电极与电极的制备方法与电池与流程

文档序号:12682227阅读:317来源:国知局
电极与电极的制备方法与电池与流程

本发明涉及锂硫电池,特别涉及其电极结构。



背景技术:

锂/硫(Li/S)电池的理论电容量比LiFePO4高出一个数量级。然而,锂/硫系统在许多应用中尚未实现,因为硫正极材料在实际用于可再充电的锂电池之前,仍需要解决以下问题:1)硫的导电性不佳,因此粒径小可确保高的硫利用率以及在充放电循环中维持高的可逆电容量。2)应避免充放电的中间产物(多硫化物)溶解进入电解液中,以确保长的循环寿命。3)应提高正极材料的导电率,以确保更好的倍率性能。

目前现有技术中解决上述问题的方法是直接湿法涂布碳材于硫碳电极上。然而涂布的碳材与硫碳电极之间的层状界面,将大幅增加电极的阻抗。

综上所述,目前亟需新的电极结构解决上述问题。



技术实现要素:

本发明一实施例提供的电极,包括:含硫与碳的层状物,包括碳材、硫材与粘合剂;其中含硫与碳的层状物的硫含量,从该含硫与碳的层状物的中心朝该含硫与碳的层状物的两侧表面逐渐降低。

本发明一实施例提供的电池,包括:正极,其为上述的电极;负极;以及位于正极与负极之间的电解液。

本发明一实施例提供的电极的制备方法,包括:将硫碳膜置于两碳膜之间后,延压形成电极,且电极是含硫与碳的层状物,其中含硫与碳的层状物的硫含量,从该含硫与碳的层状物的中心朝该含硫与碳的层状物的两侧表面逐渐降低。

附图说明

图1是本发明一实施例中,电极的示意图;

图2是本发明一实施例中,电池的示意图;

图3是本发明一实施例中,纯硫、纯碳与硫碳复合材料的导电率对压力的曲线图;

图4是本发明一实施例中,电极在不同深度的硫碳元素比;

图5是本发明一实施例中,电池在不同充放电速度下,经多次充放电循环后的充放电容量;

图6是本发明一实施例中,电池在0.5C的充放电循环测试多次后的电容量;

图7是本发明一实施例中,电池在不同循环次数下的充放电曲线图;

图8是本发明一实施例中,电极在不同深度的硫碳元素比;

图9是本发明一实施例中,电池在不同充放电速度下,经多次充放电循环后的充放电容量;

图10是本发明一实施例中,电池在0.5C的充放电循环测试多次后的电容量;

图11是本发明一实施例中,电池在不同循环次数下的充放电曲线图;

图12是本发明不同实施例的电极的导电率对压力的曲线图。

【附图标记说明】

10 含硫与碳的层状物;

11 助导层;

13 电流收集层;

20 电池;

21 正极;

23 电解液;

25 负极。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。

本发明一实施例提供电极的制备方法。首先,混合碳材与粘合剂后,压延成碳膜。在一实施例中,碳材可为活性碳、导电碳黑、片状孔碳、中孔碳、微孔碳球、空心碳球、纳米碳管、石墨烯、碳纤维、硫碳复合材料、或上述的组合,而粘合剂可为聚偏二氟乙烯、聚四氟乙烯、聚乙烯醇、聚乙二醇、羧甲基纤维素、苯乙烯-丁二烯橡胶、聚丙烯酸酯、聚丙烯腈、藻酸或上述的组合。在一实施例中,碳材与粘合剂的重量比例介于98:2至90:10之间。若碳材的比例过高,则碳膜的机械强度变差不易加工。若碳材的比例过低,则碳膜的导电性变差。在一实施例中,上述压延步骤的压力介于10~1000kgf/cm2之间。若压力过大,则碳膜过于致密,而无法在后续步骤中与硫碳膜压延成不具界面层的电极。若压力过小,则碳膜机械强度不佳易于破裂,形成不连续面的碳膜。上述压延后形成的碳膜厚度可介于15μm至300μm之间。若碳膜的厚度过薄,则无法成膜。若碳膜的厚度过厚,则在制备成电极时会降低电极中的硫活物含量。

接着可混合硫材、碳材与粘合剂后压延成硫碳膜。碳材与粘合剂的种类如前述,在此不再赘述。在一实施例中,硫材可为单质硫、硫化物、硫碳复合材料、或上述的组合。举例来说,硫化物可为含硫聚合物、金属硫化物或上述的组合。含硫聚合物可为聚噻吩,或具有硫原子的取代基的其他聚合物如聚苯胺、聚吡咯或聚多巴胺。金属硫化物为硫化铁、硫化钴、硫化锡、硫化铜、硫化钛或上述的组合。在一实施例中,100重量份的混合物中硫材占50至90重量份,碳材占5至45重量份,且粘合剂占2至10重量份。若硫材的比例过高,则电极的内阻抗提高,影响电池的能量表现。若硫材的比例过低,则电极的活物量降低,电池的能量偏低。在一实施例中,上述压延步骤的压力介于10~1000kgf/cm2之间。若压力过大,则硫碳膜过于致密,而无法在后续步骤中与碳膜压延成不具界面层的电极。若压力过小,则硫碳膜机械强度不佳易于破裂,形成不连续面的硫碳膜。上述压延后形成的硫碳膜厚度可介于20μm至1200μm之间。若硫碳膜的厚度过薄,则电极的硫活物量降低,电池的能量偏低。若硫碳膜的厚度过厚,则电极的内阻抗提高,影响电池的能量表现。

接着将硫碳膜夹设于两片碳膜之间,压延形成电极。在一实施例中,夹设于两片碳膜之间的可为多个不同硫碳比例的硫碳膜,且越中间的硫碳 膜其硫比例越高。在一实施例中,上述压延步骤的压力介于10~1000kgf/cm2之间。若压力过大,则电极内的硫活物分布不均。若压力过小,则硫碳膜与碳膜无法形成一体的电极,仍存在接口阻抗问题。上述压延后形成的电极厚度可介于20μm至300μm之间。若电极厚度过大,则抑制离子与电子在电极中的移动传送。若电极厚度过小,则不易制备成电池组件。如图1所示,上述电极是含硫与碳的层状物10,其包含硫材、碳材与粘合剂。含硫与碳的层状物10的硫含量,从含硫与碳的层状物10的中心朝含硫与碳的层状物10的两侧表面逐渐降低。简而言之,上述含硫与碳的层状物10具有渐变的组成。举例来说,含硫与碳的层状物10的中心的硫含量介于30wt%至90wt%之间,而含硫与碳的层状物10的两侧表面的硫含量介于0wt%至10wt%之间。值得注意的是,含硫与碳的层状物10中不具有层状界面。举例来说,在垂直于含硫与碳的层状物10的表面的方向上,任一处以及与其相邻处的硫含量差异大于0且小于5wt%。若是上述碳膜和/或硫碳膜在堆叠前就压延过度,或者只堆叠碳膜/硫碳膜/碳膜而不进行压延,则电极中的碳膜与硫碳膜之间将具有层状界面而大幅增加电极阻抗。

在一实施例中,电极可视情况包含电流收集层13与助导层11,且助导层11位于该电流收集层13与含硫与碳的层状物10之间。举例来说,电流收集层13包括金属箔(如铝箔、铜箔、镍箔、钛箔或不锈钢箔)或金属网(如铝网、铜网、镍网、钛网或不锈钢网),而助导层11包括碳材与粘合剂。碳材与粘合剂与前述的碳材与粘合剂类似,在此不再赘述。在一实施例中,可将90至98重量份的碳材与2至10重量份的粘合剂分散于溶剂如水、醇类、酮类、醛类、有机酸、或N-甲基吡咯烷酮中,形成固含量介于1wt%至20wt%的浆料,并将此浆料涂布于金属箔或网上。在室温下风干或加热干燥金属箔或网上的浆料,干燥后形成的助导层11其厚度可介于0.5m至5m之间。若助导层11的厚度过高,则增加助导层的阻抗。若助导层11的厚度过低,则无法提供助导效能。

在一实施例中,上述电极可作为电池20的正极21,如图2所示。电池20还包含负极25,以及位于正极21与负极25之间的电解液23。在一实施例中,负极25可包含锂、碳、硅、锡、锗或上述的组合。在一实施例中,可进一步采用隔离膜(图中未示出)于正极21与负极25之间,以 避免两者接触短路。经实验证实,采用上述电极作为正极的电池具有高导电率,且在多次充放电循环后维持足够的电容量。

为了让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举数实施例作详细说明如下:

实施例

制备例

取1g碳材(购自中钢碳素化学股份有限公司的活性碳ACS25)分散于水中后,将0.125mole的Na2S2O3·5H2O溶于上述分散液中。接着将0.25mole的HCl滴入上述水溶液中,搅拌反应2小时后过滤并以去离子水清洗滤饼。将滤饼烘干后即得硫碳纳米复合材料。经热重分析可知此硫碳纳米复合材料的硫含量为77.2wt%。由扫描式电子显微镜量测上述硫碳纳米复合材料,可知其尺寸约为15nm。纯硫、纯碳与上述硫碳复合材料在不同压力下的导电性如图3所示,即硫碳复合材料的导电率与纯碳相近,且远高于纯硫的导电率。

实施例1(渐变组成的单层电极)

取94重量份的碳材(购自中钢碳素化学股份有限公司的活性碳ACS25),1重量份的导电碳(购自安炬科技的石墨烯P-MF10)与5重量份的粘合剂(购自Sigma-Aldrich的聚四氟乙烯)混合后,压延形成厚度100μm的碳膜。

取70重量份制备例的硫碳纳米复合材料、24重量份的碳材(购自中钢碳素化学股份有限公司的ACS25),1重量份的导电碳(购自安炬科技的石墨烯P-MF10)、及5重量份的粘合剂(购自Sigma-Aldrich的聚四氟乙烯)混合后,压延形成厚度500μm的硫碳膜。

将上述硫碳膜夹设于两碳膜之间,共压延成厚度50μm的电极,并以SEM分析此电极在不同深度的硫/碳元素比,如图4所示。上述共压延工艺所形成的电极中不具有明显界面,电极的硫浓度从中心朝两侧表面逐渐降低,且电极的碳浓度从中心朝两侧表面逐渐增加。

将90重量份的导电碳(购自TIMCAL的石墨TIMREX)与10重量份的粘合剂(购自Sigma-Aldrich的聚四氟乙烯)分散于具有挥发性的溶剂(购自BASF的NMP)中,形成固含量为10wt%的浆料,并将此浆料 涂布于铝箔上。干燥铝箔上的浆料后,即形成助导层(碳层)与电流收集层(铝箔)的双层结构且助导层的厚度为2μm。将上述电极置于电流收集层上的助导层上,以形成正极。接着将隔离膜(购自Celgard的2320)夹设于上述正极与负极(购自FMC Lithium的LectroMax100)之间后封装,再将电解液加入封装中以形成电池。上述电解液含1.75M的锂盐(Lithium bis(trifluoromethanesulfonyl)imide),与1,3-环氧戊烷及1,2-二甲氧基乙烷(1/1)的溶剂。在35℃下进行上述电池的恒电流充放电循环测试,充放截止电压介于3V与1.5V之间,且充放电速度不同(0.1C-2C)。上述电池在不同充放电速度下,经多次充放电循环后的充放电容量如图5所示。即使将充放电速度提升至2C,电池仍具有800mAh/g的电容量。上述电池在0.5C的充放电循环测试如图6所示。即使经过1000次的充放电,仍具有600mAh/g的电容量,平均每次充放电的电容量损失率为0.035%,为相当稳定的电池。此外,上述电池于不同循环次数下的充放电曲线图如图7所示。

比较例1(三层电极)

取94重量份(购自中钢碳素化学股份有限公司的活性碳ACS25),1重量份的导电碳(购自安炬科技的石墨烯P-MF10)的碳材与5重量份的粘合剂(购自Sigma-Aldrich的聚四氟乙烯)混合后,压延形成厚度15μm的碳膜。

取70重量份制备例的硫碳纳米复合材料、24重量份的碳材(购自中钢碳素化学股份有限公司的ACS25)、1重量份的导电碳(购自安炬科技的石墨烯P-MF10)及5重量份的粘合剂(购自Sigma-Aldrich的聚四氟乙烯)混合后,压延形成厚度20μm的硫碳膜。

将上述硫碳膜夹设于两碳膜之间,堆叠成厚度50μm的电极。由于碳膜与硫碳膜之前已压延成致密的层状物,此堆叠步骤无法将上述三层结构进一步压延成不具层状界面的电极,即碳膜与硫碳膜之间具有层状界面。

比较例2(均匀组成的单层电极)

取50重量份制备例的硫碳纳米复合材料、44重量份的碳材(购自中钢碳素化学股份有限公司的ACS25)、1重量份的导电碳(购自安炬科技的石墨烯P-MF10)及5重量份的粘合剂(购自Sigma-Aldrich的聚四氟乙 烯)混合后,压延形成厚度50μm的单层电极。并以SEM分析此电极在不同深度的硫/碳元素比,如图8所示。电极中心与两侧表面的硫浓度大致相同,且电极中心与两侧表面的碳浓度大致相同。

以与实施例1类似的方法制备电池。比较例2的电池中,负极、电解液、电流收集层与助导层均与实施例1相同,差别仅在于电极为均匀组成的单层电极。在35℃下进行上述电池的恒电流充放电循环测试,充放截止电压介于3V与1.5V之间,且充放电速度不同(0.1C-2C)。上述电池在不同充放电速度下,经多次充放电循环的充放电容量如图9所示。当充放电速度提升至2C,电池只具有600mAh/g的电容量。上述电池在0.5C的充放电循环测试如图10所示。经过250次的充放电后仅具有400mAh/g的电容量,平均每次充放电的电容量损失率为0.22%,为不稳定的电池。此外,上述电池在不同循环次数下的充放电曲线图如图11所示。由图7与图11的比较可知,实施例1的电池具有较优异的充放电表现,且电极的极化现象(充电电位与放电电位的差)也较小,由此验证渐变组成的电极可改善电子与离子在电极中的传导速度,进而提升电池的性能。

此外,实施例1的渐变组成的单层电极、比较例1的三层电极与比较例2的均匀组成的单层电极在不同压力下的导电率如图12所示。由图12可知,实施例1的渐变组成的单层电极具有较高的导电率,而比较例1的三层电极具有过高的界面阻抗。

虽然本发明已以多个实施例揭露如上,但是其并非用以限定本发明,任何本技术领域中具有通常知识者,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1