生气泡,颜色由褐色变成了亮黄色,约0.5 h后反应终止。将上述混合物过滤,并用I L的1:10稀盐酸洗涤,过滤以去除部分金属离子;再用IL水洗涤过滤,以去除多余的酸;将上述溶液溶解于I L水中,然后在100 W超声功率下超声0.5 h左右,得氧化石墨溶液(G0),离心分离后,在空气中干燥得到棕黑色的产物即得需要的石墨烯氧化物。将前驱物石墨烯氧化物0.2 g置于惰性气体的保护下,在20(T5(KrC进行热解处理,使得石墨氧化物脱水,脱去羧基、羟基等含氧官能团,得到石墨烯纳米片。
[0012]本发明的优点和特点
同纯相的氧化镍相比,我们制备的纳米复合材料具备以下突出结构和性能特点,本发明制备方法的突出特点在于:
(I)工艺简单,复合材料制备的过程在低温下操作,制备周期短;产量大,效率高,可规模化应用。
[0013](2)制备的石墨烯负载花状多孔氧化镍复合材料的结构特点在于:氧化镍片层结构上均匀地布满了 2-10 nm的介孔,提高了材料的比表面积;由片状氧化镍自组装成的花状氧化镍微球生长在石墨烯基体上,克服了氧化镍导电性差的缺点。同时,由于石墨烯具有超强的导热和延展性,对稳定该复合材料的结构具有极大的作用。
[0014](3)用这种简单的方法制备的石墨烯负载花状多孔氧化镍复合材料的电容性能得到了很大的提高,这种复合材料在200 mA/g的电流密度下得到的电容最大为413 F/g,远高于目前报道的单纯氧化镍的比容量。
[0015]石墨烯负载花状多孔氧化镍复合材料成功克服了单纯氧化镍的两个缺点,是一种非常有前景超级电容器电极材料。【专利附图】

【附图说明】
[0016]图1石墨烯负载花状多孔氧化镍复合材料的XRD图谱。
[0017]图2石墨烯负载花状多孔氧化镍复合材料的SEM图片。
[0018]图3石墨烯负载花状多孔氧化镍复合材料的TEM图片。
[0019]图4石墨烯负载花状多孔氧化镍复合材料的充放电曲线。
【具体实施方式】
[0020]下面通过实施例进一步说明本发明的方法。
[0021]实施例1
一、用传统的公知的工艺方法制备石墨烯
将过硫酸钾(K2S2O8) 2.5 g,五氧化二磷(P2O5) 2.5 g,溶解于12 mL浓硫酸中,加热到800C;然后将3 g天然石墨加入上述溶液,保温80°C,4.5小时;冷却至室温,用500 mL去离子水稀释后,静置过夜;过滤,用0.2 mm filter浮去残留酸;60°C真空干燥箱中干燥;将得到的预氧化物加入到120 mL冰浴的浓硫酸中,在搅拌下慢慢加入15 g KMnO4,加的过程中保持温度在20°C以下。然后是温度控制在35°C搅拌2 h。加250 mL去离子水稀释,稀释过程中也要在冰浴中使温度低于50°C。再搅拌2 11,再加0.7 L去离子水,并立刻加入20mL30%的H2O2,混合物产生气泡,颜色由褐色变成了亮黄色,约0.5 h后反应终止。将上述混合物过滤,并用I L的1:10稀盐酸洗涤,过滤以去除部分金属离子;再用IL水洗涤过滤,以去除多余的酸;将上述溶液溶解于I L水中,然后在100 W超声功率下超声0.5 h左右,得氧化石墨溶液(G0),离心分离后,在空气中干燥得到棕黑色的产物即得需要的石墨烯氧化物。将前驱物石墨烯氧化物0.2 g置于惰性气体的保护下,在20(T5(KrC进行热解处理,使得石墨氧化物脱水,脱去羧基、羟基等含氧官能团,得到石墨烯纳米片。
[0022]二、制备石墨烯负载氧化镍复合材料 制备方法的步骤如下:
I)在烧杯中加入30 mL的甘油和50 mL的去离子水,搅拌,使其成为均一的溶液,再向该溶液中加入45 mg上述制得的石墨烯,超声24 ho
[0023]2)待石墨烯基本溶解完后加入0.6 g NiNO3.6H20, 2 mL乙二胺和0.5 g十二烷基苯磺酸钠,搅拌0.5 h,将上述溶液转入反应釜中。将反应釜置于马弗炉中,升温至160°C,恒温保持24小时。
[0024]3)待反应爸冷却后,将反应爸内的溶液转入烧杯中,然后将此前驱体溶液在12000 rpm下离心3分钟,再进行洗涤3次,以除去未参加反应的杂质,接着,在80°C下干燥12 h,得到干燥的前驱体样品。
[0025]4)然后将制备的前驱体放在石英舟中,转入管式炉,以10 mL/min的速度通入氮气排除管内的空气,然后以5 °C/min的升温速度加热至600°C保温I h。待样品冷却至室温,即得到氧化镍和石墨烯的复合材料。
[0026]制得材料的电性能测试:
将制备的产物与乙炔黑,PTFE按照85:10:5比例均匀混合后,在对辊机上制成膜,然后压在泡沫镍上作为工作电极,电容测试采用三电极体系,活性物质为工作电极,Pt电极作为对电极,饱和甘汞电极作为参比电极,进行恒电流充放电测试,经过计算可得材料的单电极电容。
[0027]产物的XRD见图1所示,由图可知我们成功制备了石墨烯负载花状多孔氧化镍复合材料,该产物中无杂质峰。图2和图3是制备的复合材料的扫描电镜(SEM)和透射电镜(TEM)照片,可以看出氧化镍为花状结构,这些花状氧化镍是由片状的结构组成的,片层结构上布满2-10 nm的介孔,呈一种网状的结构。从图4恒流充放电图,我们可以计算出制备的复合材料在200 mA/g电流密度下得到的比电容为413 F/g。
[0028]实施例2
石墨烯的制备同上述的实施例1。
[0029]I)在烧杯中加入10 mL的甘油和70 mL的去离子水,搅拌,使其成为均一的溶液,再向该溶液中加入40 mg石墨烯,超声10 ho
[0030]2)待石墨烯基本溶解完后加入0.5 g NiCl2.6H20, 1.8 g尿素和0.5 g十二烷基苯磺酸钠,搅拌0.5 h。将上述溶液转入反应釜中。将反应釜置于马弗炉中,升温至120°C,恒温保持48小时。
[0031]3)待反应爸冷却后,将反应爸内的溶液转入烧杯中,然后将此前驱体溶液在8000rpm下离心5分钟,水洗、醇洗各3次,以除去未参加反应的杂质,接着,在80°C下干燥12h,得到干燥的前驱体样品。
[0032]4)然后将前驱体样品放在石英舟中,转入管式炉,以40 mL/min的速度通入氮气排除管内的空气,然后以5 °C/min的升温速度加热至500°C保温12 h。待样品冷却至室温,进得到氧化镍和石墨烯的复合材料。
[0033]复合材料的电性能测试方法同实施例1,制备的材料经过电化学测试测得的容量是 410 F/g。
[0034]实施例3
石墨烯的制备同上述的实施例1。
[0035]I)在烧瓶中加入40 mL的甘油和40 mL的去离子水,搅拌,使其成为均一的溶液,再向该溶液中加入60 mg石墨烯,超声4 ho
[0036]2)待石墨烯基本溶解完后加入I g NiSO4.6H20, 5.4 g碳酸氢铵和0.7 g聚乙烯吡咯烷酮,搅拌0.5 h。将上述溶液转入反应釜中。将反应釜置于马弗炉中,升温至200°C,恒温保持6小时。
[0037]3)待反应爸冷却后,将反应爸内的溶液转入烧杯中,然后将此前驱体溶液在6000rpm下离心10分钟,水洗、醇洗各3次,以除去未参加反应的杂质,接着,在80°C下干燥12h,得到干燥的前驱体样品。
[0038]4)然后得到的前驱体样品放在石英舟中,转入管式炉,以20 mL/min的速度通入氮气排除管内的空气,然后以5 °C/min的升温速度加热至400°C保温8 h。待样品冷却到室温,即得到氧化镍和石墨烯的复合材料。
[0039]复合材料的电性能测试方法同实施例1,制备的材料经过电化学测试测得的容量是 392.4 F/g ο
[0040]实施例4
石墨烯的制备同上述的实施例1。
[0041]I)在烧杯中加入25 mL的甘油和55 mL的去离子水,搅拌,使其成为均一的溶液,再向该溶液中加入30 mg石墨烯,超声I h。
[0042]2)待石墨烯基本溶解完后加入0.5 g NiCl2.6Η20,1.8 g乙二胺,0.75 g十六烷基三甲基溴化铵,搅拌0.5 h。将上述溶液转入反应釜中。将反应釜置于马弗炉中,升温至180°C,恒温保持24小时。
[0043]3)待冷却后,将反应爸内的溶液转入烧杯中,然后将此前驱体溶液在10000 rpm下离心5分钟,水洗、醇洗各3次,以除去未参加反应的杂质,接着,在80°C下干燥12 h,得到干燥的前驱体样品。
[0044]4)然后得到的前驱体样品放在石英舟中,转入管式炉,以30 mL/min的速度通入氮气排除管内的空气,然后以5 °C/min的升温速度加热至600°C保温2 h。待样品冷却到室温,即得到氧化镍和石墨烯的复合材料。
[0045]复合材料的电性能测试方法同实施例1,制备的材料经过电化学测试测得的容量是 379 F/g。
[0046]实施例5
石墨烯的制备同上述的实施例1。
[0047]I)在烧杯中加入20 mL的甘油和60 mL的去离子水,搅拌,使其成为均一的溶液,再向该溶液中加入50 mg石墨烯,超声24 ho
[0048]2)待石墨烯基本溶解完后加入Ig NiSO4.6H20, 3.6 g尿素,I g十二烷基苯磺酸钠,搅拌0.5 h。将上述溶液转入反应釜中。将反应釜置于马弗炉中,升温至200°C,恒温保持36小时。
[0049]3)待反应爸冷却后,将反应爸内的溶液转入烧杯中,然后将此前驱体溶液在4000rpm下离心10分钟,水洗、醇洗各3次,以除去未参加反应的杂质,接着,在80°C下干燥12h,得到干燥的前驱体样品。
[0050]4)然后得到的前驱体样品放在石英舟中,转入管式炉,以50 mL/min的速度通入氮气排除管内的空气,然后以5 °C/min的升温速度加热至200°C保温24 h。待样品冷却到室温,即得到氧化镍和石墨烯的复合材料。
[0051]复合材料的电性能测试方法同实施例1,制备的材料经过电化学测试测得的容量是 351.4 F/g ο
【权利要求】
1.一种石墨烯负载花状多孔氧化镍复合材料的制备方法,其特征在于,该方法具体过程和步骤为: a.量取体积比为的甘油和去离子水,加入烧杯,搅拌0.5h,使其成为均一的溶液; b.将30mg^60 mg制备的石墨烯加入步骤a所得的混合溶液中,超声1~24 h ; c.待步骤b加入的石墨烯完全分散后,然后加入一定质量的水溶性镍盐,沉淀剂和表面活性剂,搅拌均匀;石墨烯和水溶性镍盐的质量比为1:12.5^1:16.7 ;水溶性镍盐为硝酸镍;沉淀剂为乙二胺;表面活性剂为十六烷基三甲基溴化铵; d.将步骤c所得的溶液转入反应釜,在120~200°C的条件下,恒温保持6~48h,离心,醇洗三次,水洗三次,80°C下干燥12 h,得到前驱体样品; e.将制备的前驱体放在石英舟中,转入管式炉,以10`~50mL/min的速度通入気气惰性气体排除管内的空气;在400飞001:的温度下煅烧广24 h,最终得到花状多孔氧化镍/石墨烯复合材料。
2.根据权利要求1所述的一种石墨烯负载花状多孔氧化镍复合材料的制备方法,其特征在于所述的水溶性镍盐为除硝酸镍外,还可用氯化镍或硫酸镍替代;所述的沉淀剂除乙二胺外,还可用尿素、氨水或碳酸氢铵替代;所述的表面活性剂除十六烷基三甲基溴化铵外,还可用十二烷基苯磺酸 钠或聚乙烯吡咯烷酮替代。
【文档编号】H01G11/86GK103943379SQ201410110704
【公开日】2014年7月23日 申请日期:2014年3月24日 优先权日:2014年3月24日
【发明者】赵兵, 蒋永, 刘瑞喆, 陆孟娜, 陈勇, 凌学韬, 焦正, 吴明红 申请人:上海大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1