摆动时钟产生电路及其方法

文档序号:7506449阅读:132来源:国知局
专利名称:摆动时钟产生电路及其方法
技术领域
本发明涉及一种光驱的摆动时钟产生电路,特别是涉及一种具有保护机制并可依据相位调制的摆动讯号产生非相位调制的摆动时钟的摆动时钟产生电路。
背景技术
在现代的信息社会中,如何整理储存大量的信息,是信息业界最关心的课题之一。在各种储存媒介中,光盘片(optical disc)以其轻薄的体积,高密度的储存容量,成为最普遍的高容量数据储存媒介之一。然而,随着多媒体技术的发展,由于一般的CD光盘片其容量大约仅有650MB左右,因此已经无法满足业界的需求,所以业界便另提出新的光盘片规格以增加单一光盘片可储存数据的容量,例如已知的多功能数字盘片(digital versatiledisc,DVD),其大小与一般的CD光盘片相同,但是其容量却远大于CD光盘片。一般而言,多功能数字盘片一开始主要应用于储存影音数据,亦即已知的DVD激光视盘(DVD-Video disc),由于DVD激光视盘在一记录层上可纪录大约4.7GB的信息,换句话说,至少可将两小时的影片储存于该记录层上,所以随着DVD激光视盘的普及,多功能数字盘片也逐渐地应用于其它领域中。由于单一多功能数字盘片即可纪录大量的数据,因此一计算机系统即可经由单一多功能数字盘片来读取所需的全部数据,亦即相较于小容量的CD光盘片而言,该计算机系统便不需执行换片的繁杂操作来读取所需数据。
图1为光驱的光学读取头31读取光盘片的示意图。光学读取头31上除了有读取数据轨迹上记录记号30的光接收器(未显示)之外,还有四个传感器,Sa、Sb、Sc、Sd,用来读取摆动轨迹中信息。在图1中,传感器Sa及Sd的位置对应于光盘片反射面上数据轨迹的沟槽,传感器Sb及Sc的位置则对应于摆动轨迹凸出于光盘片反射面的部份;因为沟槽与凸出部份的反射特性不同,传感器Sa、Sb、Sc、Sd感测到的激光反射量也不同。将传感器Sa至Sd的感测到的反射量相减并转换成为电气讯号,就可得到一摆动讯号。随着光盘片转动,光学读取头31也会沿箭头32的方向掠过光盘片的反射面,并顺着轨道沿路拾取各传感器的量测值。固定在光学读取头31上的传感器Sa至Sd,就会随光学读取头31的移动而掠过摆动轨迹的不同蜿蜒处,而得到不同的感测值。譬如说,当光学读取头31到达位置P1时,本来在沟槽上方的传感器Sa、Sd会移动到摆动轨迹凸出部份的上方;相对地本来在凸出部份上方的传感器Sb、Sc,则会移动到沟槽上方,这样两传感器的感测值都会改变,将两传感器感测值相减所得的摆动讯号也会随之改变。所以,光学读取头31便可经由摆动轨迹而产生一摆动讯号(wobble signal),而该摆动讯号可经由一译码程序读出地址数据(ADIP)。
如业界所已知,地址数据是以相位调制(phase modulation,PM)方式纪录于摆动讯号中,而光盘片10上的每二个记录区会对应93个摆动周期,其中8个摆动周期是以相位调制方式来纪录地址数据。由于地址数据是以相位调制方式纪录于摆动讯号中,因此光驱必须使用一地址数据译码器(ADIPdecoder)来撷取出该地址数据。
图2为已知模拟地址数据译码器40的示意图。地址数据译码器40包含有一延迟电路(delay circuit)42,一合成电路(mixer)44,一锁相电路(phase lock loop,PLL)46,一分频器(frequency divider)48,以及一XOg逻辑运算电路50。首先,依据已知三角函数可知Sin(θ)*Cos(θ)=12Sin(2θ)]]>方程式(1)因此,当摆动讯号以Sin(θ)表示时,则依据方程式(1)可以得到0.5*sin(2θ),如前所述,地址数据是以相位调制方式纪录在摆动讯号中,所以当对应地址数据的摆动讯号产生180度的相位变化时,亦即摆动讯号此时为Sin(θ+180°),而依据上述方程式(1)可得到0.5*Sin(2θ+360°),即为0.5*Sin(2θ),所以便可依据相位调制的摆动讯号来产生一非相位调制的摆动时钟(wobble clock)。模拟地址数据译码器40依据上述概念来产生该非相位调制的摆动时钟,并依据该摆动时钟来对该摆动讯号进行译码的操作以读出地址数据。
如图2所示,讯号S1为摆动讯号,而延迟电路42用来延迟讯号S1以产生讯号S2,此外延迟电路42延迟讯号S1达半个周期,亦即讯号S2与讯号S1的相位差为90°,若讯号S1以Sin(θ)表示,则讯号S2则为Sin(θ+90°),亦即讯号S2对应Cos(θ)。合成电路44用来对讯号S1、S2进行乘法运算以输出讯号S3,依据方程式(1)可知讯号S3对应于0.5*Sin(2θ),亦即讯号S3的频率为讯号S1的频率的两倍。然后锁相电路46便依据讯号S3来驱动讯号S4同步于讯号S3,亦即锁相电路46可输出对应Sin(2θ)的讯号S4,而分频器48再处理讯号S4以产生频率为讯号S4的一半的讯号S5。请注意,讯号S5为非相位调制的摆动时钟,而讯号S1为相位调制的摆动讯号,因此当讯号S5与讯号S1经由XOR逻辑运算电路50进行一XOR逻辑运算后,便可解出讯号S1中产生相位变化的周期而取得地址数据ADIP。由于模拟电路无法准确地微分讯号S1来产生讯号S2,因此必须通过延迟电路42来实现由Sin(θ)产生相对应Cos(θ)的运算,亦即延迟电路42需延迟讯号S1其半个周期,然而,若光盘片的转速不断变化,则由光盘片读取的讯号S1会改变其频率,亦即延迟电路42必须不断依据讯号S1的周期来调整其延迟讯号S1的大小,因此造成延迟电路42的电路复杂而不易设计与实作。
图3为已知数字地址数据译码器60的示意图。地址数据译码器60包含有一模拟/数字转换电路(analog-to-digital converter,ADC)62,一微分运算电路(differentiator)64,一乘法器(multiplier)66,一锁相电路68,一分频器70,以及一XOR逻辑运算电路72。数字地址数据译码器60亦依据上述方程式(1)来产生该非相位调制的摆动时钟以用来对该摆动讯号进行译码的操作。讯号S1为模拟的摆动讯号,因此模拟/数字转换电路62是将模拟讯号S1转换为相对应的数字讯号S2以便后续的数字讯号处理(digitalsignal processing)。微分运算电路64则对讯号S2进行微分运算以产生相对应讯号S3,若模拟的讯号S1对应Sin(θ),则经由模拟/数字转换电路62进行取样与量化后,数字的讯号S2亦可视为等效于Sin(θ),因此Sin(θ)在微分处理后对应Cos(θ),亦即讯号S3即对应于Cos(θ)。乘法器66用来对讯号S2、S3进行乘法运算以输出讯号S4,依据方程式(1)可知讯号S4会对应于0.5*Sin(2θ),亦即讯号S4的频率为讯号S2的频率的两倍。然后锁相电路68便依据讯号S4来驱动讯号S5同步于讯号S4,亦即锁相电路68可输出对应Sin(2θ)的讯号S5,而分频器70可处理讯号S5以产生频率为讯号S5的一半的讯号S6。请注意,讯号S2、S3、S4、S5、S6为数字讯号,其中讯号S6对应非相位调制的摆动时钟,而讯号S2为相位调制的摆动讯号,因此当讯号S6与讯号S2经由XOR逻辑运算电路72进行一XOR逻辑运算后,便可解出讯号S2中产生相位变化的周期而取得地址数据ADIP。数字地址数据译码器60在运作时,其是先将模拟的摆动讯号数字化后再进行微分运算,因此模拟/数字转换电路62与微分运算电路64必须具有极高的运算处理速度,且为了避免模拟讯号转换为数字讯号时产生失真,因此模拟/数字转换电路62必须使用较多位数来量化模拟讯号,对于高倍速的DVD+R光驱与DVD+RW光驱而言,数字地址数据译码器60的生产成本很高而影响DVD+R光驱与DVD+RW光驱的市场竞争力。

发明内容
因此本发明提供一种可依据相位调制摆动讯号产生非相位调制讯号的摆动时钟的摆动时钟产生电路,以解决上述问题。
本发明的时钟讯号产生电路,用来接收一相位调制摆动考讯号以产生一非相位调制的摆动时钟讯号。该时钟讯号产生电路包含有一比较电路以及一锁相电路。比较电路用来依据该摆动讯号的峰值产生一合成讯号,并且比较合成讯号与一参考电压以产生一保护讯号。该锁相电路连接于该比较电路,用来接收保护讯号与输出该目标时钟讯号,同时当保护讯号对应于一第一逻辑电平时比较摆动讯号与摆动时钟讯号来调整摆动时钟讯号同步于摆动讯号,以及当保护讯号对应于一第二逻辑电平时以不调整摆动时钟讯号同步于摆动讯号的方式持续输出摆动时钟讯号。
本发明的时钟讯号产生方法,用来依据一相位调制的摆动讯号产生一非相位调制的摆动时钟讯号,包含有根据一保护讯号决定是否调整摆动讯号以及摆动时钟讯号的相位同步用以输出一控制讯号;根据控制讯号输出一控制电压;以及依据控制电压调整摆动时钟讯号的频率;其中根据对应摆动讯号峰值所产生的一合成讯号与一预定参考电压的电压差比较而产生第一保护讯号。且当该控制讯号对应于一第一逻辑电平时比较该参考讯号与该目标时钟讯号来调整该目标时钟讯号同步于该参考讯号,以及当该控制讯号对应于一第二逻辑电平时以不调整该目标时钟讯号同步于该参考讯号的方式持续输出该目标时钟讯号。
不管该相位调制的摆动讯号如何变动,本发明摆动时钟产生电路都可动态地依据该相位调制的摆动讯号产生所需的非相位调制的摆动讯号,此外,本发明摆动时钟产生电路的电路架构十分简单而易于实施,所以其制造成本低廉,并可应用于任何的DVD+R光驱或DVD+RW光驱中。


图1为已知光学读取头读取光盘片的示意图。
图2为已知模拟地址数据译码器的示意图。
图3为已知数字地址数据译码器的示意图。
图4为本发明摆动时钟产生电路的功能方块图。
图5为图4所示的正峰值保持电路的电路示意图。
图6为图5所示的正峰值保持电路的操作示意图。
图7为图4所示的负峰值保持电路的电路示意图。
图8为图7所示的负峰值保持电路的操作示意图。
图9为图4所述的摆动时钟产生电路的操作示意图。
图10为图4所示的摆动时钟产生电路应用于一光盘存取系统的示意图。
附图符号说明30记录记号 31 光学读取头34a、34b、34c摆动讯号40、60、136地址数据译码器42延迟电路 44 合成电路46、68锁相电路 48、70 分频器50、72XOR逻辑运算电路62 模拟/数字转换电路64 微分运算电路66 乘法器80 摆动时钟产生电路82、84 带通滤波器86 自动增益控制器 88、108削波器89 比较电路90 保持电路92 合成电路94 比较器96 锁相电路98 正峰值保持电路100 负峰值保持电路 102相位-频率比较器104 回路滤波器 106压控震荡器110、118 运算放大器 112、120 二极管114、122 电阻116、124 电容
130光盘存取系统 134 读写头具体实施方式
请参阅图4,图4为本发明摆动时钟产生电路80的功能方块图。摆动时钟产生电路80包含有带通滤波器(band-pass filter,BPF)82、84,自动增益控制器(automatic gain controller,AGC)86,一削波器(slicer)88,一比较电路89,以及一锁相电路(phase lock loop,PLL)96。另外,比较电路89中设置有一保持电路(hold circuit)90,一合成电路(mixer)92,以及一比较器(comparator)94。保持电路90设置有一正峰值保持电路(peak hold circuit)98以及一负峰值保持电路(bottom hold circuit)100。锁相电路96包含有一相位-频率比较器(phase-frequency detector,PFD)102,一回路滤波器(loop filter)104,一压控震荡器(voltage-controlled oscillator,VCO)106,以及一削波器108。带通滤波器82、84均具有高Q值(Q factor),并用来滤除一预定频率范围以外的讯号,带通滤波器82处理一DVD+R光盘片或一DVD+RW光盘片上所读出的摆动讯号S1,并输出一讯号S2至自动增益控制器86,请注意,摆动讯号S1包含有相位调制的摆动周期以储存地址数据(ADIP)。如业界所已知,自动增益控制器86使用不同的增益放大值(gain value)来调整其输出讯号的讯号强度,亦即当讯号S2的讯号强度降低时,自动增益控制器86会提升其增益放大值来维持相对应讯号S3的讯号强度;同样地,当讯号S2的讯号强度增加时,自动增益控制器86会降低其增益放大值来维持相对应讯号S3的讯号强度。然后,讯号S3会经由带通滤波器84处理以产生讯号S4,并输出讯号S4至削波器88,削波器88使用一预定电压电平来将讯号S4(弦波)转换为讯号S5(方波),亦即当讯号S4大于该预定电压电平时,讯号S5会对应逻辑值“1”,相反地,当讯号S4小于该预定电压电平时,讯号S5会对应逻辑值“0”,所以,本实施例中,自动增益控制器86可输出稳定的讯号S3以避免后续削波器88进行讯号处理时产生逻辑值误判等情形。
此外,带通滤波器84所输出的讯号S4亦会同时输入保持电路90,而保持电路90主要是用来依据讯号S4的峰值来产生讯号S6、S7。在保持电路90中,正峰值保持电路98用来保持讯号S4的正峰值以输出讯号S6,而负峰值保持电路100用来保持讯号S4的负峰值以输出讯号S6。正峰值保持电路98与负峰值保持电路100的操作简述如下。请参阅图5与图6,图5为图4所示的正峰值保持电路98的电路示意图,而图6为图5所示的正峰值保持电路98的操作示意图。正峰值保持电路98包含有一运算放大器(operational amplifier)110,一二极管(diode)112,一电阻114,以及一电容116。假设运算放大器110的增益放大值为1,且电压Vss为接地电压,所以在时间t0时,输入电压Vin开始上升,由于端点A的电压电平大于端点B的电压电平,因此二极管112为顺向偏压而视为通路,因此输入电压Vin会对电容116充电而使输出电压Vout随着输入电压Vin而增加。在时间t1时,输入电压Vin会达到其正峰值(positive peak),亦即输入电压Vin在时间t1后开始降低其电平,请注意,电容116在时间t1时会维持输出电压Vout对应输入电压Vin的正峰值,因此当输入电压Vin在时间t1后开始降低其电平时,端点A的电压电平会小于端点B的电压电平,所以二极管112为逆向偏压而视为断路,同时,电容116会通过电阻114进行放电以降低输出电压Vout的电平。输入电压Vin与输出电压Vou直到时间T1时才会相等,且输入电压Vin在时间T1后继续增加,亦即在时间T1后,端点A的电压电平又会大于端点B的电压电平而使二极管112导通,因此输入电压Vin又会开始对电容116进行充电直到在时间t5达到其正峰值为止。同样地,在时间t5后,电容116会开始放电直到输出电压Vout在时间T2时等于输出电压Vin,然后输入电压Vin又会开始对电容116进行充电。如上所述,经由电阻114的阻值设定可调整电容116的放电速度而进一步地使输出电压Vout趋近于输入电压Vin的正峰值。
请参阅图7与图8,图7为图4所示的负峰值保持电路100的电路示意图,图8为图7所示的负峰值保持电路100的操作示意图。负峰值保持电路100包含有一运算放大器118,一二极管120,一电阻122,以及一电容124。假设运算放大器118的增益放大值为1,且电压Vss为接地电压,以及电压Vdd为高电压电平,所以一开始时电压Vdd会先经由电阻122对电容124充电至一大于电压Vss的预定电平。所以在时间t0,输入电压Vin开始下降,由于端点A的电压电平小于端点B的电压电平,因此二极管112为顺向偏压而视为通路,因此输入电压Vin会驱使输出电压Vout随着输入电压Vin而降低。在时间t1时,输入电压Vin会达到其负峰值(negative peak),亦即输入电压Vin在时间t1后开始增加其电平,请注意,电容124在时间t1时会维持输出电压Vout对应输入电压Vin的负峰值,因此当输入电压Vin在时间t1后开始提升其电平时,端点A的电压电平会大于端点B的电压电平,所以二极管112为逆向偏压而视为断路,同时,电压Vdd会通过电阻122对电容124充电以提升输出电压Vout的电平。输入电压Vin与输出电压Vou直到时间T1时才会相等,且输入电压Vin在时间T1后继续降低,亦即在时间T1后,端点A的电压电平又会小于端点B的电压电平而使二极管112导通,因此输入电压Vin又会开始驱动输出电压Vout直到在时间t5达到其负峰值为止。同样地,在时间t5后,电压Vdd会开始对电容124充电直到输出电压Vout在时间T2时等于输出电压Vin,然后输入电压Vin又会驱动输出电压Vout。如上所述,经由电阻122的阻值设定可调整电容124的充电速度而进一步地使输出电压Vout趋近于输入电压Vin的负峰值。
如图4所示,讯号S6、S7还经由一合成电路92以依据讯号S6、S7之间的电压差(voltage difference)产生一讯号S8,最后比较器94比较一参考电压Vref与讯号S8的电压电平来判断讯号S4对应讯号S1的相位调制周期的区段,并输出一讯号S9至锁相电路96以告知锁相电路96。在锁相电路96中,压控振荡器106所输出的讯号S10(弦波)经由削波器108转换为相对应的讯号S11(方波)后回授至相位-频率比较器102,而相位-频率比较器102会比较讯号S11与讯号S5之间的相位关系,并产生控制讯号UP与控制讯号DN至回路滤波器104。回路滤波器104会依据控制讯号UP与控制讯号DN而输出稳定的直流控制电压Vc至压控振荡器106,一般而言,回路滤波器104会包含有电压提升电路(charge pump),用来依据控制讯号UP、DN的驱动以输出直流控制电压Vc。直流控制电压Vc的大小用来驱动压控振荡器106调整其输出的讯号S10的频率。举例来说,若讯号S11的正缘(risingedge)提前于讯号S5的正缘前形成,则会触发相位-频率比较器102产生控制讯号DN以用来降低直流控制电压Vc,亦即降低讯号S10的频率而递延讯号S11的下一回正缘的产生时间以修正目前讯号S11的相位领先讯号S5的相位的状态,而当讯号S5的正缘稍后形成时,相位-频率比较器102会触发产生控制讯号UP的脉冲(impulse),并随即同时重置控制讯号UP、DN而完成一次相位校正的操作;相反地,若讯号S5的正缘提前于讯号S11的正缘前形成,则会触发相位-频率比较器102产生控制讯号UP以用来提升直流控制电压Vc,亦即增加讯号S10的频率而提早讯号S11的下一回正缘的产生时间以修正目前讯号S11的相位落后讯号S5的相位的状态,而当讯号S11的正缘稍后形成时,相位-频率比较器102会触发产生控制讯号DN的脉冲(impulse),并随即同时重置控制讯号UP、DN而完成一次相位校正的操作。此外,当讯号S11与讯号S5同相时,讯号S11与讯号S5的正缘会同时触发相位-频率比较器102产生控制讯号UP的脉冲与控制讯号DN的脉冲,并随即会同时重置控制讯号UP′与控制讯号DN,由于控制讯号UP与控制讯号DN分别用来提升与降低直流控制电压Vc,且控制讯号UP与控制讯号DN被触发的持续时间(duration)相同,因此当讯号S11与讯号S5同相时,锁相电路96不会校正直流控制电压Vc而继续维持讯号S10。
由于讯号S1中相位调制的周期会驱使讯号S5的相对应周期对应于不稳定的频率,因此本实施例利用保持电路90来检测讯号S1中相位调制周期的时段,并输出讯号S9来停止相位-频率比较器102输出控制讯号UP、DN调整讯号S10,因此可避免在讯号S5对应不稳定频率下,锁相电路96错误地驱动讯号S10来锁定讯号S5。请注意,当相位-频率比较器102不输出控制讯号UP、DN时,回路滤波器104本身会维持目前所使用的直流控制电压Vc,因此压控振荡器106仍持续地输出相位-频率比较器102中断执行前锁相电路96所校正产生的讯号S10。
本发明摆动时钟产生电路80的详细运作叙述如下。请同时参阅图4与图9,图9为图4所述的摆动时钟产生电路80的操作示意图。由上而下,分别代表讯号S1、S2、S3、S4、S5、S6、S7、S8、S9。如图9所示,讯号S1在时间T1、T2时产生180°的相位变化,亦即讯号S1包含有相位调制的周期。由于带通滤波器82具有高Q值,因此在讯号S1中非对应一预定主频的讯号会被大幅衰减,而讯号S1中产生相位调制的周期在带通滤波器82处理后会产生相位迟滞的变频讯号,如如图9所示,讯号S2在时段P1中的频率不稳定地变动。此外,光驱的读写头读取摆动讯号(亦即讯号S1)时可能因为震动等因素而造成讯号S1的讯号强度产生变动,且带通滤波器82在处理讯号S1时亦可能会衰减讯号S2的讯号强度,因此本实施例利用自动增益控制器86来调整对应讯号S2的增益放大值以维持一稳定的讯号S3以便保持电路90可输出正确的讯号S6、S7。由于自动增益控制器86仅调整讯号S3的讯号强度而不会改变其频率,因此在时段P1中,讯号S3对应不稳定的频率,如前所述,带通滤波器84亦具有高Q值,因此带通滤波器84会大幅衰减非对应一预定主频的讯号,亦即在时段P1中的讯号S3,由于其频率大幅偏离该预定主频,因此其振幅会因而被衰减,如图9所示,讯号S4在时段P4中对应较小的振幅。接着,削波器88便处理讯号S4(弦波)来输出讯号S5(方波),并输入讯号S5至锁相电路96。
如前所述,本实施例会产生一讯号S9以控制相位-频率比较器102是否输出控制讯号UP、DN来校正直流控制电压Vc,其操作详述如下。如图4所示,讯号S4除了输入削波器88外,亦会输入保持电路90。正峰值保持电路98与负峰值保持电路100的操作原理已叙述如上(参阅图6、8),因此当讯号S4输入正峰值保持电路98时,正峰值保持电路98会驱动讯号S6随着讯号S4的正峰值而变动,同样地,当讯号S4输入负峰值保持电路100时,负峰值保持电路100会驱动讯号S7随着讯号S4的负峰值而变动,而讯号S6、S7的输出结果如图9所示,由于讯号S4在时段P4中对应较小的振幅,因此讯号S6受影响而会对应较小的正峰值,同样地,讯号S7亦会受影响。然后,合成电路92会计算讯号S6与讯号S7之间的差值,如图9所示,讯号S8会在一时段中对应较低的电压电平,而为了将讯号S8转换为一控制讯号,因此使用一比较器94来比较讯号S8与参考电压Vref,其中讯号S8大于参考电压Vref则对应一逻辑值“1”,讯号S8小于参考电压Vref则对应另一逻辑值“ 0”,其结果如图9所示,讯号S9在时段P3中对应于逻辑值“0”,用来表示讯号S4在时段P3时对应不稳定的频率(由于讯号S1中相位调制的讯号产生),因此在时间T3时,相位-频率比较器102便会停止输出控制讯号UP、DN,亦即锁相电路96不会启动来调整讯号S10,直到时间T4时,相位-频率比较器102便会继续输出控制讯号UP、DN,亦即锁相电路96会继续启动来调整讯号S10。
由于锁相电路96的操作与功能为业界所已知,因此在此不再详细赘述,此外,本实施例中,锁相电路96需依据讯号S9来决定是否启动以驱动讯号S11同相于讯号S5,因此任何已知锁相电路可依据讯号S9来决定是否启动以驱动讯号S11同相于讯号S5均可应用于本发明摆动时钟产生电路80中,亦即本发明摆动时钟产生电路80可运用任何已知锁相电路的架构来实施锁相电路96。此外,图5与图7所示的正峰值保持电路98与负峰值保持电路100可分别用来依据讯号S4产生讯号S6与S7,然而,任何已知保持电路亦可应用于本发明摆动时钟产生电路80中而达到追踪(trace)讯号S4的峰值的目的。此外,本实施例中使用正峰值保持电路98与负峰值保持电路100所输出的讯号S6、S7来计算其差量以判断启动保护机制的时机,虽然依据讯号S6、S7的差量可较准确地启动保护机制以产生较佳的保护效果,然而,亦可仅应用正峰值保持电路98所产生的讯号S6或负峰值保持电路100所产生的讯号S7来与参考电压Vref进行比较以判断启动保护机制的时机,上述均属本发明的范畴。
如图4所示,讯号S4经由削波器88处理后便输入相位-频率比较器102,然而,讯号S4需经由保持电路90,合成电路92,以及比较器94处理后才输入相位-频率比较器102,亦即讯号S4的时段P4开始输入相位-频率比较器102的时序(timing)可能会早在讯号S9的时段P3开始驱动相位-频率比较器102的时序,亦即在讯号S9在时间T3开始保护讯号S10避免受相位调制摆动讯号影响前,讯号S4的时段P4已经输入相位-频率比较器102影响锁相电路96产生的讯号S10。为了解决上述问题,本发明摆动时钟产生电路80还应用一提早保护的机制,其操作叙述如下。依据DVD+R与DVD+RW的规格,光盘片上两个记录区会对应93个摆动周期,亦即一地址数据单元(ADIPunit)是由93个摆动周期构成,其中8个摆动周期经由相位调制来纪录所要的地址数据,而其余85个摆动周期并未应用相位调制来纪录信息,因此本实施例主要是利用相位调制的摆动讯号(亦即讯号S1)中85个未相位调制的摆动周期来产生非相位调制的摆动时钟(亦即讯号S10),而该非相位调制的摆动时钟便可用来与相位调制的摆动讯号进行XOR逻辑运算以解出地址数据。所以,若本发明摆动时钟产生电路80所产生的讯号S10可用来正确地解出一地址数据单元中8个摆动周期所对应的地址数据,则依据DVD+R与DVD+RW的规格,后续85个摆动周期应与讯号S10同相,因此若讯号S10可顺利解出一地址数据单元中的数据,则表示摆动时钟产生电路80所输出的讯号S10即为所需的摆动时钟,因此依据已知DVD+R与DVD+RW的规格可知每93个摆动周期中,8个对应相位调制的摆动周期后会跟随85个非相位调制的摆动周期,所以,便可在下一地址数据单元开始的时序前提早一预定时段来停止相位-频率比较器102输出控制讯号UP、DN。
请参阅图10,图10为图4所示的摆动时钟产生电路80应用于一光盘存取系统130的示意图。光盘存取系统130包含有一光盘片132,一读写头134,一摆动时钟产生电路80,以及一地址数据译码电路136。读写头134可读取光盘片上所设置的摆动轨迹而产生相位调制的摆动讯号(亦即讯号S1)。如前所述,摆动时钟产生电路80可依据相位调制的讯号S1产生非相位调制的摆动时钟(亦即讯号S10),而地址数据译码电路136便可使用讯号S10来解出讯号S1中所纪录的地址数据(ADIP)。举例来说,对讯号S10与讯号S1进行XOR逻辑运算即可解出原本以相位调制来纪录的地址数据,亦即讯号S1中每93个摆动周期读出同步单元或数据单元。此外,由于已知每93个摆动周期(对应一地址数据单元)中,8个对应相位调制的摆动周期后会跟随85个非相位调制的摆动周期,所以地址数据译码电路136于译码讯号S1的运算过程中,便可事先预测下一地址数据单元开始的第一个摆动周期何时会出现,请注意,该第一个摆动周期即会产生180°的相位变化,因此由图4可知讯号S9亦依据讯号S4而产生,而地址数据单元开始的第一个摆动周期输入相位-频率比较器102会早于讯号S9开始保护锁相电路96的时间,所以可能会造成锁相电路96误动而影响原本相位与频率正确的讯号S10。所以,本实施例中,当锁相电路96产生的讯号S10可使地址数据译码电路136成功地译码多个地址数据单元后,地址数据译码电路136会预测下一地址数据单元的第一个摆动周期何时出现,并在该下一地址数据单元开始处理前一预定时间输出讯号S12至相位-频率比较器102,亦即讯号S12此时取代原先讯号S9保护锁相电路96的功能,如图9所示,相较于讯号S9,讯号S12可在时间Tx时即驱动相位-频率比较器102停止输出控制讯号UP、DN。
请注意,本实施例中,在讯号S10可使地址数据译码电路136可成功地译码多个地址数据单元后才启动讯号S12来保护锁相电路96,若讯号S10尚未稳定前,地址数据译码电路136可能会因为错误的讯号S10而错误地预测下一地址数据单元的第一个摆动周期的出现时间,所以可能使得讯号S12保护锁相电路96的时序晚于原先讯号S9保护锁相电路96的时序,亦即讯号S12的作用失效;或者讯号S12太早保护锁相电路96而造成锁相电路96的保护时段过长,由于本发明摆动时钟产生电路80是利用非相位调制的85个摆动周期来产生讯号S10,所以若锁相电路96的保护时段过长,则锁相电路96无法实时地锁定所要的讯号S10,亦即锁相电路96的执行效能因此恶化。所以,本发明摆动时钟产生电路80是先使用讯号S9来保护锁相电路96以产生稳定且正确的讯号S10后,地址数据译码电路136所输出的讯号S12才会取代讯号S9而达到提早保护的目地。同样地,当摆动时钟产生电路80已使用讯号S12来保护锁相电路96时,若摆动时钟产生电路80输出的讯号S10无法使地址数据译码电路136准确地预测地址数据单元中相位调制的摆动周期的出现时间时,表示讯号S1的频率或相位产生异动而影响讯号S10,因此地址数据译码电路136会停止输出讯号S12至摆动时钟产生电路80,亦即摆动时钟产生电路80停止使用讯号S12的保护机制而回复使用讯号S9的保护机制,直到锁相电路96重新锁定稳定且正确的讯号S10为止,然后讯号S12的保护机制才会重新启动来保护锁相电路96。
相较于已知技术,本发明摆动时钟产生电路利用原先相位调制的摆动讯号来产生非相位调制的摆动时钟,而相位调制的摆动讯号包含有相位调制的摆动周期与非相位调制的摆动周期,因此当本发明摆动时钟产生电路应用锁相电路来锁定所要的摆动时钟同相于该摆动讯号中非相位调制的摆动周期时,本发明摆动时钟产生电路还使用保持电路来产生保护讯号,以便该摆动讯号的相位调制的摆动周期输入该锁相电路时暂停该锁相电路的锁相运作。此外,当该摆动时钟可成功地解出该相位调制的摆动讯号中编码的地址数据时,本发明摆动时钟产生电路会启动一提前保护的机制以进一步地控制该锁相电路稳定地锁定该摆动时钟。不管该相位调制的摆动讯号如何变动,本发明摆动时钟产生电路都可动态地依据该相位调制的摆动讯号产生所需的摆动时钟,此外,本发明摆动时钟产生电路的电路架构十分简单而易于实施,且其制造成本低廉,并可应用于任何的DVD+R光驱或DVD+RW光驱中。
权利要求
1.一时钟讯号产生电路,用来接收一相位调制的输入讯号以产生一非相位调制的目标时钟讯号,该时钟讯号产生电路包含有一比较电路,用来依据该输入讯号的峰值产生一合成讯号,将该合成讯号的电压差与一预定参考电压比较以产生一第一保护讯号;以及一锁相电路,连接于该比较电路,用来接收该输入讯号该第一保护讯号,用以产生该目标时钟讯号,而该目标时钟讯号会回授至该锁相电路的输入端,根据该第一保护讯号的逻辑电平决定是否调整该目标时钟讯号同步于该输入讯号;其中当该第一保护讯号对应于一第一逻辑电平时比较该参考讯号与该目标时钟讯号来调整该目标时钟讯号同步于该参考讯号,当在该第一保护讯号对应于一第二逻辑电平时以不调整该目标时钟讯号同步于该参考讯号的方式持续输出该目标时钟讯号。
2.如权利要求1所述的时钟讯号产生电路,其中该比较电路包含有一保持电路,接收该输入讯号,用以分别取出该输入讯号的正峰值讯号以及负峰值讯号;一合成电路,连结至该保持电路,用以根据该该正峰值讯号及该负峰值讯号的电压差产生该合成讯号;以及一比较器,连结至该合成电路,用以将该合成讯号的电压电平与该预定参考电压比较,根据比较的结果输出该第一保护讯号。
3.如权利要求2所述的时钟讯号产生电路,其中该保持电路包含有一正峰值保持电路,用来依据该参考讯号产生该正峰值讯号;以及一负峰值保持电路,用来依据该参考讯号产生该负峰值讯号。
4.如权利要求2所述的时钟讯号产生电路,其中该锁相电路包含有一相位-频率比较器,用来接收该第一保护讯号、该参考讯号以及该目标时钟讯号,并依据该第一保护讯号的逻辑电平决定是否比较该参考讯号以及该目标时钟讯号的相位以输出一控制讯号;一回路滤波器,连接至该相位-频率比较器,用以依据该控制讯号输出一控制电压;以及一压控震荡器,连接至该回路滤波器,用来依据该控制电压调整该目标时钟讯号的频率。
5.如权利要求4所述的时钟讯号产生电路,其中还包含有一第二削波器,连接于该压控震荡器与该相位-频率比较器之间,用以削波该目标时钟讯号。
6.如权利要求1所述的时钟讯号产生电路,其中还包含有一第一带通滤波器,用来当该输入讯号输入该运算电路以及该锁相电路前,控制该输入讯号在一对应预定频率范围;一第一削波器,该削波器的输出端连接至该运算电路与该锁相电路,用以削波该输入讯号;一自动增益控制器,连结至该第一带通滤波器,使用不同的增益放大值调整该输入讯号的强度;以及一第二带通滤波器,其输入端连结至该自动增益控制器,其输出端连结至该第一削波器,用以控制增益后的该输入讯号于该对应预定频率范围。
7.如权利要求1所述的时钟讯号产生电路,其中若该合成讯号的电压差与该预定参考电压的电压差不大于一临界值且连续数次,则该第一保护讯号会对应该第一逻辑电平,以及若该合成讯号的电压差与该预定参考电压的电压差大于一临界值且连续数次,则该第一保护讯号会对应该第二逻辑电平。
8.如权利要求1所述的时钟讯号产生电路,其中该输入讯号为一光盘片的摆动讯号,而该目标时钟讯号为一摆动时钟。
9.如权利要求1所述的时钟讯号产生电路,其中该光驱包含一地址数据译码器,用以预测该输入讯号形成相位调制的周期的时序,并在该时序前一预定时段产生一第二保护讯号来控制不调整该目标时钟讯号同步于该输入讯号,用以维持该目标时钟讯号。
10.一种时钟讯号产生方法,用以依据一相位调制的输入讯号产生一非相位调制的目标时钟讯号,包含有根据一第一保护讯号决定是否调整该输入讯号以及该目标时钟讯号的相位同步用以输出一控制讯号;根据该控制讯号输出一控制电压;以及依据该控制电压调整该目标时钟讯号的频率;其中根据对应该输入讯号峰值所产生的一合成讯号与一预定参考电压的电压差比较而产生该第一保护讯号。
11.如权利要求10所述的时钟讯号产生方法,其中该第一保护讯号产生方法包含有取得该输入讯号的正峰值讯号以及负峰值讯号;根据该该正峰值讯号及该负峰值讯号的电压差产生该合成讯号;以及比较该合成电路以及该预定参考电压的电压差以输出该第一保护讯号。
12.如权利要求10所述的时钟讯号产生方法,其中当该第一保护讯号对应于一第一逻辑电平时,比较该输入讯号与该目标时钟讯号来调整该目标时钟讯号同步于该输入讯号,反之当该第一保护讯号对应于一第二逻辑电平时,以不调整该目标时钟讯号同步于该输入讯号的方式维持该目标时钟讯号。
13.如权利要求12所述的时钟讯号产生方法,其中若一周期计数值与该平均计数值的差量大于一临界值,则该第一保护讯号会对应该第二逻辑电平;以及若一周期计数值与该平均计数值的差量不大于一临界值,则该第一保护讯号会对应该第一逻辑电平。
14.如权利要求13所述的时钟讯号产生方法,其中还包含使用预测该输入讯号形成相位调制的周期的时序,并在该时序前一预定时段产生一第二保护讯号来控制不调整该目标时钟讯号同步于该输入讯号,用以维持该目标时钟讯号。
15.如权利要求10所述的时钟讯号产生方法,其中该输入讯号为一光盘片的摆动讯号,而该目标时钟讯号为一摆动时钟。
全文摘要
本发明提供一种光驱的摆动时钟产生电路,用来接收一相位调制的摆动讯号以产生一摆动时钟。该摆动时钟产生电路包含有一比较电路以及一锁相电路。比较电路用来依据摆动讯号的峰值产生一合成讯号并比较合成讯号与一参考电压以产生一保护讯号。锁相电路在保护讯号对应于一第一逻辑电平时驱动摆动时钟与摆动讯号同步,以及在保护讯号对应于一第二逻辑电平时维持摆动时钟而不驱动摆动时钟同步于摆动讯号。
文档编号H03L7/08GK1542817SQ20041003434
公开日2004年11月3日 申请日期2004年4月12日 优先权日2003年4月10日
发明者萧原坤 申请人:威腾光电股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1