一种介稳态纳米晶及其制备方法和应用与流程

文档序号:11104329阅读:654来源:国知局
一种介稳态纳米晶及其制备方法和应用与制造工艺

本发明公开了一种介稳态纳米晶及其制备方法和应用,属于纳米领域。



背景技术:

随着世界能源需要和环境问题的日益增加,可再生型H2-O2燃料电池在新能源体系中举足轻重,但是,阴极O2还原反应(oxygenreductionreaction,ORR)动力学缓慢,是影响其性能和应用的主要瓶颈。虽然Pt基催化剂可以很好地催化ORR,但是由于Pt在地球上储量有限,导致催化剂成本很高和难以大规模使用,这在很大程度上限制了H2-O2燃料电池的大规模商业化进程。因此,设计和制备低成本、高性能、长寿命的电催化剂来提高ORR动力学过程至关重要。文献研究表明,Pd-基纳米晶被认为是可以替代Pt催化ORR最有效的催化剂。同时值得注意的是,由于组份的增加和电子结构的丰富可调性,使得多元的Pd-基纳米晶显示出与Pt-基纳米晶相近的催化性能,因而近来引起了广泛的关注。同时,当今纳米技术的发展给新型可再生型H2-O2燃料电池电催化剂的设计带来新契机。尤其是具有相同化学成分不同结构的介稳态Pd-基纳米晶,因其特殊的表面原子个数、排列方式和电子态密度的差异,会对其性能产生重要影响(例如,具有较多缺陷的孪晶多面体结构或者亚稳相因其特殊的结构一般都具有特异性的性能)。近年来,科研工作者对可控合成高活性介稳态Pd-基纳米晶产生了浓厚兴趣。例如,Ying课题组在非水体系中以多重孪晶Ag纳米粒子作为前驱物,在油胺体系中还原PdCl2和Pt(acac)2,成功制备了多重孪晶结构的AgPd@Pt核壳纳米晶。以ORR为探针反应,结果表明多重孪晶结构的AgPd@Pt核壳纳米晶比稳态结构具有优异的ORR活性。因此,研发高效的高活性介稳态Pd-基纳米晶催化剂是目前研究的热点之一,在可再生能源技术的发展过程中,寻求高效特殊结构的介稳态Pd-基纳米晶电催化剂具有重要意义和巨大挑战。



技术实现要素:

本发明旨在开发一种新型、高效的介稳态Pd-基纳米晶催化剂。

为了这一目的,本发明公开了一种介稳态纳米晶,所述介稳态纳米晶Pd2MAg纳米晶,其中M为Fe、Co、Cu或者Mn。该介稳态纳米晶具有较好的氧还原性能。

进一步地,我们公开所述介稳态纳米晶是由Pd(NO3)2·2H2O、Fe(acac)2或Co(acac)2或Cu(acac)2或Mn(ac)2、AgNO3反应生成。

更进一步地,我们优选其中Pd:M:Ag的摩尔比为2:1:1。

同时本发明还公开了这一介稳态纳米晶的制备方法为:将Pd(NO3)2·2H2O,Fe(acac)2或Co(acac)2或Cu(acac)2或Mn(ac)2,AgNO3,油胺(OLA)及十八碳烯(ODE)溶液混合,逐步升温至250-300℃,并在这一温度下反应得到含有Pd2MAg纳米晶的产物,经分散沉降、离心分离得到Pd2MAg纳米晶,其中M为Fe、Co、Cu或者Mn。

优选地,我们按照5℃-8℃ min-1的升温速率逐步升温。

进一步地,我们更为优选地方式是将反应过程分为两个阶段,首先将Pd(NO3)2·2H2O,Fe(acac)2或Co(acac)2或Cu(acac)2或Mn(ac)2与油胺(OLA)及十八碳烯(ODE)溶液升温至250-300℃,反应一段时间,尔后再加入AgNO3溶液,并继续在这一温度下反应一段时间后得到介稳态Pd2MAg纳米晶的产物,其中M为Fe、Co、Cu或者Mn。

其中,优选反应后的产物用正庚烷和无水乙醇的混合溶液分散沉降。

优选地,本发明还公开了各组分的添加比例为Pd(NO3)2·2H2O 1mmol-0.5mmol,Fe(acac)2或Co(acac)2或Cu(acac)2或Mn(ac)20.5mmol-0.25mmol,AgNO30.5mmol-0.25mmol,OLA 6-10mL,ODE 10-20mL。

进一步地,我们还给出了优选的反应时间为20-60min。此反应时间为总反应时间,当反应由两个阶段组成时,两个阶段的反应时间总和为20-60min。

同时本发明请求保护介稳态Pd2MAg(M=Fe、Co、Cu和Mn)纳米晶在燃料电池催化剂中的应用。特别是这一介稳态Pd2MAg(M=Fe、Co、Cu和Mn)纳米晶在催化ORR中的应用。

本发明所制得的Pd2MAg(M=Fe、Co、Cu和Mn)纳米晶采用X射线能谱仪(EDS)和X射线衍射仪(XRD)来表征其组份和结构;用透射电子显微镜(TEM)和高分辨透视电子显微镜(HRTEM)分析其尺寸、形貌和微结构等。

本发明所制得的Pd2MAg(M=Fe、Co、Cu和Mn)纳米晶具有优异的ORR性能。经检测某些介稳态Pd2CoAg性能优于目前市售的Pt-C,对于可再生能源技术发展具有重要的指导意义。

本发明中所涉及的Pd2MAg(M=Fe、Co、Cu和Mn)纳米晶通过固液相化学反应制备,同时采用“一锅煮”的方式得到具有独特介稳态结构,工艺简单,反应温度低,时间短,适合于批量生产。

附图说明

图1为本发明合成的Pd2FeAg纳米晶的(a)EDS图;(b)XRD图;(c)TEM图;(d)HREM图。

图2为本发明合成的Pd2CoAg纳米晶的(a)EDS图;(b)XRD图;(c)TEM图;(d)HREM图。

图3为本发明合成的Pd2CuAg纳米晶的(a)EDS图;(b)XRD图;(c)TEM图;(d)HREM图。

图4为本发明合成的Pd2MnAg纳米晶的(a)EDS图;(b)XRD图;(c)TEM图;(d)HREM图。

图5为本发明合成的介稳态Pd2MAg(M=Fe、Co、Cu和Mn)纳米晶的ORR性能测试图。

具体实施方式

下面通过具体实施例对本发明所述的技术方案给予进一步详细的说明,但有必要指出以下实施例只用于对发明内容的描述,并不构成对本发明保护范围的限制。

实施例1

室温下,称量0.5mmol Pd(NO3)2·2H2O,0.25mmol Fe(acac)2或Co(acac)2或Cu(acac)2或Mn(ac)2加入到干燥的容量为250mL的三颈圆底烧瓶中,再用量筒量取8mL OLA和10mL ODE加入到三颈圆底烧瓶中,将三颈圆底烧瓶转移至沙浴中,程序控温下以7℃/min的速率升温至280℃下保温20min后,加入0.25mmol AgNO3溶液继续保温40min,至反应结束。待反应器自然冷却至室温,加入适量正庚烷和无水乙醇分散,离心分离固体。将固体洗涤后得到黑色产物,在真空干燥箱里真空干燥过夜后,用于分析表征。

采用EDS,XRD,TEM和HREM测试分别对产品进行分析,结果如图1至图4所示。图1中EDS显示样品主要成分是Pd、Fe和Ag,XRD显示样品的晶相为面心立方相。TEM显示得到纳米晶为多面体状结构,粒径约为10nm。进一步的微结构分析通过HRTEM图可以看出样品存在较多位错,这对电催化反应可能有重要影响。图2中EDS显示样品主要成分是Pd、Co和Ag,XRD显示样品的晶相为面心立方相。TEM显示得到纳米晶为多脚状结构,每个脚的尺寸约为5nm。进一步的微结构分析通过HRTEM图可以看出多脚状Pd2CoAg是有很多小颗粒融合而成,颗粒与颗粒之间存在融合位错。文献研究表明,多脚状结构具有增大纳米晶的比表面积,提供了更多的活性位点及孪晶缺陷,这对催化性能有重要影响。图3中EDS显示样品主要成分是Pd、Cu和Ag,XRD显示样品的晶相为面心立方相。TEM显示得到纳米晶为准球形结构,尺寸约为10nm。进一步的微结构分析通过HRTEM图可以看出准球形Pd2CuAg是有明显的孪晶缺陷。文献研究表明,孪晶缺陷增大纳米晶的的活性位点,这对催化性能有重要影响。图4中EDS显示样品主要成分是Pd、Mn和Ag,XRD显示样品的晶相为面心立方相。TEM显示得到纳米晶为球形结构,尺寸约为10nm。进一步的微结构分析通过HRTEM图可以看出球形Pd2MnAg是有非常完美的晶格结构。同样在微区域发现颗粒有重排现象。文献研究表明,纳米晶内部原子重排产生晶格缺陷,这对催化性能有重要影响。

实施例2

在三电极体系中通过循环伏安法和极化曲线法,测试样品的电化学性质,具体过程如下:

电化学实验在CHI760e型电化学工作站上进行,采用标准的三电极测试体系,相应的工作电极为本文所获取的样品修饰的玻碳电极,对电极为铂片,参比电极为银/氯化银(Ag/AgCl)。本文中所有的电势均相对于Ag/AgCl。电解液为0.1M的KOH溶液。所有电化学测试均在30℃下进行。每次实验时,所有的修饰电极均在0.1M KOH溶液中进行测试。

样品修饰电极的制备方法如下:

每次实验前,将直径为5mm的旋转圆盘电极依次用1.0μm、0.3μm和0.05μm的Al2O3粉磨至镜面,然后超声清洗,最后用二次蒸馏水淋洗干净,在室温N2气氛下干燥待用。将2mg的Pd2MAg(M=Fe、Co、Cu和Mn)纳米晶分散到1mL水中,获得2mg mL-1的Pd2MAg(M=Fe、Co、Cu和Mn)纳米晶纳米晶的悬浮液。20μL这种悬浮液和5μL 1%萘酚溶液,先后被分散在旋转圆盘电极表面N2氛围中干燥,得到Pd2MAg(M=Fe、Co、Cu和Mn)纳米晶修饰电极。

ORR测试前,先向溶液中通入高纯O230min,并在实验过程中继续通O2以保持溶液的O2氛围。不同扫速下的线性扫描极化曲线(LSV)也是在O2氛围中进行,相应的电化学扫描速率为10mV/s,扫描范围为-0.80V-0.20V。

检测结果参看图5。测试结果表明:每一种催化剂对ORR都具有催化活性,催化剂的催化ORR的起始电位为:Pd2Ag<Pd2CuAg<Pd2FeAg<Pd2MnAg<20%Pt/C<Pd2CoAg。相比于相同反应体系中合成的其他三元金属纳米晶,Pd2CoAg纳米晶表现出增强的催化氧还原的性能。进一步分析原因可知,Pd2CoAg纳米晶形貌为多脚状结构,且都存在孪晶位错,从而增加了催化剂的活性位点,进而提高了ORR性能。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1