摆动时钟产生电路及其方法

文档序号:7506450阅读:121来源:国知局
专利名称:摆动时钟产生电路及其方法
技术领域
本发明涉及一种光驱的摆动时钟产生电路,特别是涉及一种具有保护机制并可依据相位调制的摆动讯号产生一摆动时钟的摆动时钟产生电路。
背景技术
在现代的信息社会中,如何整理储存大量的信息,是信息业界最关心的课题之一。在各种储存媒介中,光盘片(optical disc)以其轻薄的体积,高密度的储存容量,成为最普遍的高容量数据储存媒介之一。然而,随着多媒体技术的发展,由于一般的CD光盘片其容量大约仅有650MB左右,因此已经无法满足业界的需求,所以业界便另提出新的光盘片规格以增加单一光盘片可储存数据的容量,例如已知的多功能数字盘片(digital versatiledisc,DVD),其大小与一般的CD光盘片相同,但是其容量却远大于CD光盘片。一般而言,多功能数字盘片一开始主要是应用于储存影音数据,亦即已知的DVD激光视盘(DVD-Video disc),由于DVD激光视盘于一记录层上可纪录大约4.7GB的信息,换句话说,至少可将两小时的影片储存于该记录层上,所以随着DVD激光视盘的普及,多功能数字盘片也逐渐地应用于其它领域中。由于单一多功能数字盘片即可纪录大量的数据,因此一计算机系统即可经由单一多功能数字盘片来读取所需的全部数据,亦即相较于小容量的CD光盘片而言,该计算机系统便不需执行换片的繁杂操作来读取所需数据。
如同CD光盘片一样,为便于内储信息的管理,多功能数字盘片上储存数据的区域亦会被区分成许多小记录区(frame);而多功能数字盘片上所储存的信息都会依照一定的规划储存在多功能数字盘片上的各记录区中。所以,要将信息写入一可写式多功能数字盘片时,光盘烧录机必须要先确定该可写式多功能数字盘片上各记录区的规划情形,才能正确地将数据写入该可写式多功能数字盘片中。为了要记录与各记录区相关的信息,可写式多功能数字盘片也有特殊的构造来记录相关的信息以寻址(addressing)所纪录的数据。对于符合DVD+R规格的可录式多功能数字盘片与符合DVD+RW规格的可重复写入式多功能数字盘片来说,该信息即为地址数据(address inpregroove,ADIP)。
图1为光驱的光学读取头31读取一光盘片的示意图。光学读取头31上除了有读取数据轨迹上记录记号30的光接收器(未显示)之外,还有四个传感器,Sa、Sb、Sc、Sd,用来读取摆动轨迹中信息。在图1中,传感器Sa及Sd的位置对应于光盘片反射面上数据轨迹的沟槽,传感器Sb及Sc的位置则对应于摆动轨迹凸出于光盘片反射面的部份;因为沟槽与凸出部份的反射特性不同,传感器Sa、Sb、Sc、Sd感测到的激光反射量也不同。将传感器Sa至Sd的感测到的反射量相减并转换成为电气讯号,就可得到一摆动讯号。随着光盘片转动,光学读取头31也会沿箭头32的方向掠过光盘片的反射面,并顺着轨道沿路拾取各传感器的量测值。固定在光学读取头31上的传感器Sa至Sd,就会随光学读取头31的移动而掠过摆动轨迹的不同蜿蜒处,而得到不同的感测值。譬如说,当光学读取头31到达位置P1时,本来在沟槽上方的传感器Sa、Sd会移动到摆动轨迹凸出部份的上方;相对地本来在凸出部份上方的传感器Sb、Sc,则会移动到沟槽上方,这样两传感器的感测值都会改变,将两传感器感测值相减所得的摆动讯号也会随之改变。所以,光学读取头31便可经由摆动轨迹而产生一摆动讯号(wobble signal),而该摆动讯号可经由一译码程序读出地址数据(ADIP)。
如业界所已知,地址数据是以相位调制(phase modulation,PM)方式纪录在摆动讯号中,而光盘片上的每二个记录区会对应93个摆动周期,其中8个摆动周期是以相位调制方式来纪录地址数据。
由于地址数据是以相位调制方式纪录在摆动讯号中,因此光驱必须使用一地址数据译码器(ADIP decoder)来撷取出该地址数据。请参阅图2,图2为已知模拟地址数据译码器40的示意图。地址数据译码器40包含有一延迟电路(delay circuit)42,一合成电路(mixer)44,一锁相电路(delaylock loop,DLL)46,一分频器(frequency divider)48,以及一XOR逻辑运算电路50。首先,依据已知三角函数可知Sin(θ)*Cos(θ)=12Sin(2θ)]]>方程式(1)因此,当摆动讯号以Sin(θ)表示时,则依据方程式(1)可以得到0.5*Sin(2θ),如前所述,地址数据是以相位调制方式纪录在摆动讯号中,所以当对应地址数据的摆动讯号产生180度的相位变化时,亦即摆动讯号此时为Sin(θ+180°),而依据上述方程式(1)可得到0.5*Sin(2θ+360°),即为0.5*Sin(2θ),所以便可依据相位调制的摆动讯号来产生一非相位调制的摆动时钟。模拟地址数据译码器40依据上述概念来产生该非相位调制的摆动时钟,并依据该摆动时钟来对该摆动讯号进行译码的操作以读出地址数据。
如图2所示,讯号S1为摆动讯号,而延迟电路42用来延迟讯号S1以产生讯号S2,此外延迟电路42延迟讯号S1达半个周期,亦即讯号S2与讯号S1的相位差为90°,若讯号S1以Sin(θ)表示,则讯号S2则为Sin(θ+90°),亦即讯号S2对应Cos(θ)。合成电路44用来对讯号S1、S2进行乘法运算以输出讯号S3,依据方程式(1)可知讯号S3对应于0.5*Sin(2θ),亦即讯号S3的频率为讯号S1的频率的两倍。然后锁相电路46便依据讯号S3来驱动讯号S4同步于讯号S3,亦即锁相电路46可输出对应Sin(2θ)的讯号S4,而分频器48再处理讯号S4以产生频率为讯号S4的一半的讯号S5。请注意,讯号S5为非相位调制的摆动时钟,而讯号S1为相位调制的摆动讯号,因此当讯号S5与讯号S1经由XOR逻辑运算电路50进行一XOR逻辑运算后,便可解出讯号S1中产生相位变化的周期而取得地址数据ADIP。由于模拟电路无法准确地微分讯号S1来产生讯号S2,因此必须通过延迟电路42来达到由Sin(θ)产生相对应Cos(θ)的运算,亦即延迟电路42需延迟讯号S1其半个周期,然而,若光盘片的转速不断变化,则由光盘片读取的讯号S1会改变其频率,亦即延迟电路42必须不断依据讯号S1的周期来调整其延迟讯号S1的大小,因此造成延迟电路42的电路复杂而不易设计与实作。
请参阅图3,图3为已知数字地址数据译码器60的示意图。地址数据译码器60包含有一模拟/数字转换器(analog-to-digital converter,ADC)62,一微分运算电路(differentiator)64,一乘法器(multiplier)66,一锁相电路68,一分频器70,以及一XOR逻辑运算电路72。数字地址数据译码器60亦依据上述方程式(1)来产生该非相位调制的摆动时钟以用来对该摆动讯号进行译码的操作。讯号S1为模拟的摆动讯号,因此模拟/数字转换器62是将模拟讯号S1转换为相对应的数字讯号S2以便后续的数字讯号处理(digital signal processing)。微分运算电路64则对讯号S2进行微分运算以产生相对应讯号S3,若模拟的讯号S1对应Sin(θ),则经由模拟/数字转换器62进行取样与量化后,数字的讯号S2亦可视为等效于Sin(θ),因此Sin(θ)在微分处理后对应Cos(θ),亦即讯号S3即对应于Cos(θ)。乘法器66用来对讯号S2、S3进行乘法运算以输出讯号S4,依据方程式(1)可知讯号S4会对应于0.5*Sin(2θ),亦即讯号S4的频率为讯号S2的频率的两倍。然后锁相电路68便依据讯号S4来驱动讯号S5同步于讯号S4,亦即锁相电路68可输出对应Sin(2θ)的讯号S5,而分频器70可处理讯号S5以产生频率为讯号S5的一半的讯号S6。请注意,讯号S2、S3、S4、S5、S6为数字讯号,其中讯号S6对应非相位调制的摆动时钟,而讯号S2为相位调制的摆动讯号,因此当讯号S6与讯号S2经由XOR逻辑运算电路72进行一XOR逻辑运算后,便可解出讯号S2中产生相位变化的周期而取得地址数据ADIP。数字地址数据译码器60在运作时,其是先将模拟的摆动讯号数字化后再进行微分运算,因此模拟/数字转换器62与微分运算电路64必须具有极高的运算处理速度,且为了避免模拟讯号转换为数字讯号时产生失真,因此模拟/数字转换器62必须使用较多位数来量化模拟讯号,对于高倍速的DVD+R光驱与DVD+RW光驱而言,数字地址数据译码器60的生产成本很高而影响DVD+R光驱与DVD+RW光驱的市场竞争力。

发明内容
本发明提供一种具有保护机制并可依据相位调制的摆动讯号产生一摆动时钟的摆动时钟产生电路,用来依据一相位调制的输入讯号以产生一非相位调制的目标时钟讯号。以解决上述问题。
本发明的时钟讯号产生电路包含有一运算电路以及一锁相电路(phaselock loop,PLL)。该运算电路用来依据一参考时钟计数该输入讯号的周期产生一周期计数值,以及比较一平均计数值与该周期计数值输出一第一保护讯号。该锁相电路连接于该运算电路,用来依据该第一保护讯号与该输入讯号产生该目标时钟讯号,其中该锁相电路在该第一保护讯号对应于一第一逻辑电平时比较该输入讯号与该目标时钟讯号来调整该目标时钟讯号同步于该输入讯号,以及在该第一保护讯号对应于一第二逻辑电平时以不调整该目标时钟讯号同步于该输入讯号的方式维持该目标时钟讯号。
本发明还提供一种时钟讯号产生方法,用来依据一相位调制的输入讯号产生一非相位调制的目标时钟讯号。该时钟讯号产生方法包含有以一参考时钟计数该输入讯号的周期产生一周期计数值;比较一平均计数值与该周期计数值输出一第一保护讯号;依据该第一保护讯号与该输入讯号产生该目标时钟讯号,当该第一保护讯号对应于一第一逻辑电平时,比较该输入讯号与该目标时钟讯号来调整该目标时钟讯号同步于该输入讯号,以及当该第一保护讯号对应于一第二逻辑电平时,以不调整该目标时钟讯号同步于该输入讯号的方式维持该目标时钟讯号。
不管该相位调制的摆动讯号如何变动,本发明摆动时钟产生电路都可动态地依据该相位调制的摆动讯号产生所需的非相位调制的摆动讯号,此外,本发明摆动时钟产生电路的电路架构十分简单而易于实施,所以其制造成本低廉,并可应用任何的DVD+R光驱或DVD+RW光驱中。


图1为光驱的光学读取头读取光盘片的示意图。
图2为已知模拟地址数据译码器的示意图。
图3为已知数字地址数据译码器的示意图。
图4为本发明时钟产生电路的示意图。
图5为图4所示的计数器与平均运算单元的操作时序图。
图6为图4所示的比较运算单元的操作时序图。
图7为图4所示的摆动时钟产生电路应用于一光盘存取系统的示意图。
附图符号说明30 记录记号31 光学读取头34a、34b、34c摆动讯号40、60、116地址数据译码器42 延迟电路44 合成电路46、68 锁相电路48、70 分频器50、72 XOR逻辑运算电 62 模拟/数字转换路 器64 微分运算电路66 乘法器80 摆动时钟产生电 82 带通滤波器路84、104 削波器 86 运算电路88 锁相电路90 参考时钟产生器
92 计数器 94 平均运算单元96 比较运算单元 98 相位-频率比较器100路滤波器 102压控振荡器110光盘存取系统 112光盘片114读写头具体实施方式
请参阅图4,图4为本发明摆动时钟产生电路80的功能方块图。摆动时钟产生电路80包含有一带通滤波器(band-pass filter,BPF)82,一削波器(slicer)84,一运算电路86,以及一锁相电路(phase lock loop,PLL)88。运算电路86包含有一参考时钟产生器90,一计数器(counter)92,一平均运算单元94,以及一比较运算单元96。锁相电路88则包含有一相位-频率比较器(phase-frequency detector,PFD)98,一回路滤波器(loopfilter)100,一压控振荡器(voltage-controlled oscillator,VCO)102,以及削波器104。摆动时钟产生电路80应用于一DVD+R光驱或一DVD+RW光驱,而由于对于符合DVD+R规格或DVD+RW规格的光盘片而言,其地址数据以相位调制方式记录于相对应摆动讯号中,因此必须利用非相位调制的摆动时钟来解出该地址数据,亦即摆动时钟产生电路80用来产生该摆动时钟(亦即图4所示的讯号S3)以译码相位调制的摆动讯号(亦即图4所示的讯号S0)。本实施例中,带通滤波器84具有高Q值(Q factor),用来处理讯号S0而产生讯号S1,此外,讯号S0中对应相位调制的周期经由带通滤波器84处理后会造成相位迟滞的现象,且其频率会不稳定地产生变动。然后,削波器84即用来将讯号S1(弦波)转换为讯号S2(方波),此外削波器84会同时输出讯号S2至运算电路86以及锁相电路88。
对于锁相电路88而言,相位-频率比较器98会比较讯号S2与讯号S4之间频率与相位的差量来输出控制讯号UP与控制讯号DN。当相位-频率比较器98输出控制讯号UP与控制讯号DN至回路滤波器100时,回路滤波器100便依据控制讯号UP与控制讯号DN来输出一直流控制电压Vc至压控振荡器102,一般而言,回路滤波器100中会设置有电压提升电路(charge pump),因此当该电压提升电路接收到控制讯号UP时便会调升直流控制电压Vc,以及当该电压提升电路接收到控制讯号DN时便会调降直流控制电压Vc,此外,回路滤波器100还会设置一低通滤波器来稳定直流控制电压Vc的输出。然后,压控振荡器102便依据直流控制电压Vc来控制其输出的讯号S3的频率。此外,讯号S3(弦波)会再经由削波器104转换为讯号S4(方波)而回授至相位-频率比较器98,如上所述,锁相电路88可经由一回授机制来不断地校正讯号S4与讯号S2之间的频率与相位误差,直到讯号S4锁定讯号S2而达到同相。
举例来说,若讯号S4的正缘(rising edge)提前于讯号S2的正缘前形成,则会触发相位-频率比较器98产生控制讯号DN以用来降低直流控制电压Vc,亦即降低讯号S3的频率而因此递延讯号S4的下一回正缘的产生时间,以修正目前讯号S4的相位领先讯号S2的相位的状态,而当讯号S2的正缘稍后形成时,相位-频率比较器98会触发控制讯号UP产生一脉冲(impulse),并随即同时重置控制讯号UP、DN而完成一次相位校正的操作;相反地,若讯号S2的正缘提前于讯号S4的正缘前形成,则会触发相位-频率比较器98产生控制讯号UP以用来提升直流控制电压Vc,亦即增加讯号S3的频率而提早讯号S4的下一回正缘的产生时间,以修正目前讯号S4的相位落后讯号S2的相位的状态,而当讯号S4的正缘稍后形成时,相位-频率比较器98会触发控制讯号DN产生一脉冲,并随即同时重置控制讯号UP、DN而完成一次相位校正的操作。此外,当讯号S4与讯号S2同相时,讯号S4与讯号S2的正缘会同时触发相位-频率比较器98产生控制讯号UP与控制讯号DN,并随即同时重置控制讯号UP与控制讯号DN,由于控制讯号UP与控制讯号DN分别用来提升与降低直流控制电压Vc,且控制讯号UP与控制讯号DN被触发的持续时间(duration)相同,因此当讯号S4与讯号S2同相时,锁相电路88不会校正直流控制电压Vc而继续维持讯号S3。
依据已知DVD+R与DVD+RW规格,对于读取自光盘片的摆动讯号而言,一地址数据单元(ADIP unit)对应有93个摆动周期,其中8个摆动周期是以相位调制来纪录同步单元(ADIP sync unit)或数据单元(ADIP data unit),另外的85个摆动周期并未经由相位调制来纪录任何信息,亦即该8个相位调制的摆动周期会影响讯号S2而造成其频率不稳定。若锁相电路88依据频率不稳定的讯号S2来控制讯号S3的频率与相位,则会造成讯号S3的频率亦会不稳定。举例来说,当锁相电路88于该85个非相位调制的摆动周期的时段中完成锁定正确相位与正确频率的讯号S3,且可用来进行讯号S1中地址数据的译码操作,然而当后续8个相位调制的摆动周期开始输入摆动时钟产生电路80时,锁相电路88的上述错误运作会于造成讯号S3的相位与频率分别偏移其目标值,因此造成摆动时钟产生电路80无法持续地输出稳定的讯号S3,此外,若讯号S3的相位与频率分别大幅地偏移其目标值,则锁相电路88便需较长时间来重新锁定所要的讯号S3,亦即使得锁相电路88的效能不佳。所以,对于本实施例的运算电路86而言,其主要目的是提供一保护机制以避免锁相电路88在接收到频率不稳定的讯号S2(亦即讯号S2中对应相位调制的时段)时却驱动讯号S3同相于讯号S2。参考时钟产生器90用来输出一预定频率的参考时钟CLK,例如该预定频率为33MHz。计数器92则依据参考时钟CLK来计算于讯号S2的一周期中,参考时钟CLK的正缘(rising edge)或负缘触发计数器92的次数,亦即计数器92是用来计算讯号S2的每一周期中包含有多少个参考时钟CLK的周期,因此便可依据计数器92输出的计数值PRD来判断讯号S2的周期的长短。平均运算单元94则逐一接收对应讯号S2的各周期的计数值PRD,并依据多个计数值PRD来计算其计数平均值AVGPRD,举例来说,平均运算单元94每连续接收16个计数值PRD便产生一相对应计数平均值AVGPRD。计数器92除了输出计数值PRD至平均运算单元94外,其亦会将计数值PRD输出至比较运算单元96,本实施例中,比较运算单元96是用来比较计数值PRD与计数平均值AVGPRD以判断对应该计数值PRD的讯号S2是否进入频率不稳定的状态,亦即讯号S0中相位调制的周期是否已开始输入摆动时钟产生电路80。然后,比较运算单元96便输出一保护讯号PRDNC1至相位-频率比较器98,用来驱动相位-频率比较器98停止输出控制讯号UP、DN,由于回路滤波器100此时没有接收控制讯号UP、DN,所以直流控制电压Vc仍会维持不变,换句话说,压控振荡器102仍会保持目前锁定的讯号S3,而不会对讯号S3的频率进行任何校正。
综上所述,当讯号S0中对应相位调制的周期开始输入摆动时钟产生电路80而造成讯号S2的频率不稳定地变动时,本实施例所使用的运算电路86会输出保护讯号PRDNC1以驱动锁相电路88暂时停止依据不稳定的讯号S2来锁定讯号S3,直到讯号S0中对应非相位调制的周期开始输入摆动时钟产生电路80而使讯号S2对应稳定的频率为止,此时,运算电路86会重置保护讯号PRDNC1以使相位-频率比较器98可继续输出控制讯号UP、DN至回路滤波器100,因此,锁相电路88便继续运作来锁定讯号S3与讯号S2同相。
请参阅图5,图5为图4所示的计数器92与平均运算单元94的操作时序图。由上而下分别代表讯号S2,计数值PRD,以及计数平均值AVGPRD。如上所述,讯号S1(弦波)是经由削波器84以一削波电平(slice level)转换为相对应方波(亦即讯号S2),而讯号S1是由光盘片所读取的摆动讯号(亦即讯号S0)经由带通滤波器82处理所产生。如前所述,讯号S0中以相位调制的周期经由高Q值的带通滤波器82处理后,最后会造成讯号S2的频率在一时段中产生波动而不稳定,如图5所示,讯号S5在时间T1后,由于受到讯号S0中相位调制周期的影响,因此使得讯号S5的频率不稳定。此外,如前所述,计数器92会使用参考时钟产生器90所输出的参考时钟CLK来计算讯号S2的各周期所对应的参考时钟CLK的周期数,一般而言,参考时钟CLK的频率需大于讯号S2的平均频率以计算讯号S2的各周期所对应的参考时钟CLK的周期数,例如本实施例可使用频率为33MHz或26.16Mhz的参考时钟CLK来计数平均频率趋近817.5KHz的讯号S2。当运算电路86开始启动时,由于计数器92尚未产生任何计数值,因此平均运算单元94会设定计数平均值AVGPRD为一初始值(例如0),且当比较运算单元96在接收到计数平均值AVGPRD等于该初始值时会停止比较计数值PRD与计数平均值AVGPRD。本实施例中,当计数器92完成计数讯号S2的64个周期后,平均运算单元94依据计数器92所输出的计数值PRD(图5所示的N1-N64)来计算一计数平均值AVGPRD(图5所示的M1),亦即M1=(Σi=164Ni)/64]]>然后,当计数器92在时间T1后完成计数讯号S2的16个周期时,平均运算单元94依据计数器92所输出的计数值PRD(图5所示的N65-N80)来计算一计数平均值AVGPRD(图5所示的M2),亦即M2=(Σi=6580Ni)/16]]>同样地,在时间T2后,每当计数器92完成计数讯号S2的16个周期后,平均运算单元94即会依据计数器92所输出的计数值PRD来计算一计数平均值AVGPRD。请注意,本实施例中,由于一开始时,计数平均值AVGPRD从时间T0起为一初始值而无法被比较运算单元96使用,因此为了使求出的数值M1可趋近讯号S2的非相位调制周期应对应的参考讯号CLK的周期数,所以平均运算单元94一开始时使用较多连续的计数值(例如64个计数值)来产生数值M1,以避免受讯号S2的相位调制周期影响而大幅地偏移一目标值(亦即讯号S2的非相位调制周期所对应的参考讯号CLK的周期数)。举例来说,一地址数据单元对应93个摆动周期,其中8个摆动周期以相位调制来纪录地址数据的同步单元或地址数据的数据单元,而另外的85个摆动周期并未经由相位调制,由于平均运算单元94使用64个计数值来计算数值M1,假设64个计数值中有8个计数值因为上述8个相位调制的摆动周期影响而各自偏离该目标值,然而仍然有56个计数值分别对应该目标值,因此经由平均运算后,数值M1可确保仍会趋近于该目标值。所以,当平均运算单元94一开始时使用较多计数值来产生数值M1后,比较运算单元96可正确地使用数值M1来判断讯号S2的后续16个周期中是否有对应相位调制的周期。同样的道理,在时间T1后,每当计数器92完成计数讯号S2的16个周期后,平均运算单元94即会依据计数器92所输出的计数值PRD来计算一计数平均值AVGPRD,假设16个计数值中有8个计数值因为上述8个相位调制的摆动周期影响而各自偏离该目标值,然而,仍然有8个计数值分别对应该目标值,因此经由平均运算后,数值M2亦不会因此而大幅地偏移该目标值。请注意,本实施例可依据需求来调整平均运算单元94产生计数平均值AVGPRD所处理的计数值PRD的数量,亦即本实施例未限定使用上述的16个计数值PRD或64个计数值PRD。
请参阅图6,图6为图4所示的比较运算单元96的操作时序图。由上而下分别代表计数值PRD,计数平均值AVGPRD,以及保护讯号PRDNC1。当读取光盘片的摆动轨迹以产生摆动讯号时,由于光驱的转轴(spindle)的转速的轻微变动或该光盘片本身偏心(disc eccentricity or disc run-out)所造成的震动均会影响摆动讯号的形成,因此平均运算单元94在比较计数值PRD与计数平均值AVGPRD时,其是先计算计数值PRD与计数平均值AVGPRD的差量,然后判断该差量是否大于一预定临界值来决定对应该计数值PRD的周期是否受相位调制所影响。举例来说,设定该预定临界值为目前取得的计数平均值AVGPRD的四分之一(1/4)或八分之一(1/8),所以若该差量超过(1/4)*AVGPRD或(1/8)*AVGPRD,则比较运算单元96会触发保护讯号PRDNC1以驱动相位-频率比较器98停止输出控制讯号UP、DN。在图6中,为了便于说明,计数值PRD与计数平均值AVGPRD以十进制数值表示。假设预定临界值为计数平均值AVGPRD的八分之一,而在时间T1-T2中,多个计数值PRD与计数平均值AVGPRD的差量均未大于预定临界值,因此保护讯号PRDNC1未被触发而保持低逻辑电平。在时间T2时,平均运算单元94依据时间T1-T2中的多个计数值PRD重新计算计数平均值AVGPRD,如图6所示,计数平均值AVGPRD为28,此时预定临界值等于4,而在时间T2-T3中,计数器92所算出的计数值PRD为38,其与计数平均值AVGPRD的差量超过预定临界值,所以当比较运算单元96在时间T3比较计数值PRD与计数平均值AVGPRD时,比较运算单元96随即触发保护讯号PRDNC1由低逻辑电平转换至高逻辑电平,同时,相位-频率比较器98会停止输出控制讯号UP、DN。
一般而言,当讯号S0中相位调制的周期进入带通滤波器82后会造成讯号S1产生频率变动,虽然理论上讯号S0中每93个周期中仅有8个相位调制的周期,然而即使讯号S0在输入该8个相位调制的周期后开始输出非相位调制的85周期至带通滤波器82,由于带通滤波器82本身的操作特性,讯号S1仍会持续维持不稳定频率的状态一预定时段,然后才会回复频率稳定的状态,亦即讯号S1实际上对应不稳定频率的时间会大于理想时段而不易预测。所以,当带通滤波器82处理讯号S0而造成讯号S1的频率不稳定时,相对应讯号S2的一周期仍可能会使计数器92输出的计数值PRD趋近计数平均值AVGPRD,因此若比较运算单元96将该状况视为讯号S1已回复稳定频率而错误地重置保护讯号PRDNC1,则会使锁相电路88依据不稳定的讯号S2来锁定讯号S3。因此考虑上述带通滤波器82对讯号S1的影响以及讯号S2本身频率不稳定的状况,本实施例在判断重置保护讯号PRDNC1的时序时,为了避免误判,比较运算单元96在连续多个计数值PRD与计数平均值AVGPRD的差量均小于预定临界值时才会重置保护讯号PRDNC1,因此可大幅地避免错误地重置保护讯号PRDNC1。
如图6所示,假设比较运算单元96在连续3个计数值PRD与计数平均值AVGPRD的差量均小于预定临界值时才会重置保护讯号PRDNC1,因此虽然于时间T3-T4以及时间T4-T5时,计数值PRD与计数平均值AVGPRD的差量均小于预定临界值,然而在时间T5-T6时,计数值PRD与计数平均值AVGPRD的差量却突然大于预定临界值,换句话说,讯号S2可能尚未对应稳定的频率,亦即讯号S2仍受到讯号S0中相位调制的周期的影响,所以为了避免错误地重置保护讯号PRDNC1,因此在时间T6时,比较运算单元96重新检测是否有连续3个计数值PRD与计数平均值AVGPRD的差量均小于预定临界值。明显地,比较运算单元96于时间T7-T8中连续检测到3个计数值PRD与计数平均值AVGPRD的差量均小于预定临界值,所以在时间T8时才会重置保护讯号PRDNC1。综上所述,比较运算单元96在时间T3-T8中启动保护讯号PRDNC1来避免锁相电路88依据不稳定的讯号S2来锁定讯号S3,亦即本实施例通过保护讯号PRDNC1来保护讯号S3,并进一步地增进锁相电路88锁定所需讯号S3的效能。请注意,本实施例中,比较运算单元96比较计数值PRD与平均计数值AVGPRD来判断是否启动保护机制,其中平均计数值AVGPRD经由平均运算单元94对多个计数值PRD进行平均运算所产生,平均计数值AVGPRD的用途主要是用来定义讯号S2中非对应相位调制的周期的理想计数值,本实施例中,当一光盘片的转速改变时,经由平均运算单元的处理,平均计数值AVGPRD亦会随之调整。然而,亦可应用其它方式来设定比较运算单元96所要的平均计数值AVGPRD,举例来说,当一光盘片以等角速度方式旋转时,便可依据该光驱的转轴转速算出该光盘片上一预定位置的线速度,或者当该光盘片以等线速度方式旋转时,便可得知该光盘片上一预定位置的线速度,换句话说,便可求出此时摆动讯号理应对应的频率(举例来说,当光盘片以1X旋转时,摆动讯号的的频率会趋近817.5KHz),因此便可依据参考时钟CLK的频率来换算所需设定的平均计数值AVGPRD,亦属本发明的范畴。
如图4所示,讯号S2直接输入相位-频率比较器98,然而,讯号S2还需经由运算电路86处理后才输出保护讯号PRDNC1至相位-频率比较器98,换句话说,要产生对应讯号S2的保护讯号PRDNC1,计数器92必须完成计算计数值PRD的操作,平均运算单元94必须完成计算平均计数值AVGPRD的操作,以及比较运算单元96必须完成比较计数值PRD与平均计数值AVGPRD的操作。换句话说,频率不稳定的讯号S2开始输入相位-频率比较器98的时序可能会早于比较运算单元96开始触发相对应保护讯号PRDNC1的时序,亦即在保护讯号PRDNC1开始保护讯号S3避免受相位调制的摆动讯号影响前,不稳定的讯号S2已经开始输入相位-频率比较器102而影响锁相电路96所产生的讯号S3。为了解决上述问题,本发明摆动时钟产生电路80还应用一提早保护的机制,其操作叙述如下。依据DVD+R与DVD+RW的规格,光盘片上每两个记录区会对应93个摆动周期,亦即一地址数据单元是由93个摆动周期构成,其中8个摆动周期是经由相位调制来纪录所要的地址数据,而其余85个摆动周期并未应用相位调制来纪录信息,因此本实施例主要是利用相位调制的摆动讯号(亦即讯号S0)中85个未相位调制的摆动周期来产生非相位调制的摆动讯号(亦即讯号S3),而该非相位调制的摆动讯号便可用来与相位调制的摆动讯号进行XOR逻辑运算以解出地址数据。所以,若本发明摆动时钟产生电路80所产生的讯号S3可正确地地解出一地址数据单元中8个摆动周期所对应的地址数据时,则依据DVD+R与DVD+RW的规格,后续85个摆动周期应与讯号S3同相,因此若讯号S3可顺利解出一地址数据单元中的数据,则表示摆动时钟产生电路80所输出的讯号S3即为所需摆动时钟,因此便可预测下一地址数据单元开始的时序,同时在该8个相位调制的摆动周期输入锁相电路88前一预定时间即停止相位-频率比较器98输出控制讯号UP、DN。
请参阅图7,图7为图4所示的摆动时钟产生电路80应用于一光盘存取系统110的示意图。光盘存取系统110包含有一光盘片112,一读写头(pick-up head)114,一摆动时钟产生电路80,以及一地址数据译码电路116。读写头114可读取光盘片上所设置的摆动轨迹而产生相位调制的摆动讯号(亦即讯号S0)。如前所述,摆动时钟产生电路80可依据相位调制的讯号S0产生非相位调制的摆动讯号(亦即讯号S3),而地址数据译码电路116便可使用讯号S3来解出讯号S0中所纪录的地址数据(ADIP),举例来说,对讯号S3与讯号S0进行XOR逻辑运算即可解出原本以相位调制来纪录的地址数据,亦即讯号S0中每93个摆动周期读出同步单元或数据单元。此外,由于已知每93个摆动周期(对应一地址数据单元)中,8个对应相位调制的摆动周期后会跟随85各非相位调制的摆动周期,所以地址数据译码电路116在译码讯号S0的运算过程中,便可事先预测下一地址数据单元开始的第一个摆动周期何时会出现,请注意,该第一个摆动周期即会产生180°的相位变化,因此由图4可知保护讯号PRDNC1亦依据讯号S2而产生,而地址数据单元开始的第一个摆动周期输入相位-频率比较器98会早于保护讯号PRDNC1开始保护锁相电路88的时间,因此可能造成锁相电路88误动而影响原本相位与频率正确的讯号S3。所以,本实施例中,当锁相电路88产生的讯号S3可使地址数据译码电路116成功地译码多个地址数据单元后,地址数据译码电路116会预测下一地址数据单元的第一个摆动周期何时出现,并在该下一地址数据单元开始处理前一预定时间触发一保护讯号PRDNC2至相位-频率比较器98,亦即保护讯号PRDNC2此时取代原先保护讯号PRDNC1保护锁相电路88的功能,如图4所示,相较于保护讯号PRDNC1,保护讯号PRDNC2可于时间T2前(例如时间Tx)即驱动相位-频率比较器停止输出控制讯号UP、DN。同样地,当比较运算单元96在连续多个计数值PRD与计数平均值AVGPRD的差量均小于预定临界值时会同时重置保护讯号PRDNC1与保护讯号PRDNC2。
相较于已知技术,本发明摆动时钟产生电路利用原先相位调制的摆动讯号来产生非相位调制的摆动讯号,而相位调制的摆动讯号包含有相位调制的摆动周期与非相位调制的摆动周期,因此当本发明摆动时钟产生电路应用锁相电路来锁定该非相位调制的摆动讯号同相于该非相位调制的摆动周期时,本发明摆动时钟产生电路还使用一运算电路计算该相位调制的摆动讯号的周期长短来产生保护讯号,以便该相位调制的摆动周期输入该锁相电路时暂停该锁相电路的锁相运作。此外,当该非相位调制的摆动讯号可成功地解出该相位调制的摆动讯号中编码的地址数据时,本发明摆动时钟产生电路可启动一提前保护的机制以进一步地控制该锁相电路稳定地锁定该非相位调制的摆动讯号。不管该相位调制的摆动讯号如何变动,本发明摆动时钟产生电路都可动态地依据该相位调制的摆动讯号产生所需的非相位调制的摆动讯号,此外,本发明摆动时钟产生电路的电路架构十分简单而易于实施,且其制造成本低廉,并可应用于任何的DVD+R光驱或DVD+RW光驱中。
权利要求
1.一时钟讯号产生电路,用来依据一相位调制的输入讯号以产生一非相位调制的目标时钟讯号,该时钟讯号产生电路包含有一运算电路,用来依据一预定频率的参考时钟计数该输入讯号在该预定频率间的周期数以得到一周期计数值,以及比较一平均计数值与该周期计数值输出一第一保护讯号,其中该平均计数值为多个该周期计数值的平均;以及一锁相电路,连接于该运算电路,用来接收该输入讯号该第一控制讯号,用以产生该目标时钟讯号,而该目标时钟讯号会回授至该锁相电路的输入端,根据该第一保护电路的逻辑电平决定是否调整该目标时钟讯号同步于该输入讯号;其中当第一保护讯号对应于一第一逻辑电平时比较该输入讯号与该目标时钟讯号来调整该目标时钟讯号同步于该输入讯号,以及当该第一保护讯号对应于一第二逻辑电平时以不调整该目标时钟讯号同步于该输入讯号的方式维持该目标时钟讯号。
2.如权利要求1所述的时钟讯号产生电路,其中该运算电路包含有一参考时钟产生器,用来产生对应该预定频率的该参考时钟;一计数器,连接于该参考时钟产生器,用来根据该参考时钟计数该输入讯号在该预定频率间的周期数以得到该周期计数值;一平均运算单元,连接于该计数器,用来平均多个该周期计数值以产生该平均计数值。一比较运算单元,连接于该计数器以及该比较运算单元,用来比较该一周期计数值与该平均计数值。
3.如权利要求2所述的时钟讯号产生电路,其中该锁相电路包含有一相位-频率比较器,连结至该比较运算单元,接收该第一保护讯号,该输入讯号以及该目标时钟讯号,用以依据该第一保护讯号的逻辑电平决定是否比较该输入讯号以及该目标时钟讯号的相位用以输出一控制讯号;一回路滤波器,连接于该相位-频率比较器,用来接收该控制讯号,并依据该控制讯号输出一控制电压;以及一压控震荡器,连接于该回路滤波器,用来依据该控制电压调整所产生该目标时钟讯号的频率。
4.如权利要求3所述的时钟讯号产生电路,其中还包含有一第二削波器,连接于该压控震荡器与该相位-频率比较器之间,用以削波该目标时钟讯号。
5.如权利要求1所述的时钟讯号产生电路,其中若该周期计数值与该平均计数值的差量不大于一临界值且连续数次,则该第一保护讯号会对应该第一逻辑电平,以及若该周期计数值与该平均计数值的差量大于一临界值且连续数次,则该第一保护讯号会对应该第二逻辑电平。
6.如权利要求1所述的时钟讯号产生电路,其中该时钟产生电路还包含有一带通滤波器,用来当该输入讯号输入该运算电路以及该锁相电路前,控制该输入讯号对应于一预定频率范围;一第一削波器,该削波器的输入端连接于该带通滤波电路,输出端连接于该运算电路与该锁相电路,用以削波该输入讯号。
7.如权利要求1所述的时钟讯号产生电路,其中该输入讯号为一光盘片的摆动讯号,而该目标时钟讯号为一摆动时钟。
8.如权利要求1所述的时钟讯号产生电路,其中该光驱包含一地址数据译码器,用以预测该输入讯号形成相位调制的周期的时序,并在该时序前一预定时段产生一第二保护讯号来控制不调整该目标时钟讯号同步于该输入讯号,用以维持该目标时钟讯号。
9.一种时钟讯号产生方法,用来依据一相位调制的输入讯号产生一非相位调制的目标时钟讯号,该时钟讯号产生方法包含有根据一第一保护讯号决定是否调整该输入讯号以及该目标时钟讯号的相位同步用以输出一控制讯号;根据该控制讯号输出一控制电压;以及依据该控制电压调整该目标时钟讯号的频率;其中根据对应一预定频率的参考时钟对该输入讯号的周期计数以得到一周期计数值,将该周期计数值与一平均计数值比较,根据比较的结果决定该第一保护讯号的逻辑位准。
10.如权利要求9所述的时钟讯号产生方法,其中该第一保护讯号产生方法包含有产生一参考时钟,其中该参考时钟有一预定频率;根据该参考时钟计数该输入讯号在该预定频率间的周期数以得到一周期计数值;以及比较该平均计数值与该周期计数值输出该第一保护讯号;其中该平均计数值为多个该周期计数值的平均。
11.如权利要求10所述的时钟讯号产生方法,其中还包含有使用一初始值初始该平均计数值;以及平均对应一预定数目的多个周期计数值以设定该平均计数值;其中当该平均计数值等于该初始值时,停止比较该平均计数值与对应该预定数目的多个周期计数值。
12.如权利要求9所述的时钟讯号产生方法,其中当该第一保护讯号对应该第二逻辑电平,且连续一预定数目的多个周期计数值与该平均计数值的差量均大于一临界值时,则该第一保护讯号会维持该第二逻辑电平,以及当该第一保护讯号对应该第二逻辑电平,且连续一预定数目的多个周期计数值与该平均计数值的差量均不大于一临界值时,则该第一保护讯号会由对应该第二逻辑电平转变至对应该第一逻辑电平。
13.如权利要求9所述的时钟讯号产生方法,其中还包含使用预测该输入讯号形成相位调制的周期的时序,并在该时序前一预定时段产生一第二保护讯号来控制不调整该目标时钟讯号同步于该输入讯号,用以维持该目标时钟讯号。
全文摘要
本发明提供一种光驱的摆动时钟产生电路,其包含有一运算电路以及一锁相电路。运算电路用来依据一参考时钟计数一摆动讯号的周期产生一周期计数值,以及比较一平均计数值与该周期计数值输出一控制讯号。锁相电路电连接于运算电路,用来依据控制讯号与摆动讯号产生一摆动时钟。锁相电路在控制讯号对应于一第一逻辑电平时比较摆动讯号与摆动时钟来调整摆动时钟同步于摆动讯号,以及在控制讯号对应于一第二逻辑电平时维持摆动时钟而不调整摆动时钟同步于摆动讯号。
文档编号H03L7/06GK1542818SQ20041003434
公开日2004年11月3日 申请日期2004年4月12日 优先权日2003年4月10日
发明者萧原坤 申请人:威腾光电股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1