金属纳米球和微球的形成的制作方法

文档序号:14720345发布日期:2018-06-17 13:02阅读:328来源:国知局

技术领域

本发明涉及用于集成电路器件和其它应用的金属结构,并且更具体地涉及金属球和半球以及制造方法。



背景技术:

纳米棒或纳米线可以在衬底上自上而下或自下而上地形成。在一种方法中,使用金纳米点作为种子自下而上地形成垂直纳米线。这些种子用作沉积位置,在所述沉积位置处需要化学气相沉积(CVD)工艺来从这些种子生长垂直线。该工艺难以控制并且可能导致不理想的密度和尺寸。该工艺也是昂贵的。

在自上而下方法中,SiO2或聚合物纳米球用作衬底上的掩模。需要基于溶液的涂布工艺,该工艺是成本加成的并且趋于是不均匀的。该工艺的特征在于掩模和纳米线材料(衬底)之间的相对低的选择性蚀刻。该工艺也相对昂贵。在这两种工艺中,温度是相对升高的。这对所形成的垂直线具有有害影响。



技术实现要素:

形成了半球和球并且将它们用于多种应用。将半球用于形成具有上表面和下表面的衬底。所述上表面包括具有附着到所述下表面的基底的柱的峰(peak)。所述峰具有在所述上表面处由半球金属结构的阵列限定的密度,所述半球金属结构在所述柱的形成期间在蚀刻以去除衬底材料向下到所述下表面的期间用作掩模。所述柱包括微米级的平均直径。球被形成为用于其它应用的独立的金属球或纳米颗粒。

衬底包括上表面和下表面,所述上表面包括附着到所述下表面的柱的峰。所述峰具有在所述上表面处由半球金属结构的阵列限定的密度,所述半球金属结构用作蚀刻掉衬底材料向下到所述下表面以形成所述柱的掩模。所述柱是密集且均匀的并且包括微米级的平均直径。

光伏器件包括具有上表面和下表面的衬底。所述上表面包括附着到所述下表面的柱的峰。所述峰具有在所述上表面处由半球金属结构的阵列限定的密度,所述半球金属结构用作蚀刻掉衬底材料向下到所述下表面以形成所述柱的掩模。所述柱是密集且均匀的并且包括微米级的平均直径。连续光伏叠层共形地形成在所述衬底之上以及在所述多个柱之上和在所述多个柱之间延伸以形成三维结构。所述光伏叠层被配置成将入射辐射转换成电流。

纳米颗粒包括具有小于1微米的直径的金属球,所述金属球通过采用表面张力形成在非润湿表面上。所述金属球具有根据形成所述金属球的金属膜的厚度和沉积速率限定的直径。

一种方法包括调整用于在衬底上沉积金属膜的沉积速率,其中该沉积速率控制将要在所述衬底的表面上形成的点的密度;对所述金属膜进行退火以形成附着到所述衬底并且包括所述密度的点;以及使用所述点作为蚀刻掩模蚀刻所述衬底以在所述衬底中形成柱。

另一种方法包括调整用于在衬底上沉积金属膜的沉积速率,其中该沉积速率控制将来在所述衬底的表面上形成的金属球的密度;向所述金属膜施加抗氧化剂;在高于所述金属膜的熔点的温度下对所述金属膜进行退火从而形成不粘附到所述衬底的所述金属球;以及收集所述金属球。

从下文中对其说明性实施例的详细描述中,这些和其它特征及优点将变得显而易见,所述详细描述要结合附图阅读。

附图说明

本公开将参考以下附图在优选实施例的以下描述中提供细节,在附图中:

图1是根据一个实施例的具有沉积在其上的金属膜的衬底层的横截面视图;

图2A-2C示出了根据本发明原理的点密度随着原始金属膜的沉积速率的变化;

图3是根据一个实施例的具有形成在金属膜上的可选助熔剂层(fluxlayer)的衬底层的横截面视图;

图4的横截面视图示出了根据一个实施例的具有通过退火在其上形成的金属膜的点的衬底层;

图5是根据一个实施例使用该点作为蚀刻掩模来蚀刻的衬底层的横截面视图;

图6是根据本发明原理使用所形成的密集堆积的点所形成的微米级柱的图像;

图7是根据一个实施例具有在透明衬底上支撑结的多个柱的光伏器件的横截面视图;

图8的横截面视图示出了根据一个实施例的具有通过退火形成在其上的金属球的衬底层;

图9A的扫描电子显微镜(SEM)图像示出了根据一个实施例形成的紧密堆积的金属半球;

图9B的SEM图像示出了根据一个实施例形成的金属球;

图10的流程图示出了根据本发明原理制造用于光伏器件或其它半导体器件的微米级柱的方法;以及

图11是示出根据本发明原理的制造金属球的方法的流程图。

具体实施方式

根据本发明原理,提供了用于制造柱或微线(microwire)的装置和方法。该装置采用衬底层,该衬底层具有构造成提供辐射吸收层的垂直部件的结构。该垂直部件可以包括具有承载光吸收材料的侧面的微线结构。所述侧面提供增加辐射吸收的似然的深度。

在一个实施例中,通过在玻璃衬底上提供金属材料形成所述微线。可选地在所述金属上沉积助熔剂并且对该助熔剂进行退火以在该玻璃衬底上产生金属点。助熔剂降低氧化速率,允许点在~100摄氏度的极低的温度下形成。采用蚀刻工艺在该衬底层中形成柱。该处理温度优选低于200摄氏度。这样,所提供的结构不昂贵并且避免了昂贵的光刻图形化或柱的播种。根据本发明原理形成的柱的尺寸和密度得到很好的控制并且得到更高的光吸收效率。

在特别有用的实施例中,通过在衬底上沉积金属制造自组装/形成纳米/微球或颗粒。在一个实施例中,在玻璃上沉积锡或其它金属。在对锡进行退火以形成独立于该玻璃衬底并且可以为了多种应用中的任何应用而被收集的纳米球之前,可以采用抗氧化剂。通过调整形成工艺并不采用抗氧化剂,可以形成密集堆积的半球,该半球可以用作蚀刻该玻璃衬底以形成微锥或线的模板。

根据特别有用的实施例,三维(3D)结构包括共形的薄膜太阳能电池元沉积。这些结构化的太阳能电池元将以降低的成本提供高效率。在例如非晶硅(短寿命材料)中的空穴-电子对收集在从距其表面的300~500nm内发生。然而,光可以穿透比该深度更远。因此,具有大于1微米高度的薄非晶硅电池(深度<300nm)的垂直阵列将吸收更多的光并且在不到300nm的距离内提供水平载流子收集。

在3D构造的衬底上的具有薄厚度的共形低载流子寿命材料(例如,非晶硅)的沉积提供表面潜在损伤低的成本有效结构并且提供更好的性能。当在薄膜光伏器件中采用3D结构时,平面光伏器件所需的厚度不再必要。尤其对于非晶Si光伏器件,层越薄,光退化越少。

应当理解,将用太阳能电池元的给定说明性架构来描述本发明;然而,其它构造、结构、衬底材料以及工艺特征和步骤可以在本发明的范围内变化。由于焊料球的尺寸可以从例如10nm变化到几微米,因此小的焊料球可以是用于半导体量子晶体管器件的掩模而微米尺度的焊料球用于光伏器件。使用此处描述的这些结构形成电路可以是集成电路芯片设计的一部分。芯片设计可以在图形计算机编程语言中产生,并且存储在计算机存储介质(例如盘、带、物理硬盘驱动器、或诸如存储存取网络的虚拟硬盘驱动器)中。如果设计者不制造芯片或者用于制造芯片的光刻掩模,则设计者可以直接或间接将所得到的设计通过物理装置(例如,通过提供一份存储有该设计的存储介质)或电子地(例如通过互联网)传送到这种实体。然后,所存储的设计可以转换成适当的形式(例如,GDSII),用于制造光刻掩模,光刻掩模通常包含要形成在晶片上的多份所讨论的芯片设计。光刻掩模可用于限定晶片(和/或其上的层)的要蚀刻的或者要以其他方式处理的区域。

此处描述的方法可以用于制造集成电路芯片和/或太阳能电池元。所得到的集成电路芯片或电池元可以以原始晶片的形式(即,作为具有多个未封装的芯片的单个晶片)、作为裸管芯或者以封装的形式由制造商分配。在后面的情况下,芯片安装在单个芯片封装体(例如塑料载体,具有固定到母板或更其它高级的载体上的引线)中或者安装在多芯片封装体(例如,具有表面互连或掩埋互连、或者具有表面互连和掩埋互连的陶瓷载体)中。在任何一种情况下,该芯片然后可以作为(a)诸如母板的中间产品或(b)最终产品的一部分,与其它芯片、分立电路元件和/或其它信号处理装置集成。终端产品可以是从玩具、计算器、太阳能收集器和其它低端应用到高级产品的包括光伏器件、具有太阳能电池元的集成电路芯片的任何产品。

图中的流程图和框图示出了根据本发明各种实施例的系统和方法的可能实现方式的架构、功能和操作。应当注意,在一些备选实施方式中,在框中标记的功能可能不以图中标记的顺序发生。例如,连续示出的两个框实际上可以基本上同时被执行,或者这两个框有时可以以相反的顺序被执行,这取决于所涉及的功能。

还应当理解的是,当诸如层、区域或衬底的元件称为在另一元件“上”或“之上”时,它可以直接在该另一元件上,或者也可以存在插入元件。相反,当一个元件称为“直接”在另一元件“上”或者“之上”时,不存在插入元件。应当理解,当称一个元件“连接”或“耦合”到另一个元件时,它可以直接连接或耦合到该另一元件,或者可以存在插入元件。相反,当一个元件称为“直接连接”或“直接耦合”到另一元件时,不存在插入元件。

现在参考其中相似的附图标记代表相同或相似的元件的附图,并且首先参考图1,图1描绘了具有形成在其上的膜14(例如金属膜)的衬底或衬底层12的横截面视图。衬底12可以包括多种不同的材料,但是优选由诸如玻璃或聚合物或半导体材料(例如硅)的衬底材料形成。衬底12优选在用于形成柱的处理温度下不可变形,将会描述这一点。在一个实施例中,衬底12包括在例如高于600摄氏度的温度下变形的玻璃。膜14优选包括锡、铅、铟、锑、铋、锌或其它低熔点金属及它们的合金。膜14可以通过任何已知方法沉积,该方法包括溅射、物理沉积、化学气相沉积、热或电子束蒸镀、电镀或无电镀等。膜14可以包括约1nm到约2微米之间的厚度,当然也可以采用其它厚度。14的厚度是控制后面形成的点的尺寸的一种方式。

参考图2A-2C,根据本发明原理,后面形成的金属点的尺寸依赖于膜14的沉积速率以及最初的沉积厚度。尽管纳米尺寸的金属结构是有用的,但是在一些应用中更有用的是有更大的金属结构,这些更大的金属结构可以形成为掩模。通过控制用于膜14的形成的沉积速率,金属点阵列的尺寸和密度可以受到影响和控制。

用于制作点(18)的方法包括在衬底上沉积金属膜14。该膜的厚度优选小于约300nm。该膜包括量为体材料的约1%到约20%的肤氧化物(skinoxide)。该膜以0.1埃/s到10埃/s的速率沉积。该金属在该衬底上的润湿角在给定条件下优选小于90度以促进与衬底的粘附。小于90度的润湿角导致粘附,而大于90度的润湿角导致去湿(球形成)。

参考图2A,膜14以7.5埃/s的速率被沉积到240nm的厚度。由于持续10秒的450摄氏度的在沉积之后的快速热退火,点18的点密度如图2A中所示。在另一说明性实例中,膜14包括以3.0埃/s的速率沉积的240nm的厚度。由于持续10秒的450摄氏度的在沉积之后的快速热退火,点18的点密度如图2B中所示。注意,密度增加了。在又一说明性实例中,膜14包括以1.0埃/s的速率沉积的240nm的厚度。由于持续10秒的450摄氏度的在沉积之后的快速热退火,点18的点密度如图2C中所示。膜14的低沉积速率促进了更高密度的焊料半球阵列。图2A-2C中所示的点或焊料球是如每个图像中的比例尺24所指示的微米尺度的点。存在形成半球的密集阵列的临界沉积速率并且该临界沉积速率取决于初始金属厚度。例如,240nm厚的Sn具有约1埃/s的临界速率,而100nm厚的Sn膜具有约5埃/s的临界速率。

参考图3,助熔剂层16可以可选地形成在膜14上。该助熔剂可以包括用于断开金属-氧化物的酸活化剂(例如,甲磺酸、一元羧酸、磺酸、蚁酸、苯甲酸、硝基苯甲酸、甲苯酸、卤代羧酸或者具有通式HOOC(CH2)nCOOH的二羧酸,其中n=1-7等)、用于调整粘度和表面张力的跟踪剂(例如,丙三醇)和/或润湿剂(例如,2-丙醇)。在特别有用的实施例中,可以采用二乙三胺五乙酸(Diethylene-Triamine-Pentaaceticacid)、聚氧乙基甘油醚(GlyerolEthoxylate)和/或IPA(2-丙醇)。可以采用与选择用于膜14的材料兼容并且提供此处描述的特征的任何适当的助熔剂、活化剂或试剂16。可以使用任何适当的方法施加助熔剂16。在一个实施例中,将助熔剂蒸气喷雾施加于膜14。助熔剂16保护膜14的表面,以防止在随后的处理过程(包括退火)中膜14的氧化。在形成用于蚀刻衬底12的半球形微米尺度点图形(18)时优选不采用助熔剂。

参考图4,进行退火处理。该退火处理包括选择为引起膜(例如,焊料)14流动并且由于表面张力形成岛、球或点18的时间和温度。该时间和温度也被选择成控制点18的密度。当焊料破碎时,在边界处发生氧化,从而图形变得固定住。

较高的温度和较长的持续时间下形成较大的球密度。这些参数可以与用于形成膜14的沉积速率一起平衡,从而为给定材料提供期望密度。在优选实施例中,例如在助熔剂16被用在膜14顶上时,该温度保持为低于200摄氏度。在一个特别有用的实施例中,膜14包括锡并且退火温度低于150摄氏度持续例如10秒-10分钟。在优选实施例中,该温度保持为低于500摄氏度(在膜14顶上没有助熔剂)。在一个特别有用的实施例中,顶上没有助熔剂的膜14包括锡并且退火温度低于450摄氏度持续例如10秒-10分钟。

优选在这样的温度下对衬底12和金属膜14进行退火:该温度低于将负面影响该衬底的温度但是高于金属膜14的熔点。具体地,在形成半球结构时,该退火温度应当保持低于球形成温度。该退火温度应当保持低于约600摄氏度。该退火在优选为1x10-7到5x10-5托的真空中进行。可以采用其它时间和温度。

焊料球的尺寸可取决于正在形成的器件的应用。例如,如果正在制造集成电路芯片,则高度密集的掩模可用于形成量子CMOS器件。这种密集焊料球可以用于构图较高的表面区域,例如用于三维电池等。

所形成的球18的尺寸依赖于膜14的厚度和退火参数。点18的点密度取决于形成膜14的沉积速率。膜14的纳米级厚度导致微米级尺寸的球/点18。

参考图5,通过采用将点18用作掩模的蚀刻处理形成微线10。由于点18将膜14的材料收集到一起,间隙在点18之间形成并且形成岛。在这些间隙中,下面的衬底12被暴露。衬底12被蚀刻从而形成微线10。然后膜14在该蚀刻处理期间被去除或者可以通过其它手段被去除。

在一个实施例中,该蚀刻处理可以包括深反应离子蚀刻(DRIE)。DRIE是高度各向异性蚀刻处理,其可以用于在衬底12中以例如20:1或更高的纵横比(如果蚀刻选择性高)形成深的、侧壁陡峭的孔和沟槽。DRIE处理可以制造90°(垂直)壁或锥形壁,例如60°-89°。在一个说明性实施例中,使用CF4和O2采用DRIE持续例如30分钟,形成高度为约2-3微米且直径为约1-2微米的微线10。蚀刻压力优选为100mT到400mT,并且处理室中的功率优选保持为约100W到约400W。

这种气体中焊料金属几乎不消耗(不容易蚀刻),从而确保了极高的纵横比。图5的结构可以用在(一个或多个)晶体管器件、电池、太阳能电池元或任何其它电子器件中。衬底12形成柱,其中柱的基座之间的距离小于柱的直径。应当理解,为了在光伏器件中有更大的吸收体积和光捕获,更高的纵横比是理想的。根据本发明原理,通过采用微米级的点,被蚀刻到衬底中的柱高度可以大于纳米级的点提供的那些。这样,所形成的柱10的高度可以为几个微米(例如,1-6微米或更大)。

参考图6,说明性地描绘了被蚀刻形成多个微米尺寸的柱的玻璃衬底的图像。应当理解,该衬底也可以包括其它材料,例如单晶硅或其它半导体材料。通过在Sn的初始厚度为~200nm的情况下以小于1埃/s的缓慢沉积速率沉积锡(或其它金属),使用形成在衬底表面上的微米级的点18(图5),形成多个柱10。临界速率将根据材料和初始厚度而变化。柱的平均直径为约1-2微米。该柱可以是圆柱或圆锥(如图所示),取决于工艺参数(例如,蚀刻选择性、蚀刻速率等)。该柱的结构类型取决于该结构的应用和使用。如所描绘的,所形成的密集且均匀的柱的高度可以为几个微米(例如,1-6微米或更高),见比例尺21。图6中的柱的平均宽度为1微米,并且图6中的柱的平均高度为4微米。通过使用较低的沉积速率(例如,约1.0埃/s)在图6中实现了最高的均匀性和密度。此处“密集且均匀”的意思是柱之间的平均距离不大于两倍的平均柱直径。柱的直径由初始金属半球直径(例如1-2微米)限定,而柱的高度为4-6微米。具有图6中所描绘的柱的衬底可以用于太阳能电池元模板、电池端子模板、太阳能电池元吸收表面、三维电子器件的衬底等等。

参考图7,根据一个实施例说明性地描绘了说明性光伏结构100。光伏结构100可以用在太阳能电池元、光传感器或其它光伏应用中。结构100包括可以使用在图1和3-5中形成的微线或微锥10制造的衬底层12。衬底12可以包括诸如玻璃、聚合物、透明导电氧化物等的透明材料,或者诸如Si、GaAs等的不透明材料。应当注意,衬底12和线10的透明材料允许光穿过衬底12,而不透明材料不允许。此处描述的结构可以包括透明和/或不透明材料并且相应地接收光以激活光敏结构和材料来进行器件的适当操作。

可以在衬底层12上包括透明导电材料110。透明导电材料110可以包括诸如例如掺氟氧化锡(SnO2:F或“FTO”)、掺杂氧化锌(例如ZnO:Al)、氧化铟锡(ITO)的透明导电氧化物(TCO)或其它适当的材料。

第一层104形成在衬底层12(和/或透明导体110,如果存在)上或之上。第一层104可以包括非晶硅(例如a-Si:H)、微晶硅(μc-Si:H)、SiC或其它适当的材料,诸如例如CIGS(CuInGaS)、CdTe、多晶Si或用于薄膜太阳能电池元的其它种类的材料。在该实施例中层104包括p型特性。本征层或基底层106形成在层104上。本征层106包括与层104和层108兼容的材料。本征层106优选是未掺杂的。层108形成在本征层106上,并且具有与层104相反的极性(例如,如果层104是P型,则层108是N型,或者反之亦然)。在该例子中,层108是N型材料,且层104是P型材料。可以使用材料的不同组合来在玻璃12上形成光伏叠层,例如,CdS(n型)/CIGS(本征(i型))/钼(p型)。也可以采用其它材料。

其它材料可以形成在该pin叠层上,例如背反射器或电极层114。背反射器层114可以包括诸如ZnO的透明氧化物以及反射表面或者其它层或结构。

该3D结构包括具有不同形状的柱10。层104、、106和108的组合厚度可以为约0.1~0.5微米。高度107可以为约1微米到约7微米。对于单结太阳能电池元,柱形状优选是倾斜的,以便捕获光并且增加再次吸收被反射的光的机会。例如,柱或线的水平基底和边缘之间的优选角度为90°到92°之间。

层104、106和108形成构造成对入射辐射进行光吸收的单个结(pin叠层)。注意层104与衬底层12或层110接触或邻近,该衬底层12或层110可以被构造成用作可选的背反射器。结构100优选是硅薄膜电池元,其包括可以通过化学气相沉积(CVD)工艺或等离子体增强的CVD(PECVD)由硅烷气体和氢气而沉积的硅层。取决于沉积参数,可以形成非晶硅(a-Si或a-Si:H)、纳米晶硅(nc-Si或nc-Si:H)或者微晶硅μc-Si:H。

在说明性实施例中,结构100包括用于层104的P型非晶硅或微晶硅(a或μc)-Si:H,厚度为约5nm到约20nm。用于层108的N型非晶硅或微晶硅(a或μc)-Si:H包括约5nm到约20nm的厚度。在这种情况下,本征层106包括非晶硅或微晶硅(a或μc)-Si:H并且可以包括约50nm到约300nm的厚度。可以采用其它尺寸和材料。

根据本发明原理,衬底层12包括允许光吸收增加的柱或锥10。在一个实施例中,柱10优选包括约0.5到约0.8微米的高度并且更优选约3-6微米的高度。对于长寿命材料,柱10优选包括约1到约20微米的高度并且更优选约1到约10微米的高度。这些尺寸是说明性的,因为可以采用更浅或更深的尺度。应当理解,可以在图7中所示的单结器件100上形成另外的结。

可以使用与针对图1和3-4描述的相似的步骤制造微米级或纳米级金属球。微米级或前缀微是指在1微米到1000微米范围内的尺寸。纳米级或前缀纳米是指在1nm直到1000nm(或者直到1微米)范围内的尺寸。金属膜在衬底上的沉积可以包括控制沉积速率以控制所得到的球的尺寸和密度。膜14的厚度优选小于300nm。膜14可以具有体金属材料的1%到20%的量的肤氧化物。以约0.1埃/s到10埃/s之间的速率沉积膜14。金属在衬底上的润湿角优选大于90度。在该情况下,如图3中所描绘的,采用抗氧化剂(助熔剂16)。膜14可以与助熔剂(抗氧化剂)同时施加。

然后在这样的温度下对衬底12和金属膜14进行退火:该温度低于不利影响该衬底的温度但是高于该金属膜的熔点。该温度优选高于半球形成温度以允许金属形成完整的球。在一个实施例中,该退火温度低于600摄氏度。该退火步骤优选在约1x10-7到5x10-5托的真空中进行。

参考图8,该退火步骤形成完整的球28,该球28的直径取决于膜厚度、材料和膜沉积速率。金属球28可以优选形成为具有约20nm到1微米的直径。球28的金属可以包括锡、铟、铅、锑、铋、锌及其合金。

在形成之后,可以收集金属球28以用于多种不同应用,例如,焊膏中的焊料粉末、小型球轴承、机械应用、热界面材料中的导电颗粒、导电粘性材料、底部填充材料等。可以通过水洗从未润湿的衬底收集金属球28。

参考图9A和9B,当不使用助熔剂或抗氧化剂16时,可以采用上述的退火过程来形成附着的半球结构202(所谓的点或球18)。在图9A中,该半球结构(点或球18)被示为附着到衬底12。

该半球结构或金属半球202可以具有约1到2微米的直径。很多该半球可以形成大直径为1-3微米且小直径为约1-2微米的椭圆形。可以通过调整诸如退火时间、沉积速率等的形成参数来减少椭圆形结构的出现。金属半球202附着于衬底或者它们形成在其上的表面。半球结构202的一个特征是它们在半球结构202之间的距离小于半球结构202的直径的情况下被布置在衬底上。这得到了高密度配置,该高密度配置适于形成密集堆积的纵横比高的微锥或微线。半球结构202可以包括锡、铟、铅、锑、铋、锌及其合金中的一种或多种。

在特别有用的实施例中,半球结构202包括约0.5微米到约3微米的平均直径并且包括取决于半球结构的尺寸的为5%到约15%的与平均值的标准偏差。

在图9B中,球或点18由助熔剂或抗氧化剂(16)形成并且形成完整的球204或金属纳米颗粒或微颗粒。该球本身是自组装的并且从衬底12完全分离。取决于可以通过沉积速率控制的密度,球204很可能独立于邻近的球。金属球204的直径优选小于1微米。当然可能形成更大的球,例如直径为约1微米到约200微米。在特别有用的实施例中,金属球204可以优选形成为具有约20nm到1微米的直径。球204的金属可以包括锡、铟、铅、锑、铋、锌及其合金。

通过该过程形成的金属球204是高度均匀的,并且该过程是可重复的。在一个实施例中,直径小于约1微米的金属球204具有不到15%的与平均直径的标准偏差。金属球204具有高的表面张力并且呈现非润湿属性,以便它们保持与它们形成于其上的衬底稍微接触或不接触。这意味着金属球204可以被收集并且用于各种有用的应用中。

参考图10,示出了根据一个说明性实施例形成用于形成衬底的密集堆积的半球构图掩模的方法。在框302中,提供例如为玻璃或半导体衬底层的衬底。应当理解,可以采用其它衬底材料。例如,该衬底可以包括硅,并且根据本发明原理形成的柱可以用于形成垂直晶体管等。

在框304中,在该衬底层上沉积金属膜。该金属膜可以包括锡、铟、铅、锑、铋、锌或其它低熔化温度金属。

在框306中,调整用于在衬底上沉积该金属膜的沉积速率。该沉积速率控制将来在该衬底的表面上形成的点(例如,半球)的密度。调整速率范围为约0.1埃/s到10埃/s。较低的沉积速率通常导致较高密度的点。其它因素可以包括通过被沉积的金属膜的厚度控制点的尺寸。在当前情况下,不在该金属膜上形成助熔剂层,当然可以施加限定量的助熔剂以保护该金属膜。

在框308中,对该金属膜进行退火以便在该衬底上形成该金属膜的点。该金属膜优选包括在该衬底上的不到90度的润湿角,并且该点粘附到该衬底并且包括为金属膜沉积而确定的密度。点密度根据沉积速率来控制并且也可以使用退火的温度和持续时间来控制。该点可以包括半球形状并且具有1-2微米的直径。半球形点之间的距离优选小于该半球形点的直径。

在框310中,使用该点作为蚀刻掩模蚀刻该衬底以在该衬底中形成柱。该蚀刻可以包括进行深反应离子蚀刻。该金属膜的退火优选在高于该金属膜的熔点的温度下进行。温度可以被选择成形成粘附到衬底的半球,而不是形成不粘附到衬底的完整球的温度。此处形成的衬底可以是用于如下中的一种或多种的产品:太阳能电池元模板、电池端子模板、太阳能电池元吸收表面、用于电子器件的衬底等等。

在一个有用的实施例中,该衬底用于形成光伏器件。在框316中,形成包括N型层、P型层和位于二者之间的基底层或本征层的连续光伏叠层(pin叠层),该连续光伏叠层与形成在该衬底层中的柱的表面共形使得该连续光伏叠层在三维结构的该柱的顶上和侧壁上延伸。在框318中,可以在该连续光伏叠层上形成至少一个另外的连续光伏叠层。在框320中,通过采用该多个柱的几何形状吸收从该柱的侧面横向反射的光,来降低光损耗。

参考图11,示出了根据另一说明性实施例的形成金属球的方法。在框401中,提供优选为相对于金属膜为非润湿衬底的衬底来用于形成球。在框402中,通过已知的沉积工艺沉积金属。在框403中,调整用于在衬底上沉积金属膜的沉积速率。该沉积速率的调整包括在0.1埃/s到10埃/s之间调整该沉积速率。该沉积速率用于控制将来在该衬底的表面上形成的金属球的密度。该金属球优选包括在该衬底上大于90度的润湿角。

在框404中,向该金属膜应用抗氧化剂(助熔剂)。在框406中,在高于该金属膜的熔点的温度下对该金属膜进行退火从而形成不粘附到该衬底的金属球。在框408中,收集该金属球用于各种应用。在框410中,收集该金属球可以包括使用水洗从非润湿的衬底收集该金属球。形成了多个金属球,并且该多个金属球包括小于15%的金属球直径与平均直径的标准偏差。该金属球可以包括20nm到1微米的直径。该金属球包括锡、铟、铅、锑、铋、锌及其合金中的一种或多种。

已经描述了金属纳米球和微锥模板的优选实施例(这些优选实施例旨在说明而并非限制),应当注意本领域技术人员可以根据上述教导做出修改和改变。因此,应当理解,可以在由所附权利要求书限定的本发明的范围内对所公开的特定实施例做出变化。因此已经用专利法需要的详述和细节描述了本发明的各方面,所要求保护以及期望专利证书予以保护的内容在所附权利要求中阐述。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1