LTPSTFT基板的制作方法与流程

文档序号:15259892发布日期:2018-08-24 21:24阅读:653来源:国知局

本发明涉及显示技术领域,尤其涉及一种ltpstft基板的制作方法。



背景技术:

在显示技术领域,液晶显示器(liquidcrystaldisplay,lcd)和有源矩阵驱动式有机电致发光(activematrixorganiclight-emittingdiode,amoled)显示器等平板显示装置因具有机身薄、高画质、省电、无辐射等众多优点,得到了广泛的应用,如:移动电话、个人数字助理(pda)、数字相机、计算机屏幕或笔记本屏幕等。

薄膜晶体管(thinfilmtransistor,tft)阵列(array)基板是目前lcd装置和amoled装置中的主要组成部件,直接关系到高性能平板显示装置的发展方向,用于向显示器提供驱动电路,通常设置有数条栅极扫描线和数条数据线,该数条栅极扫描线和数条数据线限定出多个像素单元,每个像素单元内设置有薄膜晶体管和像素电极,薄膜晶体管的栅极与相应的栅极扫描线相连,当栅极扫描线上的电压达到开启电压时,薄膜晶体管的源极和漏极导通,从而将数据线上的数据电压输入至像素电极,进而控制相应像素区域的显示。通常阵列基板上薄膜晶体管的结构又包括层叠设置于衬底基板上的栅极、栅极绝缘层、有源层、源漏极、及绝缘保护层。

其中,低温多晶硅(lowtemperaturepoly-silicon,ltps)薄膜晶体管与传统非晶硅(a-si)薄膜晶体管相比,虽然制作工艺复杂,但因其具有更高的载流子迁移率,被广泛用于中小尺寸高分辨率的lcd和amoled显示面板的制作,低温多晶硅被视为实现低成本全彩平板显示的重要材料。

热载流子效应是金属氧化物半导体(metaloxidesemiconductor,mos)器件的一个重要失效机理,随着mos器件尺寸的日益缩小,器件的热载流子注入效应越来越严重。在ltps阵列技术中,为了有效抑制器件的热载流子效应,提高器件工作的稳定性及改善器件在负偏置条件下的漏电流,现有的ltpstft制作工艺通常采取轻掺杂漏区(lightlydopeddrain,ldd)方式,即是在多晶硅(poly-si)沟道中靠近源漏极的附近设置一个低掺杂的区域,让该低掺杂的区域也承受部分分压,才能保证器件特性。

现有技术是通过光罩分别对多晶硅进行重掺杂和轻掺杂的离子注入形成ldd结构,以n型mos(nmos)器件为例,制作ltps阵列基板的过程包括如下步骤:

步骤s10、如图1所示,在基板100上依次形成缓冲层200和多晶硅有源层300;

步骤s20、如图2所示,在所述多晶硅有源层300上涂覆光阻,并通过一道光罩经曝光显影处理形成第一光阻图案980,以所述第一光阻图案980为遮蔽层,向多晶硅有源层300两端植入高剂量的n型离子(磷离子p+,1x1014~1x1015ions/cm2),形成重掺杂区(n+)310;

步骤s30、如图3所示,剥离去除所述光阻图案980,在所述缓冲层200上沉积形成覆盖多晶硅有源层300的栅极绝缘层400,在所述栅极绝缘层400上沉积第一金属层,在第一金属层上形成第二光阻图案990,以所述第二光阻图案990为遮蔽层,对第一金属层进行蚀刻,在对应多晶硅有源层300欲形成沟道区的上方形成栅极500;

步骤s40、如图4所示,以所述栅极500为遮蔽层,向多晶硅有源层300两端植入低剂量的n型离子(p+,1x1012~1x1013ions/cm2),形成沟道区320以及沟道区320和重掺杂区310之间的轻掺杂区(n-)330。

上述制作ltps阵列基板的方法,需要光罩数目多,且通过光罩在多晶硅有源层300上先掺杂形成重掺杂区310,然后再通过栅极500自对准进行轻掺杂区330掺杂形成ldd结构。由于重掺杂区310是通过光罩掺杂,由于对位偏差等,重掺杂区310在多晶硅有源层300两端可能不对称,轻掺杂后形成的ldd结构可能在多晶硅有源层300两端不对称,可能会一边偏大一边偏小,ldd区过小或过大都会影响到器件的特性和稳定性。

因此,传统ltps阵列基板的制作方法,由于存在对位偏差,很难做到有源层两端ldd区对称,ldd区不对称会导致器件特性变差,影响产品品质。

如何能有效的降低ltps阵列基板的制作周期,提升产品的良率,有效提升产品生产产能,降低成本,是目前面板设计行业关注的重点,也是增加公司市场竞争力的有效途径。



技术实现要素:

本发明的目的在于提供一种ltpstft基板的制作方法,能够使得多晶硅有源层的ldd结构在栅极两侧对称分布,有利于提高器件特性,相较于传统技术更为稳定可靠,并可以减少制程光罩数量,节省光罩成本、运行成本、材料成本和时间成本。

为实现上述目的,本发明提供一种ltpstft基板的制作方法,包括如下步骤:

步骤s1、提供衬底基板,在所述衬底基板上形成缓冲层,在所述缓冲层上形成多晶硅材料层并对多晶硅材料层进行图案化,得到多晶硅有源层;

步骤s2、覆盖多晶硅有源层的栅极绝缘层,在所述栅极绝缘层上沉积形成栅极金属层;

步骤s3、在所述栅极金属层上涂布光阻,经曝光、显影后得到对应于所述多晶硅有源层中部上方的光阻层,以所述光阻层为遮蔽层,对所述栅极金属层进行第一次蚀刻形成位于多晶硅有源层中部上方的准栅极;

步骤s4、以所述光阻层和准栅极为遮蔽层,对栅极绝缘层进行蚀刻,以减薄多晶硅有源层两端上方栅极绝缘层的厚度;

步骤s5、以所述光阻层和准栅极为遮蔽层,对所述多晶硅有源层进行离子重掺杂,形成多晶硅有源层两端的源漏极接触区;

步骤s6、对所述栅极金属层进行第二次蚀刻,使所述准栅极两侧被横向蚀刻而宽度减小,由准栅极得到栅极,剥离去除光阻层;

步骤s7、以所述栅极为遮蔽层,对所述多晶硅有源层进行离子轻掺杂,得到多晶硅有源层中部的对应位于所述准栅极下方的沟道区以及位于所述源漏极接触区和沟道区之间的ldd区。

所述步骤s4中,对所述栅极绝缘层的蚀刻深度为

所述步骤s2中,形成的栅极绝缘层的厚度为

所述步骤s5中,对所述多晶硅有源层进行离子重掺杂时的掺杂离子浓度为1x1013-1x1015ions/cm2

所述步骤s7中,对所述多晶硅有源层进行离子轻掺杂时的掺杂离子浓度为1x1012-1x1014ions/cm2

所述步骤s5中,对所述多晶硅有源层进行的离子重掺杂为n型离子重掺杂,所掺入的离子为磷离子;

所述步骤s7中,对所述多晶硅有源层进行的离子轻掺杂为n型离子轻掺杂,所掺入的离子为磷离子。

所述步骤s5中,对所述多晶硅有源层进行的离子重掺杂为p型离子重掺杂,所掺入的离子为硼离子;

所述步骤s7中,对所述多晶硅有源层进行的离子轻掺杂为p型离子轻掺杂,所掺入的离子为硼离子。

所述步骤s1还包括在图案化形成多晶硅有源层之后,对所述多晶硅有源层进行沟道掺杂。

所述步骤s1中,对所述多晶硅有源层进行沟道掺杂时的掺杂离子浓度为1x1011-1x1013ions/cm2

所述步骤s1还包括在形成所述缓冲层之前,在所述衬底基板上形成对应位于多晶硅有源层下方的遮光块。

本发明的有益效果:本发明的ltpstft基板的制作方法,通过对栅极金属层进行两次蚀刻,以采用自对准的方式完成对多晶硅有源层的离子重掺杂和离子轻掺杂,能够使得多晶硅有源层的ldd结构在栅极两侧对称分布,有利于提高器件特性,相较于传统技术更为稳定可靠,并可以减少制程光罩数量,节省光罩成本、运行成本、材料成本和时间成本,并进一步通过栅极绝缘层薄化(giloss)工艺,减薄对应于多晶硅有源层重掺杂区域上方的栅极绝缘层的厚度,可以有效提高离子注入效率。

附图说明

为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。

附图中,

图1为采用现有技术制作ltpstft基板的步骤s10的示意图;

图2为采用现有技术制作ltpstft基板的步骤s20的示意图;

图3为采用现有技术制作ltpstft基板的步骤s30的示意图;

图4为采用现有技术制作ltpstft基板的步骤s40的示意图;

图5为本发明的ltpstft基板的制作方法的流程示意图;

图6为本发明的ltpstft基板的制作方法的步骤s1的示意图;

图7为本发明的ltpstft基板的制作方法的步骤s2的示意图;

图8为本发明的ltpstft基板的制作方法的步骤s3的示意图;

图9为本发明的ltpstft基板的制作方法的步骤s4的示意图;

图10为本发明的ltpstft基板的制作方法的步骤s5的示意图;

图11为本发明的ltpstft基板的制作方法的步骤s6的示意图;

图12为本发明的ltpstft基板的制作方法的步骤s7的示意图。

具体实施方式

为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。

请参阅图5,本发明提供一种ltpstft基板的制作方法,包括如下步骤:

步骤s1、如图6所示,提供衬底基板10,在所述衬底基板10上依次形成遮光块60及覆盖遮光块60的缓冲层20,在所述缓冲层20上形成多晶硅材料层并对多晶硅材料层进行图案化,得到多晶硅有源层30;然后对多晶硅有源层30进行沟道掺杂。

具体地,所述步骤s1中,对所述多晶硅有源层30进行沟道掺杂时的掺杂离子浓度为1x1011-1x1013ions/cm2

具体地,所述步骤s1中,所述多晶硅层的制作过程为:在所述缓冲层20上沉积非晶硅材料,采用低温结晶工艺将所述非晶硅材料转化为多晶硅材料,所述低温结晶工艺为固相晶化、准分子激光晶化、快速热退火、或金属横向诱导法。

步骤s2、如图7所示,在所述缓冲层20上形成覆盖多晶硅有源层30的栅极绝缘层40,在所述栅极绝缘层40上沉积形成栅极金属层50。

具体地,所述栅极绝缘层40为氧化硅层、氮化硅层或两者的组合。

具体地,所述步骤s2中形成的栅极绝缘层40的厚度为

步骤s3、如图8所示,在所述栅极金属层50上涂布光阻,经曝光、显影后得到对应于所述多晶硅有源层30中部上方的光阻层90,以所述光阻层90为遮蔽层,对所述栅极金属层50进行第一次蚀刻形成位于多晶硅有源层30中部上方的准栅极51。

步骤s4、如图9所示,以所述光阻层90和准栅极51为遮蔽层,对栅极绝缘层40进行蚀刻,以减薄多晶硅有源层30两端上方即后续用于对多晶硅有源层30进行重掺杂区域上方的栅极绝缘层40的厚度;使得栅极绝缘层40在多晶硅有源层30上形成“凸”字形结构。

具体地,所述步骤s4中对所述栅极绝缘层40的蚀刻深度为可以有效提高后续重掺杂的离子注入效率。

步骤s5、如图10所示,以所述光阻层90和准栅极51为遮蔽层,对所述多晶硅有源层30进行离子重掺杂,形成多晶硅有源层30两端的源漏极接触区31。

具体地,所述步骤s5中,对所述多晶硅有源层30进行离子重掺杂时的掺杂离子浓度为1x1013-1x1015ions/cm2

步骤s6、如图11所示,对所述栅极金属层50进行第二次蚀刻,使所述准栅极51两侧被横向蚀刻而宽度减小,由准栅极51得到栅极55,剥离去除光阻层90。

具体地,所述步骤s6中,由于光阻层90边缘处的厚度较薄,在对所述栅极金属层50蚀刻的同时会蚀刻部分光阻层90,光阻层90边缘较薄处可以被完全蚀刻,所述栅极金属层50上没有被光阻层90保护的部分会被蚀刻掉,而使得准栅极51两侧宽度减小。

步骤s7、如图12所示,以所述栅极55为遮蔽层,对所述多晶硅有源层30进行离子轻掺杂,得到多晶硅有源层30中部的对应位于所述准栅极51下方的沟道区32以及位于所述源漏极接触区31和沟道区32之间的ldd区33。

具体地,所述步骤s7中,对所述多晶硅有源层30进行离子轻掺杂时的掺杂离子浓度为1x1012-1x1014ions/cm2

具体地,本发明的ltpstft基板的制作方法同时适用于nmos型和pmos型ltpstft基板,以nmos型ltpstft基板为例,对所述多晶硅有源层30进行的沟道掺杂、离子重掺杂、离子轻掺杂为均n型离子掺杂,所掺入的离子为磷(p)离子或其他n型元素离子。同理,对于pmos型ltpstft基板为例,对所述多晶硅有源层30进行的沟道掺杂、离子重掺杂、离子轻掺杂为均p型离子掺杂,所掺入的离子为硼(b)离子或其他p型元素离子。

本发明的ltpstft基板的制作方法,对于多晶硅有源层30的离子重掺杂和离子轻掺杂均不需要光罩,而全是通过栅极金属层50自对准来进行掺杂的,这就保证多晶硅有源层30两端的ldd结构是对称的,使得器件更稳定,同时通过对栅极绝缘层40进行一次蚀刻处理,使得栅极绝缘层40在对应重掺杂区域即源漏极接触区31的部分与对应沟道区32和ldd区33的部分厚度不同,通过减薄对应于重掺杂区域上方的栅极绝缘层40的厚度,可提高离子注入效率,保证掺杂离子有效注入到目标位置,提高tft器件的电学特性。

综上所述,本发明的ltpstft基板的制作方法,通过对栅极金属层进行两次蚀刻,以采用自对准的方式完成对多晶硅有源层的离子重掺杂和离子轻掺杂,能够使得多晶硅有源层的ldd结构在栅极两侧对称分布,有利于提高器件特性,相较于传统技术更为稳定可靠,并可以减少制程光罩数量,节省光罩成本、运行成本、材料成本和时间成本,并进一步通过栅极绝缘层薄化工艺,减薄对应于多晶硅有源层重掺杂区域上方的栅极绝缘层的厚度,可以有效提高离子注入效率。

以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1