一种锂硒电池正极的制备方法

文档序号:7056215阅读:344来源:国知局
一种锂硒电池正极的制备方法
【专利摘要】本发明公开了一种锂硒电池正极的制备方法,该制备方法是将含氮导电聚合物沉积或生长在纸片表面,再经过碱活化,高温炭化,得到以碳纤维网络结构为自支撑体的含氮层次孔碳复合集流体,再进一步与硒复合,得到含硒量高、固硒效果好、机械性能好、电化学性能优良的锂硒电池正极;该制备方法操作简单,无污染,成本低,制得的锂硒电池电极无需使用粘结剂及相应的涂布工艺,直接用于制备出循环性能和倍率性能优异的锂硒电池。
【专利说明】—种锂砸电池正极的制备方法

【技术领域】
[0001]本发明涉及一种锂硒电池的制备方法,属于锂电池领域。

【背景技术】
[0002]锂硒电池是指采用单质硒或含硒化合物为正极,金属锂为负极,通过硒与锂之间的化学反应实现化学能和电能间相互转换的一类金属锂二次电池。锂硒电池具有与锂硫电池相似的体积比容量(3253mA h/cm3),而且硒的导电性和电化学活性都远远高于硫,因此具有很高的应用潜力和商业价值。但是锂硒电池在实际应用中仍然存在许多问题,其中比较突出的有两点:第一,由于锂硒电池电极在充放电过程中存在着活性物质溶解和穿梭效应的现象,导致电池的容量衰减较快。第二,虽然单质硒具有相对较高的导电率,但仍需要通过和导电剂有效复合实现高倍率充放电。
[0003]目前主要通过多孔碳负载硒的方法来提高导电性以及抑制了活性物质多硒化物的溶解和穿梭效应,这种方法能有效地抑制多硒化物的溶解,从而延缓电池的容量衰减,提升电池的循环性能和倍率性能。
[0004]但是上述碳硒复合材料仍需和导电剂,粘结剂混合,制成浆料,然后将浆料涂覆在集流体上并烘干得到锂硒电池的正极极片。利用碳硒复合材料中的碳、导电剂进行电子传递,集流体传递电流。该方法电极制备较为常见,但存在一些问题:1)额外的导电剂、粘接剂增加了电极中非活性物质的量,起到了粘接和导电的作用,相当于降低了正极中的活性物质硒的含量,从而降低了电池的能量密度;2)由于复合材料之间以及与集流体之间靠粘接剂粘附在一起,二者的接触电阻无法避免,也将导致电池的电化学性能,尤其是倍率性能不理想。3)使用的粘接剂,价格昂贵且,这些粘接剂在电池循环过程中会溶解失效导致活性物质颗粒剥落,电极的循环性能变差。


【发明内容】

[0005]本发明的目的是在于提供一种制备载硒量大、固硒效果好、机械性能优良,无需使用粘结剂及相应的涂布工艺,可直接用于制备电化学性能优良、能量密度高的锂硒电池正极的方法,该方法操作简单、环保、低成本,易于在工业上实施和大批量生产。
[0006]本发明提供了一种锂硒电池正极的制备方法,该制备方法是将含氮导电聚合物沉积或生长在纸片表面,再在所述纸片表面添加固体碱粉末后,置于保护气氛下加热至700?900°C进行炭化,得到以碳纤维网络结构为自支撑体的含氮层次孔碳复合集流体;将所得以碳纤维网络结构为自支撑体的含氮层次孔碳复合集流体表面滴加或者浸泡含硒的二硫化碳溶液后,先干燥除去二硫化碳,再升温至200?600°C热处理,即得。
[0007]本发明的锂硒电池正极的制备方法还包括以下优选方案:
[0008]优选的方案中锂硒电池正极中硒的质量含量为50?85%。
[0009]优选方案中以碳纤维网络结构为自支撑体的含氮层次孔碳复合集流体中氮含量为I?15wt% ;最优选为5?1wt% ;含氮层次孔碳中优选的氮含量更有利于改善电极的电化学性能。
[0010]优选方案中以碳纤维网络结构为自支撑体的含氮层次孔碳复合集流体的比表面积为500?1000m2/g ;制得的以碳纤维网络结构为自支撑体的含氮层次孔碳复合集流体具有更大的比表面积,更有利于负载活性物质,且在电化学反应过程中更有利于层次孔碳吸附多硒根离子,抑制穿梭效应,提高电池的电化学性能。
[0011]优选方案中纸片厚度为10?50微米。
[0012]优选的方案中纸片为滤纸、打印纸、书写纸、包装纸、生活卫生用纸中的一种或者几种,最优选为滤纸。优选的纸片种类和纸片厚度可以获得最佳机械性能的碳纤维网络结构自支撑体。
[0013]优选的方案中固体碱粉末与含氮导电聚合物的质量比为2:1?5:1 ;最优选为3:1?4:1 ;优选的碱与含氮导电聚合物的配比更有利于碱在炭化过程中的扩孔作用,以及增加炭化过程中含氮层次孔碳的含氮量。同时固体碱的加入有利于纸形成多孔网络结构,大大提高了比表面积,容纳硫和固定硫的能力得以增强。
[0014]优选的方案中固体碱粉末为氢氧化钾、氢氧化钠、氢氧化锂中的一种或几种固体粉末;最优选为氢氧化钾;优选的强碱更有利于活化。
[0015]优选的方案中含氮导电聚合物为聚吡咯、聚苯胺、聚多巴胺、聚丙烯腈、聚丙烯酰胺中的一种或几种。
[0016]优选的方案中炭化时间为2?10小时;优选的炭化时间更有利于碳纤维网络结构以及含氮层次孔碳的生成。
[0017]优选的方案中热处理时间为4?20小时;优选的热处理时间更有利于硒负载均勻、稳定。
[0018]优选的方案中保护气氛为氮气或者氩气。
[0019]优选的方案中含硒的二硫化碳溶液浓度为0.1?5.0mol/Lo
[0020]优选的方案中硒的二硫化碳溶液通过滴加或者浸泡在纸片表面。优选的浓度范围及优选的添加方式更有利于硒分布均匀。
[0021]优选的方案中干燥除去二硫化碳是在温度为40?60°C的烘箱中进行。
[0022]优选的方案中含氮导电聚合物的质量为纸片质量的0.2?10倍。
[0023]本发明的有益效果:
[0024](I)本发明制备的锂硒电池正极具有三维碳纤维网络-含氮层次孔碳结构,该电极含氮丰富、比表面积大,大大提高了自支撑电极的机械性能和电化学性能。
[0025](2)本发明制备的锂硒电池正极,活性物质硒颗粒大部分均匀的分布于集流体表面的含氮层次孔碳的孔结构中,层次孔碳固硒效果好,电化学反应过程中层次孔碳吸附多硒根离子,抑制了穿梭效应,提高了电池的电化学性能。
[0026](3)本发明制备的锂硒电池正极,不需要使用粘结剂以及相应的涂布工艺,直接作为电极使用,工艺简单;采用纸片炭化制备出基于碳纤维自支撑结构的含氮层次孔碳负载硒的锂硒电池电极,节省了工序,保证了活性物质和导电剂的有效复合,降低了接触阻抗,同时电极的能量密度得到明显提升。
[0027](4)采用本发明制备的锂硒电池正极与锂负极组装成扣式电池,室温下在lC(675mA/g)恒流放电时,循环180后容量能保持在416mAh/g ;室温下倍率放电15圈后,在大倍率5C(3375mA/g)下能容量保持在300mAh/g以上。采用含氮多孔碳集流体的电极与硒复合改善了电池的循环性能和倍率性能。
[0028](5)本发明的制备方法操作简单,成本低,易于在工业上实施和大批量生产。

【专利附图】

【附图说明】
[0029]【图1】为实施例1中将滤纸炭化后的SEM图。
[0030]【图2】为实施例1得到碳纤维网络结构为自支撑体的含氮层次孔碳复合集流体的SEM 图。
[0031]【图3】为实施例1制得的锂硒电池电极组装的锂硒电池180次放电容量曲线图。
[0032]【图4】为实施例1制得的锂硒电池电极组装的锂硒电池的倍率性能图。

【具体实施方式】
[0033]以下实施例旨在对本
【发明内容】
做进一步详细说明,但不限制本发明的保护范围。
[0034]实施例1
[0035]将0.05克聚苯胺沉积或生长在厚度为20微米,质量为0.02克的滤纸表面,再在滤纸表面添加0.2克氢氧化钾粉末后,置于氮气保护气氛下加热至800°C炭化4小时,得到以碳纤维网络结构为自支撑体的集流体比表面积为850m2/g的层次孔碳复合集流体;在所得以碳纤维为自支撑体的含氮层次孔碳复合集流体表面添加5.0mol/L的硒的二硫化碳溶液1.0mL,在干燥箱中60°C干燥5小时除去二硫化碳,然后置于管式炉中氮气保护气氛下升温至260°C热处理10小时,得硒含量为72%的锂硒电池电极。采用本实施例制备的锂硒电池电极与锂负极组装成扣式电池,在室温下在lC(675mA/g)恒流放电时,循环180后容量保持在416mAh/g ;室温下倍率放电15圈后,在5C下容量保持在375mAh/g。
[0036]图1中可看出炭化的滤纸具有碳纤维连接而成的三维网络结构。
[0037]图2中能看出制得的复合集流体表现出多孔碳包覆三维碳纤维自支撑体的复合网络结构。
[0038]图3中表明采用含氮多孔碳集流体的电极与硒复合制成的电极,在室温下lC(675mA/g)恒流放电时,循环180后容量保持在416mAh/g以上,表现出优异的循环性能。
[0039]图4中表明采用含氮多孔碳集流体的电极与硒复合制成的电极,室温下倍率放电15圈后,在大倍率5C下容量保持在375mAh/g,表现出优异的倍率性能。
[0040]实施例2
[0041]将0.025克聚多巴胺沉积或生长在厚度为50微米、质量为0.075克的打印纸表面,再在滤纸表面添加0.075克氢氧化钾粉末后,置于氮气保护气氛下加热至70(TC进行炭化2小时,得到以碳纤维网络结构为自支撑体的集流体比表面积为550m2/g的层次孔碳复合集流体;在所得以碳纤维为自支撑体的含氮层次孔碳复合集流体表面添加0.5mol/L的硒的二硫化碳溶液3mL,在干燥箱中40°C干燥2小时除去二硫化碳,然后置于管式炉中氮气保护气氛下升温至600°C热处理10小时,得硒含量为51%的锂硒电池电极。米用本实施例制备的锂硒电池电极与锂负极组装成扣式电池,在室温下在lC(675mA/g)恒流放电时,循环180后容量保持在421mAh/g ;室温下倍率放电15圈后,在大倍率5C(3375mA/g)下容量保持在383mAh/g。
[0042]实施例3
[0043]将0.05克聚吡咯沉积或生长在厚度为10微米、质量为0.01克的书写纸表面,再在滤纸表面添加0.2克氢氧化钾后,置于氮气保护气氛下加热至900°C进行炭化5小时,得到以碳纤维为自支撑体的比表面积为510m2/g的层次孔碳复合集流体;将所得以碳纤维网络结构为自支撑体的集流体含氮层次孔碳复合集流体浸泡在3.0mol/L的硒的二硫化碳溶液中,在干燥箱中50°C干燥4小时除去二硫化碳,然后置于管式炉中氮气保护气氛下升温至300°C热处理15小时,得硒含量为62%的锂硒电池电极。采用本实施例制备的锂硒电池电极与锂负极组装成扣式电池,在室温下在lC(675mA/g)恒流放电时,循环180后容量保持在418mAh/g ;室温下倍率放电15圈后,在大倍率5C(3375mA/g)下容量保持在378mAh/g。
[0044]实施例4
[0045]将0.02克聚苯胺沉积或生长在厚度为20微米、质量为0.01克的滤纸表面,再在滤纸表面添加0.04克氢氧化钠后,置于氮气保护气氛下加热至800°C进行炭化10小时,得到以碳纤维为自支撑体的比表面积为650m2/g的层次孔碳复合集流体;将所得以碳纤维网络结构为自支撑体的集流体含氮层次孔碳复合集流体浸泡在5.0mol/L的硒的二硫化碳溶液中,在干燥箱中先60°C干燥4小时除去二硫化碳,然后置于管式炉中氮气保护气氛下升温至300°C热处理20小时,得硒含量为84%的锂硒电池电极。采用本实施例制备的锂硒电池电极与锂负极组装成扣式电池,在室温下在lC(675mA/g)恒流放电时,循环180后容量保持在376mAh/g ;室温下倍率放电15圈后,在大倍率5C (3375mA/g)下容量保持在315mAh/g。
【权利要求】
1.一种锂硒电池正极的制备方法,其特征在于,将含氮导电聚合物沉积或生长在纸片表面,再在所述纸片表面添加固体碱粉末后,置于保护气氛下加热至700?900°C进行炭化,得到以碳纤维网络结构为自支撑体的含氮层次孔碳复合集流体;将所得以碳纤维网络结构为自支撑体的含氮层次孔碳复合集流体表面滴加或者浸泡含硒的二硫化碳溶液后,先干燥除去二硫化碳,再升温至200?600°C热处理,即得。
2.根据权利要求1所述的制备方法,其特征在于,所述的锂硒电池电极中硒的质量含量为50?85%。
3.根据权利要求1所述的制备方法,其特征在于,所述的以碳纤维网络结构为自支撑体的含氮层次孔碳复合集流体中氮含量为I?15wt%。
4.根据权利要求3所述的制备方法,其特征在于,所述的以碳纤维网络结构为自支撑体的含氮层次孔碳复合集流体中氮含量为5?10wt%。
5.根据权利要求1所述的制备方法,其特征在于,所述的以碳纤维网络结构为自支撑体的含氮层次孔碳复合集流体的比表面积为500?1000m2/g。
6.根据权利要求1所述的制备方法,其特征在于,所述的纸片厚度为10?50微米。
7.根据权利要求1所述的制备方法,其特征在于,所述的纸片为滤纸、打印纸、书写纸、包装纸、生活卫生用纸中的一种或者几种。
8.根据权利要求1所述的制备方法,其特征在于,所述的固体碱粉末与含氮导电聚合物的质量比为2:1?5:1,其中,固体碱粉末为氢氧化钾、氢氧化钠、氢氧化锂中的一种或几种固体粉末;所述的含氮导电聚合物为聚吡咯、聚苯胺、聚多巴胺、聚丙烯腈、聚丙烯酰胺中的一种或几种。
9.根据权利要求1?8任一项所述的制备方法,其特征在于,所述的炭化时间为2?10小时;所述的热处理时间为4?20小时。
【文档编号】H01M4/62GK104201389SQ201410412268
【公开日】2014年12月10日 申请日期:2014年8月20日 优先权日:2014年8月20日
【发明者】张治安, 蒋绍峰, 陈巍, 李强, 屈耀辉, 赖延清, 李劼 申请人:中南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1