一种R‑Fe‑B类烧结磁体的制造方法与流程

文档序号:12369226阅读:257来源:国知局
本发明涉及一种R-Fe-B类烧结磁体的制造方法,属于稀土永磁材料领域。
背景技术
:随着新能源汽车的快速发展,新能源汽车领域对永磁电动机的需求越来越大,并且由于新能源汽车中电动机的工作温度更高,因此需要更高矫顽力的磁体,但是由于提高矫顽力需大量使用重稀土元素,造成磁体的成本急剧增加,并且直接在熔炼过程中大量添加重稀土还会造成磁体磁能积的降低.由于新能源汽车在需要高矫顽力的同时也需要较高的磁能积,所以如何降低重稀土元素使用量生产高矫顽力高磁能积的磁体成为钕铁硼永磁材料的研究热点。近年来,国内外一些大型钕铁硼永磁生产企业主要通过两种方法在减少重稀土使用量的同时来生产高矫顽力高磁能积的磁体,一种是细化晶粒技术另一种是晶界扩散重稀土的方式。但是在减少重稀土的使用量和提高磁体矫顽力效果上,细晶技术的效果比较有限,但是晶界扩散重稀土元素的方式,可以磁体剩磁基本不降低或者降低很少的前提下,矫顽力得到大幅度提高,因此可以采用晶界扩散重稀土这种方式在使用极少量重稀土元素的同时,生产高矫顽力高磁能积的钕铁硼永磁体,可以通过晶界扩散技术来生产超高性能的磁体。目前应用于批量生产的晶界扩散技术大体上可归为两种方法:一种为接触法,其特点是首先通过气相沉积、电镀、涂覆等方法在磁体表面布置一层重稀土元素,然后通过长时间扩散处理,使重稀土元素沿晶界渗入到磁体内部,以实现晶界扩散的目的(如专利公开号CN1898757和CN101158024),另一类为非接触法,现在最常用的就是真空蒸发法,其特点是在高真空状态下,通过加热的使重稀土元素形成蒸汽,然后重稀土蒸汽在磁体表面进行沉积,并向磁体内部进行扩散(如专利公开号CN101651038B和CN101375352A)。上述两种方法是现在生产中最常见的两种方法,可大批量生产,均可达到较好的晶界扩散的效果。但是两种方式在生产过程中都存在一些缺点,接触法是在实际生产过程中最为简单,也最为常见的一种方法,它的优点是可操作性强,对设备和工装的要求都比较低,较容易实现批量化生产。同样它的缺点也很明显,主要是在实际生产过程很容易导致磁体表面状态的破坏,在扩散过程中与重稀土元素直接接触部分形成较大浓度差,重稀土元素进入主相,从而导致磁体剩磁降低,且在实际生产过程中磁体表面的重稀土层会发生氧化脱落,不能完全扩散到磁体中去,造成重稀土的浪费,并且在热处理过程中磁体与磁体之间不能直接接触,如果接触会发生粘连的问题,因此需要在磁体间增加隔板,占据很大空间导致装料量大幅度降低。而真空蒸发法利用支架等部件将磁体与重稀土元素隔离,通过加热使重稀土元素形成蒸汽,蒸汽扩散至磁体周围并缓慢扩散至磁体内部,采用此种方式,炉体内需采用在高温下不易蒸发材料形成支撑架以防止磁体与重稀土元素的直接接触,大大增加摆料时难度,同时料架占据很大空间导致装料量大幅度降低,而且支撑架一般由成本较高的材料制成,这样大幅度增加处理设备的成本,并且由于采用蒸发法蒸汽浓度较难控制,过程监控和设备要求都比较高,而且扩散后磁体的一致性较接触法要稍差一些;所以说以上两种方式在大批量生产过程中都存在很明显的不足。因此本专利提出了一种全新的接触法晶界扩散技术,使用本专利方法的优势在于,较使用传统接触法,使用本专利方法处理磁体效率高,既可以防止磁体表面重稀土的氧化,还能保护磁体表面状态不被破坏,防止磁体剩磁的大幅度降低。较使用非接触法,该方法更加稳定,对设备的要求更低;此外,使用该方法,磁体可直接接触进行扩散处理而不产生粘连的问题,极大的提高了装炉量和扩散效率,并且极大地减少了工装成本。技术实现要素:为克服现有技术存在的缺陷,本发明提供了一种R-Fe-B类烧结磁体制备方法,技术路线是通过在磁体重稀土RHX层外布置氟化镨、氟化钕、氧化镨、氧化钕的至少一种RLF层,重稀土RHX为镝、氢化镝、铽、氢化铽的至少一种。一方面RLF层防止了磁体热处理过程中相互发生粘连,使磁体可以接触摆料,取消了垫板,减少了摆料难度,增加了装炉量,并且可以防止了表面的重稀土RHX层被氧化,另一方面RLF层防止磁体表面镨钕元素的大量挥发,从而形成重稀土元素层从而导致磁体剩磁的降低。为实现本发明的目的,本发明提供了一种R-Fe-B类烧结磁体的制备方法,包括:1)制备R1-Fe-B-M烧结磁体,其中,R1选自稀土元素Nd、Pr、Tb、Dy、Gd、La、Ho中任意一种或几种,R1含量为26wt%~33wt%;B含量为0.8wt%~1.2wt%;M选自Ti、V、Cr、Co、Ga、Cu、Mn、Si、Al、Zr、W、Mo中的任意一种或几种,含量0~4wt%;余量为Fe;2)将所述烧结磁体依次采用去离子水洗涤、酸溶液,干燥处理,得到受处理磁体;3)在受处理磁体表面布置重稀土RHX层,在重稀土RHX层外布置一层RLF层,形成受处理单元,其中:所述RHX为镝、氢化镝、铽、氢化铽的任意一种或几种的混合物,所述RLF为氟化镨、氟化钕、氧化镨、氧化钕的至少一种;4)将3)中所述受处理单元置于烧结炉内在真空或惰性气体保护条件下进行扩散处理,扩散温度为800℃~1000℃,扩散时间2~50小时,在扩散结束后,对磁体进行时效处理,时效温度为450~580℃范围内,时效时间为4~6小时。优选的,所述RHX层厚度为5~200μm,所述RLF层厚度为1~20μm;RLF形态为粉末,粉末颗粒的粒径为0.2μm~3.5μm,由于RLF需在RHX层外形成一层厚度为1~20μmRLF涂层,所以RLF粉末的粒径应控制在0.2μm~3.5μm之间。进一步优选的,粉末颗粒的粒径为0.5μm~2.5μm,RHX层厚度为10~100μm,RLF层厚度为3~15μm。当RHX层过厚时,扩散后磁体的剩磁下降的较大,当RHX层过薄,磁体的矫顽力增加较少,达不到预定效果。此外,RLF层过薄的时候不能有效的保护RHX层、起到防止粘连的目的,导致磁体矫顽力增加量减少。优选的,在所述步骤3)中,所述受处理磁体厚度为1~12mm。由于在热处理过程中,重稀土RHX通过呈液相的晶界扩散至磁体,扩散过程主要以浓度差为驱动力,但是晶界上重稀土元素与主相浓度差过大时,其同样会渗入主相导致磁体剩磁明显降低,在处理过程中通过调节温度、磁体表层RLF涂层厚度等方式尽量控制磁体表层重稀土浓度,由于浓度差较低导致驱动力不大,所以扩散过程是一个很缓慢的过程,当磁体厚度大于12mm时很难实现扩散完全,导致磁体不可逆、方形度等磁性能变差。优选的,在所述步骤4)中,所述扩散温度在850~980℃,扩散时间为5~30h。当温度低于850℃时,由于扩散驱动力降低,RHX中重稀土元素从磁体表面通过熔融的晶界相到达磁体内部变得困难,从而造成磁体表层和中心磁性能不均一;当温度高于980℃时,磁体表面与RHX接触部位在熔融状态下易形成合金,侵蚀基体,且由于RHX中重稀土元素同时进入晶内,降低磁体磁性能。优选的,在所述步骤4)中,当选用真空处理时,真空度为5×10-1~1×10-5Pa;当选用惰性气体保护条件时惰性气体为氩气,压力为500~12KPa。本发明创新之处在于采用轻稀土元素的氟化物涂层RLF作为保护层,由于轻稀土元素的氟化物涂层RLF不会与重稀土层元素反应,在防止重稀土层元素被氧化的同时,还能防止磁体表面RHX层直接接触产生粘连,同时也可以使重稀土元素扩散至磁体内部的过程中不会因为磁体表层的重稀土元素过高,导致重稀土元素进入主相置换出主相中的轻稀土元素,造成轻稀土元素的大量挥发从而导致磁体剩磁的大幅度降低;且由于RLF粉末安全可靠、稳定性好,价格也较低,在生产储存使用的过程中都很方便,在实际生产过程可通过涂覆、丝网印刷、浸蘸等方法布置在表面已被布置RHX层的磁体表面即可,通过这种方法不仅大大降低了摆料时难度,切取消了隔板释放很大空间,极大的增加了扩散炉的有效处理量,降低了生产成本。具体实施方式以下对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。实施例1采用真空熔炼炉在惰性气体保护下对所配置原材料进行熔炼,形成厚度0.1~0.5mm的鳞片,R-Fe-B合金鳞片金相晶界清晰。合金鳞片经机械粉碎,氢爆后气流磨破碎其SMD至3.4μm。采用15KOe的磁场取向压制成型,制成压坯,压坯密度为3.95g/cm3。压坯在烧结炉中进行真空烧结,首先1080℃烧结330min。然后进行时效处理,在480℃时效240min得到生坯。生坯经多线切割成最终产品尺寸的磁片,磁片尺寸:27mm*15mm*5mm,公差:±0.05mm。磁片经酸溶液、去离子水洗涤表面,干燥处理,得到受处理磁体M1,M1的成分见表2。首先在磁体表面布置一层铽涂层,本实验采用刷涂,铽涂层厚度为50μm,在铽涂层外面布置一层氟化镨、氟化钕组成的混合涂层,氟化镨与氟化钕的质量比为1:5,涂层厚度为7μm。将涂布完成的磁体放入料盒。将料盒置于热处理装置中,设定扩散温度为930℃,扩散时间为18h,930℃保温阶段采用真空处理,压力为5×10-2Pa~7.8×10-3。急冷结束后升温至520℃时效处理4小时后急冷至常温,得到磁体M2。表1磁体M2与扩散处理前受处理磁体M1性能对比项目密度BrHcj(BH)maxHk/Hcj单位(g/cm3)kGskOeMGOe-M17.5614.4015.5250.030.98M27.5614.3224.8049.680.96表2磁体M2与扩散处理前受处理磁体M1主要成分对比分析项目BAlCoRETbPrNdM1实测值%0.970.10.8930.210.524.7125.65M2实测值%0.970.10.930.910.934.7225.67表1与表2显示采用此种方式M2相对于M1,剩磁Br降低约80Gs,Hcj增加了9.28KOe,通过成分测试M2比M1增加约0.41wt%的Tb。实施例2采用真空熔炼炉在惰性气体保护下对所配置原材料进行熔炼,形成厚度0.1~0.5mm的鳞片,R-Fe-B合金鳞片金相晶界清晰。合金鳞片经机械粉碎,氢爆后气流磨破碎其SMD至3.4μm。采用15KOe的磁场取向压制成型,制成压坯,压坯密度为3.95g/cm3。压坯在烧结炉中进行真空烧结,首先1080℃烧结330min。然后进行时效处理,在480℃时效240min得到生坯。生坯经多线切割成最终产品尺寸的磁片,磁片尺寸:27mm*15mm*5mm,公差:±0.05mm。磁片经酸溶液、去离子水洗涤表面,干燥处理,得到受处理磁体M1,M1的成分见表3。首先在磁体表面布置一层铽涂层,本实验采用刷涂,铽涂层厚度为70μm,在铽涂层外面涂覆一层氟化镨、氟化钕组成的混合涂层,氟化镨与氟化钕的质量比为1:5,涂层厚度为7μm。将涂布完成的磁体放入料盒。将料盒置于热处理装置中,设定扩散温度为930℃,扩散时间为18h,930℃保温阶段采用真空处理下,压力为7.8×10-3~5×10-2Pa。急冷结束后升温至520℃时效处理4小时后急冷至常温,得到磁体M3。表3磁体M3与扩散处理前受处理磁体M1性能对比项目密度BrHcj(BH)maxHk/Hcj单位(g/cm3)kGskOeMGOe-M17.5614.4015.5250.030.98M37.5614.2125.4449.680.96表4磁体M3与扩散处理前受处理磁体M1主要成分对比分析项目BAlCoRETbPrNdM1实测值%0.970.10.8930.210.524.7125.65M3实测值%0.970.10.930.911.014.7225.67表3与表4显示采用此种方式M3相对于M1,剩磁Br降低约190Gs,Hcj增加了9.92KOe,通过成分测试M3比M1增加约0.49wt%的Tb。M3与M2对比,剩磁Br降低了110Gs,矫顽力Hcj增加了0.64KOe,Tb含量增加了0.08%,说明当RHX层加厚的时候,矫顽力增加增大,剩磁降低变大,所以RHX层的厚度需严格控制。实施例3采用真空熔炼炉在惰性气体保护下对所配置原材料进行熔炼,形成厚度0.1~0.5mm的鳞片,R-Fe-B合金鳞片金相晶界清晰。合金鳞片经机械粉碎,氢爆后气流磨破碎其SMD至3.4μm。采用15KOe的磁场取向压制成型,制成压坯,压坯密度为3.95g/cm3。压坯在烧结炉中进行真空烧结,首先1080℃烧结330min。然后进行时效处理,在480℃时效240min得到生坯。生坯经多线切割成最终产品尺寸的磁片,磁片尺寸:27mm*15mm*5mm,公差:±0.05mm。磁片经酸溶液、去离子水洗涤表面,干燥处理,得到受处理磁体M1,M1的成分见表2。首先在磁体表面布置一层铽涂层,本实验采用刷涂,铽涂层厚度为50μm,在铽涂层外面涂覆一层氟化镨、氟化钕组成的混合涂层,氟化镨与氟化钕的质量比为1:5,涂层厚度为3μm。将涂布完成的磁体放入料盒。将料盒置于热处理装置中,设定扩散温度为930℃,扩散时间为18h,930℃保温阶段采用真空处理下,压力为7.8×10-3~5×10-2Pa。急冷结束后升温至520℃时效处理4小时后急冷至常温,得到磁体M4。表5磁体M4与扩散处理前受处理磁体M1性能对比项目密度BrHcj(BH)maxHk/Hcj单位(g/cm3)kGskOeMGOe-M17.5614.4015.5250.030.98M47.5614.3523.7549.680.96表6磁体M4与扩散处理前受处理磁体M1主要成分对比表5与表6显示采用此种方式M4相对于M1,剩磁Br降低约50Gs,Hcj增加了8.25KOe,通过成分测试M4比M1增加约0.37wt%的Tb。M4与M2相比剩磁Br增加了30Gs,矫顽力降低了1.05KOe,Tb含量减少了0.05%,说明当RLF层厚度增加的时候,剩磁Br降低量减少,同时矫顽力的提升量明显减少,主要是由于RLF层太薄,RHX层被氧化和挥发,扩散进入磁铁的重稀土含量减少造成的,所以RLF涂层厚度须严格要求。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1