用于增强抗疲劳性的Pb-In-Sn高C-4的制作方法

文档序号:6819715阅读:295来源:国知局
专利名称:用于增强抗疲劳性的Pb-In-Sn高C-4的制作方法
技术领域
本发明涉及一种柱形焊料结构,该焊料结构当软熔并用来接合衬底时提供增强的抗疲劳寿命的性能,更具体地说,本发明涉及一种焊料结构,该焊料结构在其一端具有一个金属部分,该金属部分与焊料形成一种合金,并且此种焊料结构被用来在如将芯片接合到衬底上的各种电子元件中形成C-4连接。
在该技术中使用焊料来接合各种材料如一种电子结构的元件是众所周知的。在电子学领域,有无数的电子元件需要连接到其它电子元件上或其它的封装层上。这些例子包括将各集成电路芯片安装到一个金属化的衬底、多层陶瓷衬底、层状有机衬底、玻璃陶瓷衬底、插件板(直接芯片连接,DCA)、及任何由满足热性能和机械性能要求的复合材料制成的衬底上。
为了在叙述本发明时清楚和一致起见,本说明书将针对用可控制的熔塌芯片连接(Controlled Collapse Chip Connection)(C-4)技术制作的电子元件,尤其是针对与球形焊料块相比的C-4焊料柱的使用。
C-4技术是一种由国际商用机器公司(IBM)研制出的互连技术,它作为一种引线接合的代用方法。概括地说,在一种应用中,将一个或多个集成电路芯片安装在一个单层或多层衬底上,并通过许多个通称为焊料块或焊料柱的电连接件将芯片上的焊接区以电连接方式连接到衬底上的相应焊接区上。一个C-4构形的例子是一种方格栅阵列,该格栅阵列在10密耳中心上是11个C-4焊接区长X11个C-4焊接区宽。除了其中一个交叉点一般被移动用于定向目的之外,在格栅的每个交叉点处都设置一个5密耳的焊料块。一种通用的芯片是一个“单片计算机”电路,它在29×29的面积阵列内有762个C-4焊料块。
该C-4技术延展到其它的应用,并且现在已在混合模块应用中的薄膜电阻器和组合芯片上使用。对这种应用的焊接区是很大的-直径约为25密耳。在另一极端情况下,已经采用C-4用于砷化镓(GaAs)波导器连接的精密定位和对齐。已报导的最密集的阵列是在约2密耳的中心上具有128×128个1密耳焊料块的阵列,这导致16000个焊接区。
该C-4技术一般利用沉积在芯片上之焊料可浸润各金属终端上的球形焊料块和欲接合于其上的衬底上之焊料可浸润终端的匹配足迹。将倒转芯片(倒装片)对准衬底,并通过使各焊料块软熔同时完成所有接合。利用一种球形限制冶金法(BLM)焊接区限制芯片上的流动,此焊接区一般是一种蒸发的薄膜金属如铬、铜和金的圆形焊接区,该圆形焊接区提供通道及用于焊料块的可焊接导电基底的密封。一种很厚的蒸发焊料的沉积物在芯片和衬底之间起主要导电和接合材料的作用。
在选择用于C-4的焊料合金时,熔点是一个需要考虑的问题。各种铅焊料,尤其是95 Pb/5 Sn焊料因为它们的熔点高至约315℃,故已广泛用于各种氧化铝陶瓷衬底。它们用于芯片连接的使用可以在模块-插件或插件-插件板封装层中采用其它低熔点焊料,而不重新熔化各芯片的C-4。已经采用了中等熔点的焊料如低共熔点63 Sn/37 Pb(熔点183℃)和熔点约为220℃的50 Pb/50 In。在由R.R.Tummala和Rymaszewski编辑、1989年由Van Nostrand Reinhold出版的“微电子学插件手册”(“Microelectronics Packaging Handbook”)第361-391页中,讨论了将芯片C-4与插件互相以及在C-4技术中所采用的通用焊料,并且在此将这篇文献引做参考。
一旦各焊料块或焊料柱被沉积在BLM上,则使用C-4技术相对直截了当地将芯片的BLM接合到衬底上。通常都是将焊剂(无论是用于高铅焊料的水白型松香,还是用于低铅和其它低熔点焊料的水溶性焊剂)作为一种临时胶粘剂放置在待接合的衬底上,以将芯片保持在合适的位置。然后使这一组件经受一个软熔热循环,其中芯片上的焊接区和衬底上的焊接区由于焊料的高表面张力而自动对准以完成该组装。一旦芯片接合操作完成,就采用如氯化溶剂或二甲苯这类溶剂进行焊剂残留物的清洁。然后对该组件进行通电试验。
各种新技术正持续地增加每个器件的C-4互连数目和/或芯片的尺寸,它们二者都影响各焊料互连点上的应力。当芯片变得越来越紧密时,较高的输入/输出计数将把各终端的面积矩阵推进到在一个20mm的芯片上具有多达155,000个焊接区。这将导致焊接区的数目增加而焊接区的尺寸和间距减小。各种新技术将使焊料接合点产生大的应变,于是需要一些新的焊料和焊料结构以满足这些类型的互连点的抗疲劳需求。
考虑到现有技术的各种问题和不足,因此,本发明的一个目的是提供一种焊料和焊料结构,当这种焊料和焊料结构被用来接合衬底尤其是电子衬底,如将一个芯片接合到一个多层陶瓷衬底上时,它提供增强的抗疲劳寿命的特性。
本发明的另一个目的是提供一种采用本发明具体详细说明的柱形焊料结构用于完成C-4焊料互连的方法。
本发明的还一个目的是提供含有C-4的各种电子结构,这些电子结构是采用本发明的焊料柱结构和方法制成的。
本发明的其它目的和优点的一部分将是显而易见的,而一部分将从说明书中明显看出。
上述目的和其它目的对该领域的那些专业人员来说是很明显的,这些目的通过本发明来实现,在第一方面,本发明涉及一种最好是呈柱形的焊料结构,该柱形焊料结构当用来将电子衬底焊接在一起时形成一种增强的耐疲劳的焊料接头,该焊料结构包括一个焊料柱,此焊料柱在一端焊接到其中一个待接合的电子衬底上的各焊接区或其它接合位置上,而在另一端具有一层金属,当焊料柱被软熔以接合另一个衬底时,该金属层与焊料(最好是单相)形成一种三元合金。该金属层最好是铟。
应该理解,软熔温度最好是低于焊料的熔点,并且与该金属层接触的焊料由于形成一种三元合金而在这样一个较低的温度下熔化。该焊料结构可以是高达约15密耳或更高的焊料柱,一般是高达约10密耳,并且具有高达约1.5密耳或更高的铟(金属)的厚度。一种优选的焊料柱具有高度约9-15密耳的焊料和高度约0.5-2密耳的金属层。该焊料最好包括按重量计高达约3%的锡,而余量为铅。该焊料柱的高度可以超过其直径的三倍(高度与直径之比通常称之为纵横比),因为高的纵横比提供增强的抗疲劳性。一般说来,一个高度超过其直径三倍的C-4柱将大致具有约为标准C-4柱疲劳寿命的25倍,该标准C-4柱具有0.6的纵横比。
在本发明的另一方面,提供一种方法用于在一个电子元件组件中完成C-4焊料的电连接,该方法包括以下步骤
将焊料施加到该电子元件第一衬底表面上的各个金属化焊接区上,并形成一种焊料结构,该焊料结构最好是柱形结构,将该柱形结构焊接到各焊接区上;在该焊料结构的未焊接端上形成一层金属,最好是锢,该金属在一个软熔循环期间熔化,以便该焊料柱能将第二衬底上的各焊接区焊接到第一衬底上的相应各焊接区上,并且该金属与该焊料结构中的焊料形成一种三元合金;将待接合的电子元件组件第二衬底表面上的各焊接区定位到邻近于第一衬底上相应各焊接区的焊料柱的端部;将各衬底加热到一个足以熔化铟和部分焊料柱的温度,从而在该焊料结构和第二衬底上的各焊接区之间形成一种焊料-铟三元合金(Pb-Sn-In)和合金接头;和冷却焊接好的互连组件。
在本发明的又一个方面,用上述方法制成的各电子组件也装备有电子组件,此电子组件包括已连在一起的各电子元件,这些元件包括一个多层陶瓷衬底和一个半导体芯片。
根据本发明的各个特征是新颖的,并且本发明各部件的特征在所附权利要求中具体加以陈述。这些图仅用于图解的目的,而没有按比例画出。然而,在构造和操作方法两方面可通过参照下面结合附图所作的详细说明理解本发明本身,其中

图1A-1E示出一种方法,该方法用于形成本发明的一种焊料结构,并使用该焊料结构将芯片上的焊接区焊接到衬底上的焊接区上。
图2是一个曲线图,它示出软熔之后所形成的Pb-Sn-In三元合金接头厚度和合金组成在从180℃到265℃的不同软熔温度下与焊料柱上铟层厚度的关系曲线。
图3是一个曲线图,它示出在软熔后所形成的Pb-Sn-In三元合金接头厚度与在焊料柱结构上各种铟层厚度下的软熔温度的关系曲线。该图还示出了所形成的三元合金的组成。
在描述本发明的优选实施例时,这里将参照这些附图中的图1-3,图中相同的标号表示本发明的相同的部件,本发明的各部件在图中不一定按比例示出。
现有技术的任何合适的焊料都可用来制造本发明的一种焊料柱结构。最好该焊料是一种通常称之为二元焊料的焊料,并且此焊料包括按重量计约占1-5%的锡、最好是约3%的锡,而其余成分主要是包括常见杂质的铅。最好是使用纯铅。由于其业已证明的效果而优选采用的专用合金是一种焊料,该焊料含约3%(按重量计)的锡、其余成分主要是铅。
本发明的焊料柱结构可以用任何合适的形成方法形成。一种优选的方法是将一种经预先量测或预先称重的焊料量熔化(浇铸)到各模具腔内并冷却该混和物,以形成固体形式的焊料。对含3%锡的焊料而言,软熔(熔化)温度约为350℃-360℃。
一般说来,一种形成高C-4焊料柱结构的方法是利用石墨舟或石墨模,此舟、模部件上钻出一些圆柱形孔,该孔的深度等于所需的焊料柱高度。这些孔与芯片或晶片上的C-4 BLM金属化焊接区对准。将合适的Pb-Sn组成、即Pb-3%Sn的焊丝插入各孔中并在约350℃下软熔,因此形成一个铸造的柱,该柱的基底在软熔期间已同BLM薄金属膜焊接区反应,通过在Sn和BLM的反应金属之间形成金属间化合物而在各焊接区和柱的基底之间形成一种坚固的接合。在这个接头处没有铟,而焊料柱结构被焊接(连接)到衬底的各焊接区上。
另一种方法包括将熔融焊料注入(IMS法)如美国专利号5,244,143中所示的空腔/孔中,而不是采用预成型的焊丝。这些方法中二者都可适合于或直接可用于如这里所提出的高C-4的铸造。
在衬底上软熔并形成焊料柱结构之后,加入铟或其它的合金金属层。可以使用任何厚度的金属层,该金属层导致形成一种有延展性的三元合金接头,如Pb-Sn-In。在芯片接合期间,该接合形成是在一个低于软熔温度的温度下发生的,该软熔温度用来形成焊接到BLM焊接区上的焊料结构。铟或其它金属层的厚度可以改变高至1密耳或更高,如对大多数应用来说改变0.5-2密耳,而在柱高和柱直径方面与互连尺寸无关。铟在约155℃下熔化,而芯片接合可以很容易地在例如200-250℃的软熔温度下进行,同时具有极好的可浸润性。在芯片接合处,铅和锡开始溶解(熔化)一起进入熔融的铟中。该溶解过程持续直到三元合金中的铅-锡含量达到该三元合金溶液固化时的含量。本发明一个方面的重要特征是在三元合金中铅与锡之比(Pb/Sn)与Pb-Sn二元合金中的比例大体上相同。当焊料中的锡含量低于3%时,就发现了这种情况。当Pb-Sn焊料柱溶入熔融铟中时,在焊料的Sn-Pb比值下这能如此均匀地进行,因为假定打乱那个比例会要求Sn或Pb在该固体合金的内部扩散,与溶解动力学相对应,该扩散过程非常慢。因此,固化温度决定了该接合的三元合金的组成。假定该二元焊料合金亦即Pb-3%Sn以一个固定的组成比溶解(熔化),则在固化时所产生的三元合金在一个给定的芯片接合温度下具有相同的组成,而与铟层的厚度无关(该铟层厚度一般比二元焊料柱的高度小很多)。如果铟层形成得较厚,则所产生的三元合金接头必然成正比地较厚。因此,人们可以通过改变铟层的厚度制成一种更薄或更厚的三元接头,该铟层可以通过蒸发、电镀或作为一种糊剂涂敷到焊料柱上来完成。
为了改变三元接头的组成,必须改变芯片接合温度。因此,为了重熔该接头,温度必须刚好超过芯片被接合时的温度。因此这样形成的三元合金的机械性能和化学性能处在该方法所要求的实际温度范围内。结果,人们可以调节接合温度,以便能在某个合适的温度下重熔,或防止被一个随后的工序重熔。这个范围在成本上和克服组件制造过程期间分级温度顺序的能力方面是重要的。另外,因为所形成的三元合金最好是一种固体溶液,所以即使改变组成这也是可能的,并且对于与疲劳和腐蚀有关的各种性能是一致的。
参看图1A-1E,这些图示出本发明焊料柱结构的形成及使用焊料柱来接合两个衬底。在图1A中,第一衬底一般以10表示,它包括第一底部衬底11和氧化硅层12。衬底金属敷层13具有一个在其上形成的BLM焊接区14。在图1B中,模具15具有一个开口15a,该模15被定位在层12的表面上,该开口15a与BLM焊接区14相对应并对齐。一种含3%锡(重量百分比)的Pb-Sn焊料合金丝16插入开口15a中。
图1B的结构被软熔,熔化了与图1C中所示的软熔焊料柱17一起部分充填模具开口15a的焊料合金丝。示出一层铟18充填模具15顶部的开口15a,形成本发明的焊料柱结构19。该焊料柱结构19如图10中所示被焊接到BLM14上。该柱结构19的高度是软熔焊料柱17的高度A与铟层18的高度B二者之和。在这个例子中,A约为5密耳,而B约为0.7密耳。
图1D中所示的焊料柱结构19通过在230℃下软熔而接合第二衬底20的焊接区23形成一种接合的组件25。软熔之后,该互连件24具有一个如22所示的焊料柱高度A’,并且现在约为4.25密耳高,而如21所示的三元合金接头高度B’约为1.2密耳高。焊料柱22仍是初始的二元焊料,它的组成为含3%的(以重量计)Sn,其余成分为铅。该三元焊料接头21的组成为按重量计约占40%的铟、1.8%的锡、其余成分为铅。
图2示出在固化时软熔形成的Pb-Sn-In三元合金接头厚度与从180°-265℃的不同软熔温度下的铟层厚度的关系曲线。每个温度下的三元合金的组成不同,亦即从180℃下的Pb-1.05Sn-65In到265℃下的Pb-2.25Sn-25In,而与初始的铟层厚度无关。例如,如图1A-1E中所示,一个0.7密耳的铟层在230℃下产生一个1.2密耳(30微米)厚的Pb-1.8Sn-38In三元合金接头。如果软熔温度升高到265℃,则在Pb-2.25Sn-25In的组成下,该三元合金接头的厚度约为1.94密耳或48.5微米。在230℃的软熔温度下,当改变铟层的厚度时,这也成比例地改变三元接头的厚度,但该三元合金的组成保持固定。因此,在相同的软熔温度下,当铟层从0.7密耳增加到1.2密耳时,导致三元层成比例地从1.2密耳增加到2密耳。
图3示出在固化时的三元合金接头厚度(以微米计)与从10到25微米的不同铟层厚度下的芯片接合温度的关系曲线。该曲线图还以两个分开的标度示出与每个温度有关的Sn和In的浓度。
本发明的一个重要特征是通过按照合金热力学适当选择铟厚度和软熔温度以便在任何温度下都能够控制该三元合金接头的组成和厚度。当该三元合金随着更多的Pb-Sn合金溶解(熔化)进入液态(熔融)金属相而达到合适的组成时,该三元合金在软熔温度下固化。软熔温度决定组成,而初始的铟厚度决定接头处的三元合金的最终厚度。因此,通过任意地改变软熔温度和铟的厚度,可以作出无限数量的选择。对该三元合金来说,要强调的是,对所示的例子而言,锡含量低于3%时,它基本上是一种单相合金而与铟的浓度无关,也就是说,如果制成焊料柱的Pb-Sn合金是单相,则铟将不改变相态并将与焊料形成一个单相。这个系统的优点在于该三元接头的机械性能(主要是疲劳性能)至少和二元(Pb-3Sn)合金的那些性能一样好,这能保证在热循环疲劳期间的应力均匀地分布,因此防止例如当一种Pb-Sn易熔合金和高铅的Pb-Sn元合金接合时由于机械性能和不均匀性的突变而造成的高的局部应力。二元合金的强度、刚度和硬度一般随锡含量增加而增加,而当与高锡的Pb-Sn易熔合金熔合成合金时,它的延展性降低。另一方面,对广范围的芯片接合温度的Pb-Sn-In三元合金接头的组成范围将具有至少和Pb-3Sn焊料柱一样好的抗疲劳性和耐腐蚀性。其它电迁移问题与这些焊料接头一样并未涉及。事实上,这个问题不是特别相关,因为在组件的BLM侧没有铟,电子流(电子风)从BLM流入焊料的通道尺寸很小,该组件的BLM侧是最易发生电迁移的,并且由于在界面处焊剂发散而易发生焊料消耗。但是BLM侧不含铟,因此电迁移极微小。在任何情况下,因为含铟的三元合金基本上象Pb-3Sn二元合金一样抗电迁移,所以仍然没有关系。应该指出,若用本发明的这种三元合金体系,则各衬底可以在高于铟熔点的任何温度下接合,该温度满足所希望的厚度和组成,并且峰值处于较低温度的随后的温度循环将不会重熔先有的接头并且将不会损害它的关键性能。
假定该三元焊料接头的柔韧性和紧密性是一种单相的结果,该单相保证在该过程中所涉及的组成和在制造该组件时常处温度的整体范围内具有均匀性和各向同性的性能。对各种高焊料柱来说,由于在接头处所形成的三元合金的可延展性与接合温度和最终组成无关,所提出的三元合金体系和有关方法将使其抗疲劳性增强高达10-25倍(取决于纵横比)。
已经发现,与用现有技术的焊料柱完成的各焊料接头相比,采用本发明的焊料提供焊接接头如C-4接头具有延长的抗疲劳寿命。在忽略误差的情况下,以疲劳寿命表示的抗疲劳增强一般比通常用来完成焊料接头的各现有技术合金要大二至三倍。
本发明的另一个好处是无论是否需要模块气密性和/或环氧树脂是否未填满都能达到延长焊料接头的疲劳寿命。密封模块和/或使用未填满的环氧树脂一般被用来延长元件的寿命,而采用疲劳寿命增强的三元焊料就不需要用这类技术来增加电子元件的寿命。如果应用这类技术,则用本发明的焊料将会更加增强元件寿命的性能。
这里还应考虑,可以用其它的金属如锑来形成一种三元合金。另外,可以用多种金属层或混合金属层来与熔化的焊料柱形成合金。尽管优选形成单相焊接合金(三元、四元等),但也可以形成多相合金并将其用作焊接接头。
尽管已经结合一个特定的优选实施例详细地说明了本发明,但很显然,对于此领域中那些专业人员来说,按照上述说明,许多替换、修改和变化是显而易见的。因此应该考虑,所附属的权利要求书将包括属于本发明真实范围和精神内的任何这类替换、修改和变化。
因此,在描述了本发明之后,权利要求如下。
权利要求
1.一种呈柱形的焊料结构,当用该焊料结构将各电子衬底接合在一起时,形成一种增强的抗疲劳的焊料接头,该焊料结构包括一个焊料柱,该焊料柱在其一端固定到其中一个待接合的电子衬底上的各焊接区或其它焊接位置上,并且在另一端具有一层金属,当该焊料柱软熔接合另一个衬底时,该金属与焊料形成一种三元合金。
2.权利要求1所述的焊料结构,其特征在于该金属层是铟。
3.权利要求2所述的焊料结构,其特征在于该焊料包括按重量计约为1-5%的锡,而其余成分主要是铅。
4.权利要求3所述的焊料结构,其特征在于该焊料含有按重量计约为3%的锡。
5.权利要求3所述的焊料结构,其特征在于该焊料结构的高度高达约为10密耳。
6.权利要求3所述的焊料结构,其特征在于该焊料结构具有高度高达约为10密耳的焊料柱和高度高达约为1.5密耳的金属层。
7.权利要求3所述的焊料结构,其特征在于焊料结构具有高度约为9-15密耳的焊料和高度约为0.5-2密耳的金属层。
8.权利要求7所述的焊料结构,其特征在于该焊料结构的高度与该焊料结构直径的比值高达约为3。
9.一种用于在一个电子元件组件中形成C-4焊料电路互连的方法,其特征在于它包括以下步骤将焊料施加到电子元件组件第一衬底表面上的各个金属化焊接区上,并形成柱形焊料结构,该焊料结构被焊接到各焊接区上;在该焊料结构的未焊接端上形成一层金属,该层金属在软熔周期期间熔化,以便该焊料柱能将第二衬底上的各焊接区焊接到第一衬底上的各对应焊接区上,并且该层金属与该焊料结构的焊料形成一种三元合金;将待接合的电子元件组件的第二衬底表面上的各焊接区定位到邻近于第一衬底上各对应焊接区的焊料柱的端部;将各衬底加热到一个足以熔化该金属和部分焊料柱的温度,从而在该焊料结构和第二衬底上的各焊接区之间形成一种焊料-金属三元合金和合金接头;和冷却焊接好的互连组件。
10.权利要求9所述的方法,其特征在于该金属是铟。
11.权利要求10所述的方法,其特征在于该焊料包括按重量计约为1-5%的锡,而其余成分量主要是铅。
12.权利要求11所述的方法,其特征在于该焊料含有按重量计约为3%的锡。
13.权利要求11所述的方法,其特征在于该焊料结构的高度高达约为10密耳。
14.权利要求11所述的方法,其特征在于该焊料结构具有高度高达约为10密耳的焊料柱和高度高达约为1.5密耳的金属层。
15.权利要求11所述的方法,其特征在于该焊料结构具有高度约为9-15密耳的焊料和高度约为0.5-2密耳的金属层。
16.权利要求15所述的方法,其特征在于该焊料结构的高度与该焊料结构的直径之比值高至约为3。
17.一种电子元件组件,其特征在于它用权利要求9所述的方法制成。
18.一种电子元件组件,其特征在于它用权利要求11所述的方法制成。
19.权利要求17所述的电子元件组件,其特征在于该第一衬底是一个多层陶瓷衬底,而该第二衬底是一个芯片。
20.权利要求18所述的电子元件组件,其特征在于该第一衬底是一个多层陶瓷衬底,而该第二衬底是一个芯片。
全文摘要
一种焊料柱结构,该结构对利用C-4互连接合电子元件特别有用,该焊料柱结构包括一个焊料柱,该焊料柱在其一端固定到其中一个待接合的衬底上,并在另一端具有一层铟。在软熔期间,为了接合另一个衬底,铟和部分焊料柱一起熔化形成一种具有增强的抗疲劳性的Pb-Sn-In三元合金接头。还提供一种利用该焊料柱来制成各电子元件组件的方法,并提供了用该方法和焊料柱制成的电子元件组件。
文档编号H01L23/485GK1205927SQ9811495
公开日1999年1月27日 申请日期1998年6月22日 优先权日1997年7月22日
发明者G·迪贾科莫 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1