半导体结构及其制造方法

文档序号:10614495阅读:283来源:国知局
半导体结构及其制造方法
【专利摘要】本公开提供一种半导体结构,包括:半导体元件;及钝化层,包括硫化铟形成于半导体元件的表面上,其中半导体元件的表面包括铟基三五族化合物半导体材料。本公开亦提供此半导体结构的制造方法。本公开通过形成一硫化铟钝化层,以提供较佳的铟基半导体表面的品质,齐聚有较低的界面态(Dit)密度、较低的肖特基阻障高度(Schottky barrier height)、且可抑制原生氧化物层的形成等等。
【专利说明】
半导体结构及其制造方法
技术领域
[0001]本公开涉及半导体技术,且特别涉及半导体结构及其制造方法。
【背景技术】
[0002]半导体产业已进入纳米技术工艺,其追求更高的装置密度、更高的效能,以及更低的成本。在集成电路发展的过程中,功能密度(例如单一晶片面积上互连的装置的数量)增加,而几何尺寸(例如可使用工艺步骤制造的最小元件或线)变小。此微小化的过程通过增加生产效率以及降低相关成本而带了利益。此微小化过程亦增加了制造集成电路的复杂度。为了实现上述进一步微小化的发展,于集成电路工艺中需要相似的发展。例如,例如化合物半导体的新颖的半导体材料被研究以补充或取代传统的硅基板。虽然这些替代的半导体材料通常具有较佳的电性,然而其亦常具有其各自的挑战。因此,转换成更为严格的材料成为引入新工艺步骤的动机。因此,虽然目前的半导体制成步骤大致上皆符合需求,然而其并非各方面皆令人满意。

【发明内容】

[0003]本公开提供一种半导体结构的制造方法,包括:提供半导体表面;于半导体表面上以第一水溶液进行湿式化学氧化(wet chemical oxidat1n)步骤,以形成氧化物层于半导体表面上;及于氧化物层上以第二水溶液进行硫化(sulfurizat1n)步骤,以形成硫化物层于半导体表面上。
[0004]本公开还提供一种半导体结构,包括:半导体元件(semiconductor feature);及钝化层,包括硫化铟(indium sulfide)形成于半导体元件的表面上,其中半导体元件的表面包括铟基三五族化合物半导体材料(indium-based II1-V compound semiconductormaterial)。
[0005]本公开又提供一种半导体结构的制造方法,包括:提供铟基半导体表面(indium-based semiconductor surface);于铟基半导体表面上以第一溶液进行湿式化学氧化(wet chemical oxidat1n)步骤,以形成氧化物层于铟基半导体表面上;及于氧化物层上以第二溶液进行硫化(sulfurizat1n)步骤,以形成硫化铟层(indium-sulfidelayer)于铟基半导体表面上。
[0006]本公开通过形成一硫化铟钝化层,以提供较佳的铟基半导体表面的品质,齐聚有较低的界面态(Dit)密度、较低的肖特基阻障高度(Schottky barrier height)、且可抑制原生氧化物层的形成等等。藉此,被此硫化铟层钝化的半导体元件的性能可以显著提升。
[0007]为让本公开的特征、和优点能更明显易懂,下文特举出较佳实施例,并配合所附附图,作详细说明如下。
【附图说明】
[0008]图1为本公开一些实施例的半导体结构的制造方法的流程图。
[0009]图2为本公开一些实施例中对应图1的方法的示意图。
[0010]图3A-3C绘示本公开实施例包括钝化层的半导体元件的剖面图。
[0011]图4A-4C绘示本公开另一实施例包括钝化层的半导体元件的剖面图。
[0012]图5A-5B显示本公开一些实施例中不同的预清洗溶液及/或不同的湿氧化溶液对于硫化铟层及经钝化的铟基半导体表面的影响。
[0013]其中,附图标记说明如下:
[0014]101步骤;
[0015]103步骤;
[0016]105步骤;
[0017]107步骤;
[0018]201步骤;
[0019]202铟基三五族半导体材料;
[0020]203步骤;
[0021]204氧化铟层;
[0022]205步骤;
[0023]206硫化铟层;
[0024]300半导体结构;
[0025]301半导体基板;
[0026]303隔离元件;
[0027]305第一半导体层;
[0028]307鳍结构;
[0029]309钝化层;
[0030]311栅极介电层;
[0031]313栅极接触;
[0032]320栅极堆叠;
[0033]400半导体结构;
[0034]401半导体基板;
[0035]403隔离元件;
[0036]405第一半导体层;
[0037]407鳍结构;
[0038]409钝化层;
[0039]413钛/氮化钛层;
[0040]415介电层;
[0041]417金属接触;
[0042]501柱;
[0043]502标线;
[0044]504表面组成;
[0045]506硫化物厚度;
[0046]530方法;
[0047]540 方法;
[0048]550 方法。
【具体实施方式】
[0049]以下针对本公开的半导体结构及其制造方法作详细说明。应了解的是,以下的叙述提供许多不同的实施例或例子,用以实施本公开的不同样态。以下所述特定的元件及排列方式仅为简单清楚描述本公开。当然,这些仅用以举例而非本公开的限定。此外,在不同实施例中可能使用重复的标号或标示。这些重复仅为了简单清楚地叙述本公开,不代表所讨论的不同实施例及/或结构之间具有任何关连性。再者,当述及一第一材料层位于一第二材料层上或之上时,包括第一材料层与第二材料层直接接触的情形。或者,亦可能间隔有一或更多其它材料层的情形,在此情形中,第一材料层与第二材料层之间可能不直接接触。
[0050]必需了解的是,附图的元件或装置可以本领域技术人员所熟知的各种形式存在。此外,当某层在其它层或基板「上」时,有可能是指「直接」在其它层或基板上,或指某层在其它层或基板上,或指其它层或基板之间夹设其它层。
[0051]此外,实施例中可能使用相对性的用语,例如「较低」或「底部」及「较高」或「顶部」,以描述附图的一个元件对于另一元件的相对关系。能理解的是,如果将附图的装置翻转使其上下颠倒,则所叙述在「较低」侧的元件将会成为在「较高」侧的元件。
[0052]在此,「约」、「大约」、「大抵」的用语通常表示在一给定值或范围的20%之内,较佳是10%之内,且更佳是5%之内,或3%之内,或2%之内,或I %之内,或0.5%之内。在此给定的数量为大约的数量,亦即在没有特定说明「约」、「大约」、「大抵」的情况下,仍可隐含「约」、「大约」、「大抵」的含义。
[0053]能理解的是,虽然在此可使用用语「第一」、「第二」、「第三」等来叙述各种元件、组成成分、区域、层、及/或部分,这些元件、组成成分、区域、层、及/或部分不应被这些用语限定,且这些用语仅是用来区别不同的元件、组成成分、区域、层、及/或部分。因此,以下讨论的一第一元件、组成成分、区域、层、及/或部分可在不偏离本公开的教示的情况下被称为一第二元件、组成成分、区域、层、及/或部分。
[0054]除非另外定义,在此使用的全部用语(包括技术及科学用语)具有与本领域技术人员所通常理解的相同涵义。能理解的是这些用语,例如在通常使用的字典中定义的用语,应被解读成具有一与相关技术及本公开的背景或上下文一致的意思,而不应以一理想化或过度正式的方式解读,除非在此特别定义。
[0055]本公开实施例可配合附图一并理解,本公开的附图亦被视为公开说明的一部分。需了解的是,本公开的附图并未以实际装置及元件的比例绘示。在附图中可能夸大实施例的形状与厚度以便清楚表现出本公开的特征。此外,附图中的结构及装置以示意的方式绘示,以便清楚表现出本公开的特征。
[0056]在本公开中,相对性的用语例如「下」、「上」、「水平」、「垂直」、「之下」、「之上」、「顶部」、「底部」等等应被理解为该段以及相关附图中所绘示的方位。此相对性的用语仅是为了方便说明之用,其并不代表其所叙述的装置需以特定方位来制造或运作。而关于接合、连接的用语例如「连接」、「互连」等,除非特别定义,否则可指两个结构直接接触,或者亦可指两个结构并非直接接触,其中有其它结构设于此两个结构之间。且此关于接合、连接的用语亦可包括两个结构都可移动,或者两个结构都固定的情况。
[0057]应注意的是,在后文中「基板」一词可包括半导体晶片上已形成的元件与覆盖在晶片上的各种膜层,其上方可以已形成任何所需的半导体元件,不过此处为了简化附图,仅以平整的基板表示之。此外,「基板表面」包括半导体晶片上最上方且暴露的膜层,例如一硅表面、一绝缘层及/或金属线。
[0058]本公开有关于半导体装置,且特别有关于具有铟基材料三五族化合物半导体表面的半导体装置。本公开提供一可有效钝化此铟基半导体表面且同时可具有足够工艺宽裕度以及具有更高工艺整合度的半导体制造方法。铟基三五族化合物半导体表面的材料可包括 InAs、InP、InSb、InN、InxGa1 xAs、InxAl1 xAs、InxAl1 XP、InxGa1 XN、InxGa1 XP 及 / 或InxAs1 JbyP1 y0其中「x」、「1-x」、「y」及「l_y」为对应的材料的比例。于InxGa1 xAs的实施例中,「X」表示InAs的比例,而「Ι-x」表示GaAs的比例。为了清楚描述本公开,所有比例(例如x、l-x、yU-y)将于后文中省略。虽然本公开描述本公开的方法用于钝化铟基材料的表面,然而此方法亦可用于其它半导体材料,例如硅、锗、硅基半导体材料及/或锗基半导体材料。
[0059]参见图1,图1为本公开一些实施例中进行硫化步骤,以于半导体表面上形成钝化层的方法100的流程图。方法100仅为举例说明知用,并非用以限定本公开。额外的步骤可于方法100之前、之中、之后实施。且本公开中所描述的一些步骤可于其它实施例中被取代、省略或对调。
[0060]方法100始于步骤101,该步骤提供一半导体表面,该表面包括铟基三五族化合物半导体材料(indium(In)-based II1-V compound semiconductor material) 0 如前文所述,此铟基三五族化合物半导体材料可包括InAs、InP、InSb、InN、InGaAs, InAlAs、InAlP、InGaN、InGaP及/或InAsSbP。此将于本公开方法中被钝化的铟基半导体表面可通过适合的方法形成,例如外延成长或沉积。此铟基半导体表面可亦可为主体结构(bulk structure)、半导体元件或材料的露出的表面。
[0061]根据一些实施例,方法100继续进行步骤103,此步骤移除污染物,此污染物包括原生氧化物层(native oxide layer)、污染层、微粒物质及/或其它种类的形成于铟基半导体表面上的污染物。一般而言,例如为原生氧化物层的污染物以例如为氯化氢的湿式化学溶液移除。此用以移除污染物的湿式化学溶液被称为预清洗溶液(pre-clean solut1n) 0此外,铟基半导体表面可通过超高真空分子束外延(ultra-high vacuum molecular beamepitaxy)机台沉积,并留在机台中。由于半导体表面留在真空的机台中,在此实施例中,此表面可大体上维持不被污染。此步骤103为选择性的。
[0062]于移除铟基半导体表面上的污染物后,方法100进行至步骤105,以于铟基半导体表面上形成氧化铟层。根据一些实施例,此氧化铟层通过湿式氧化步骤形成。更详细而言,湿式氧化步骤可包括将此铟基半导体表面暴露于氨-过氧化氢混合物(ammonia-peroxidemixture, ΑΡΜ,ΝΗ40Η+Η202)中。在一些实施例中,通过将氨-过氧化氢混合物施加于砷铟镓(InGaAs)表面,可于砷铟镓(InGaAs)表面上形成氧化铟(In2O3)层。
[0063]仍然参见步骤105,此湿式氧化步骤可于25°C至60°C进行。详细而言,在湿式氧化步骤中,氨-过氧化氢混合物可通过湿浸步骤(wet dipping process)或旋转涂布步骤(spin-coating)施加于表面,其反应时间为10秒至10分钟。在一些实施例中,氧化铟层的厚度主要取决于反应时间、反应温度及/或氨-过氧化氢中氨的浓度。例如,较长的反应时间与较高的反应温度可于铟基表面上形成较厚的氧化铟层。
[0064]继续至步骤107,形成硫化铟层于铟基表面上。在一些实施例中,硫化铟层通过浓度为0.1重量%至20重量%的硫化钱(ammonium sulfide,(NH4)2S)水溶液形成于步骤105形成的氧化铟层上。此硫化钱可通过湿浸步骤(wet dipping process)或旋转涂布步骤(spin-coating)施加于氧化铟层以形成硫化铟层于铟基半导体表面上,其反应时间为10秒至10分钟,其反应温度为25°C至80°C。在一些实施例中,此硫化铟层可通过一系列化学反应形成。此化学反应包括硫化铵解离、硫化上述氧化铟层等等。继续参见上述于砷铟镓(InGaAs)表面上形成氧化铟(In2O3)层的实施例,此硫化铵解离可包括:于pH值为7至
12(例如I %的硫化铵的pH值为9.5)下,硫化铵解离产生硫化作用的HS。
[0065](NH4) 2S — 2NH/+S2
[0066]S2 +H2O — HS +OH
[0067]而氧化铟层的硫化可包括:热力学上有利于(thermodynamically favorable)将In (OH)3的羟基(OH)取代为硫氢基(HS ),并形成于碱性溶液中稳定的硫化铟层。
[0068]2In (OH) 3+6HS — 2In (HS) 3+60H
[0069]— In2S3+3H2S+60H
[0070]因此,硫化铟层(例如In2S3)形成于砷铟镓(InGaAs)表面上。
[0071]在一些实施例中,此硫化铟可为任何所需的厚度。为了有效抑制原生氧化物层形成于铟基表面上,至少三个硫化铟单层较佳的形成于此铟基表面上。一般而言,此硫化铟层的厚度可由一或多个因素决定,例如为氧化物层的初始厚度(initial thickness)、形成硫化铟层的反应温度、形成硫化铟层的反应时间、氨-过氧化氢的浓度、及硫化铵的浓度。
[0072]形成于铟基表面上的硫化铟层可作为钝化层。通过于铟基表面上形成此硫化铟钝化层,可抑制原生氧化物层形成于铟基表面上,并可藉此提升铟基表面的品质。详细而言,可通过降低铟基半导体材料的表面上界面态(Dlt)的密度来提升铟基表面的品质。此铟基表面的品质的提升可对集成电路整体带来有利的影响。例如,源极/漏极元件的表面品质的提升可有效降低接触电阻,并可因此提升使用此源极/漏极元件的集成电路的开关速度。
[0073]参见图2,步骤201、203及205对应图1的方法100。步骤201对应图1的步骤101,提供一半导体表面,该表面包括铟基三五族半导体材料202。步骤203对应图1的步骤105,于铟基基板202上形成氧化铟层204。接着,步骤205对应图1的步骤107,形成硫化铟层206于铟基基板上。在一些实施例中,氧化铟层204可被完全消耗掉以形成硫化铟层206。易言之,氧化铟层204被完全转化或硫化成硫化铟层206。在一些实施例中,氧化铟层204被硫化步骤部分消耗。亦即于形成硫化铟层206后,剩余的氧化铟层以及新形成的硫化铟层206存在于铟基基板202上。
[0074]上述方法100可用于形成半导体装置300及400,如第3A-3C及4A-4C图所示。半导体装置300及400可为制造集成电路中的中间装置(intermediate device),或为集成电路中的一部分。半导体装置300及400可包括静态随机存取存储器及/或逻辑电路、例如为电阻,电容和电感的非主动元件、例如为P型场效晶体管(PFET),η型场效晶体管(NFET),FinFET器件,金属氧化物半导体场效晶体管(MOSFET)、栅极围绕场效晶体管(gate-all-around FET),垂直场效晶体管,互补金属氧化物半导体(CMOS)晶体管,双极晶体管,高压晶体管,高频晶体管,其它的存储器单元及/或上述的组合。
[0075]图3A-3C为本公开实施例包括作为钝化层之硫化铟的半导体结构300在其制造方法中各阶段的剖面图。半导体结构300包括鳍式场效晶体管(FinFET)的栅极堆叠。在一些实施例中,此鳍式场效晶体管包括一鳍,此鳍作为由铟基三五族半导体材料形成的通道区。半导体结构300仅是用以说明本公开的钝化层(硫化铟层)可应用于任何半导体结构,例如水平场效晶体管、纳米线场效晶体管、垂直场效晶体管、栅极围绕场效晶体管等包括铟基半导体表面的场效晶体管。
[0076]参见图3A,半导体结构300包括一半导体基板301、由第一半导体材料形成的第一半导体层305、隔离元件303以及由第二半导体材料形成的鳍结构307。在一些实施例中,半导体基板301可为主体硅基板。或者,半导体基板301可包括元素半导体,例如结晶态的硅或锗、或化合物半导体、例如SiGe、SiC、GaAs、GaP、InP、InAs及/或InSb、或上述的组合。或者,基板301可为绝缘层上覆娃基板。绝缘层上覆娃基板可使用注氧隔离(separat1nby implantat1n of oxygen,SIM0X),晶片接合及/或其它适合的方法形成。基板301可包括多个掺杂区以及其它适合的元件。
[0077]在一些实施例中,第一半导体材料可根据匹配(match)或缓冲鳍结构307的第二半导体材料与基板301之间的晶格失配(lattice mismatch)来选择。此第二半导体材料为铟基半导体材料。例如,可选择GaAs作为形成于硅基板301上的第一半导体材料。此第一半导体层305及鳍结构307可通过一或多个适合的步骤外延成长或沉积于基板301上,此步骤例如为光刻步骤、蚀刻步骤、化学研磨步骤等等。
[0078]参见图3B,于形成鳍结构307后,钝化层309通过图1的方法100形成于此鳍结构307的表面上。在一些实施例中,虽然鳍结构307包括铟基三五族化合物半导体材料,钝化层309可形成于其它形式的半导体材料的表面上,例如硅、锗、硅锗及/或非铟基三五族半导体材料。接着,参见图3C,栅极介电层311及栅极接触313可形成于钝化层309上,以形成栅极堆叠320。
[0079]如前所述,通过形成一硫化铟钝化层(例如309)于铟基半导体表面(例如307)的表面上,可对半导体结构整体带来有利的影响。于图3A-3C所示的实施例中,于沉积栅极介电层前先提升鳍的表面品质可增加栅极親合(gate coupling,亦即栅极对通道的控制能力),并可藉此达到半导体结构300的更固定的临界电压、更高的电流及/或更低的漏电流。
[0080]图4A-4C为本公开实施例包括一作为钝化层的硫化铟以提升源极/漏极接触的品质的半导体结构400(例如为鳍式场效晶体管)在其制造方法中各阶段的剖面图。参见图4A,半导体结构400包括一半导体基板401、由第一半导体材料形成的第一半导体层405、隔离元件403以、由第二半导体材料形成的鳍结构407及一介电层415。在一些实施例中,半导体基板401可为主体硅基板。或者,半导体基板401可包括元素半导体,例如结晶态的硅或锗、或化合物半导体、例如SiGe、SiC、GaAs, GaP, InP、InAs及/或InSb、或上述的组合。或者,基板401可为绝缘层上覆娃基板。绝缘层上覆娃基板可使用注氧隔离(separat1nby implantat1n of oxygen,SIM0X),晶片接合及/或其它适合的方法形成。基板401可包括多个掺杂区以及其它适合的元件。
[0081]与半导体结构300相似,第一半导体层405可作为一缓冲层,第二半导体层407可对应第3图的鳍结构307。此外,第二半导体层407可为N型掺杂或P型掺杂以形成半导体结构400的源极漏极特征(feature)。例如,第一半导体层405可为GaAs,而第二半导体层407可由N型重掺杂的InAs、InGaAs或其它铟基半导体材料形成。
[0082]参见图4B,钝化层409通过图1的方法100形成于此铟基层407的表面上,以提升此铟基层407的表面品质。接着,参见图4C,在一些实施例中,由钛/氮化钛(Ti/TiN)形成的导电层413可沉积于此钝化层409上,并形成一金属接触417于此钛/氮化钛层413,并藉此于半导体结构400的源极/漏极特征处形成一金属-绝缘层-半导体接触(metal-1nsulator-semiconductor contact)。
[0083]图5A显示本公开一些实施例中不同的预清洗溶液及/或不同的湿氧化溶液对于In、Ga及As的比例的影响。此外,图5A比较不同的预清洗溶液及/或不同的湿氧化溶液的组合与所形成的硫化铟层的厚度的关系。详细而言,如图5A所示,该图表包括七个柱(例如501),而每一个柱对应至一种于形成硫化铟钝化层(例如图1的107)前的预清洗及/或湿氧化溶液的组合。每个柱更包括如图所示的三个数字。在一实施例中,此数字对应至InGaAs半导体表面上的每个材料的比例。图5A更包括标线502以表示不同的预清洗溶液及/或的湿氧化溶液的组合与所形成的硫化铟层的厚度的关系。例如,如图5A的柱501所示,于硫化步骤(例如107)之前,InGaAs半导体表面由氯化氢处理以移除污染物(步骤103),且通过氨-过氧化氢混合物以形成氧化铟层(步骤105)。于形成硫化铟层后(例如107),柱501显示In、Ga及As的比例为47、20、132。此外,硫化铟层的厚度量测出为大约三个单层的厚度(如图5A右侧的纵轴所示)。
[0084]图5B显示三个由不同的预清洗溶液及/或的湿氧化溶液组合对InGaAs半导体表面处理的硫化铟层的X光光电光谱(X-ray photoelectron spectroscopy spectra)。如图5B所示,530对应的处理包括移除污染物的步骤103、形成氧化铟层的步骤105、及形成硫化铟层的步骤107。540对应的处理包括移除污染物的步骤103、及形成硫化铟层的步骤107。550对应的处理包括移除污染物的步骤103。在一些实施例中,与处理方法540与550相比,通过实施本公开的方法(亦即530)来钝化InGaAs材料的表面,可检测到最强的硫化物强度,如图5B所示。
[0085]本公开提供一方法以及一场效晶体管的结构,此场效晶体管的结构具有改善的铟基半导体表面(亦即较少的Dlt)。此铟基半导体表面可应用于任何适合的半导体元件,包括源极/漏极元件的界面及/或通道区及栅极介电层之间的界面。详细而言,本公开通过形成一硫化铟钝化层,以提供较佳的铟基半导体表面的品质,齐聚有较低的界面态(Dlt)密度、较低的肖特基阻障高度(Schottky barrier height)、且可抑制原生氧化物层的形成等等。藉此,被此硫化铟层钝化的半导体元件的性能可以显著提升。
[0086]本公开提供一种半导体结构的制造方法,包括:提供半导体表面;于半导体表面上以第一水溶液进行湿式化学氧化(wet chemical oxidat1n)步骤,以形成氧化物层于半导体表面上;及于氧化物层上以第二水溶液进行硫化(sulfurizat1n)步骤,以形成硫化物层于半导体表面上。
[0087]本公开更提供一种半导体结构,包括:半导体元件(semiconductor feature);及钝化层,包括硫化铟(indium sulfide)形成于半导体元件的表面上,其中半导体元件的表面包括铟基三五族化合物半导体材料(indium-based II1-V compound semiconductormaterial)。
[0088]本公开又提供一种半导体结构的制造方法,包括:提供铟基半导体表面(indium-based semiconductor surface);于铟基半导体表面上以第一溶液进行湿式化学氧化(wet chemical oxidat1n)步骤,以形成氧化物层于铟基半导体表面上;及于氧化物层上以第二溶液进行硫化(sulfurizat1n)步骤,以形成硫化铟层(indium-sulfidelayer)于铟基半导体表面上。
[0089]虽然本公开的实施例及其优点已公开如上,但应该了解的是,任何所属技术领域中具有通常知识者,在不脱离本公开的精神和范围内,当可作更动、替代与润饰。此外,本公开的保护范围并未局限于说明书内所述特定实施例中的工艺、机器、制造、物质组成、装置、方法及步骤,任何所属技术领域中具有通常知识者可从本公开揭示内容中理解现行或未来所发展出的工艺、机器、制造、物质组成、装置、方法及步骤,只要可以在此处所述实施例中实施大抵相同功能或获得大抵相同结果皆可根据本公开使用。因此,本公开的保护范围包括上述工艺、机器、制造、物质组成、装置、方法及步骤。另外,每一权利要求构成个别的实施例,且本公开的保护范围也包括各个权利要求及实施例的组合。
【主权项】
1.一种半导体结构的制造方法,包括: 提供一半导体表面; 于该半导体表面上以一第一水溶液进行湿式化学氧化步骤,以形成一氧化物层于该半导体表面上;及 于该氧化物层上以一第二水溶液进行硫化步骤,以形成一硫化物层于该半导体表面上。2.如权利要求1所述的半导体结构的制造方法,还包括于形成该氧化物层之前,移除该半导体表面上的一原生氧化物层。3.如权利要求1所述的半导体结构的制造方法,还包括于形成该硫化物层之后,形成一栅极介电层于该硫化物层上,藉此形成一栅极堆叠,及/或形成一导电层于该硫化物层上,藉此形成一源极/漏极特征,其中该导电层包括钛/氮化钛。4.如权利要求1所述的半导体结构的制造方法,其中该半导体表面包括含铟三五族半导体材料。5.如权利要求1所述的半导体结构的制造方法,其中该第一水溶液包括氨-过氧化氢。6.如权利要求5所述的半导体结构的制造方法,其中该第二水溶液包括硫化铵。7.如权利要求6所述的半导体结构的制造方法,其中该硫化物层包括硫化铟,且该硫化物层于厚度上包括至少三个单层的硫化铟。8.—种半导体结构,包括: 一半导体元件;及 一钝化层,包括一硫化铟形成于该半导体元件的一表面上, 其中该半导体元件的该表面包括铟基三五族化合物半导体材料。9.如权利要求8所述的半导体结构,其中该半导体元件包括一通道区,且该半导体结构更包括一栅极介电层,形成于该钝化层上。10.如权利要求8所述的半导体结构,其中该半导体元件包括一源极/漏极区,且该半导体结构还包括一导电层,形成于该钝化层上,其中该导电层包括钛/氮化钛。
【文档编号】H01L21/18GK105977218SQ201510860542
【公开日】2016年9月28日
【申请日】2015年11月30日
【发明人】鬼木悠丞, 巫凯雄
【申请人】台湾积体电路制造股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1