电梯的制动装置的制作方法

文档序号:8029361阅读:202来源:国知局
专利名称:电梯的制动装置的制作方法
技术领域
本发明涉及电梯的制动装置。
背景技术
现有的电梯制动装置的制动状态是利用弹簧形成的按压力进行保持的,释放状态是通过永久磁铁的磁力进行保持的。从制动状态向释放状态的切换,是向电磁铁线圈通入直流电、产生与永久磁铁同方向的强磁场,以此抵抗弹簧的力而吸引电枢(アマチユア)。吸引结束后即使切断直流电也可以利用永久磁铁的磁力将电枢保持为吸引状态。从释放状态向制动状态的切换是向线圈导通产生磁力的直流电,该磁力可抵消永久磁铁的磁力(例如参照专利文献1)。
专利文献1实开昭57-128号公报在上述现有的电梯的制动装置中,在从制动状态向释放状态切换时,由于需要用比相当于制动力的力更大的力压缩弹簧,因此需要大的能量,必须加大流入线圈的电流。
本发明的目的是提供进一步减少制动及其释放所需能量的电梯的制动装置。

发明内容
本发明是一种电梯的制动装置,其特征在于,具有可动插杆(プランジヤ)、制动机构、第一驱动机构以及第二驱动机构,制动机构与所述可动插杆的一端结合、通过可动插杆在轴方向的移动向制动状态和释放状态进行切换;第一驱动机构使用机械或磁动力,用于使所述可动插杆在向制动状态和释放状态切换的轴方向的可动范围的中间逆转、以将所述可动插杆按压保持在制动侧或释放侧;第二驱动机构使用电磁力,为了进行制动状态和释放状态的切换,抵抗所述第一驱动机构的按压力、将所述可动插杆从制动侧或释放侧驱动到所述可动范围的中间的逆转位置。
本发明可提供可进一步减少电梯制动器的制动、释放所需要的能量的电梯的制动装置。


图1是表示本发明的第一实施方式的电梯制动装置的结构图。
图2是表示图1的制动装置中的可动插杆的移动距离、与碟形弹簧形成的向箭头A方向的力的关系的模式图。
图3是表示图1的制动装置释放时的状态图。
图4是表示本发明的电梯的制动装置的释放用线圈以及制动用线圈的电源装置的一个示例的图。
图5是表示本发明的第二实施方式的电梯制动装置的结构图。
图6是表示图5的制动装置中的可动插杆的移动距离、与永久磁铁产生的向箭头A方向的磁力的关系的模式图。
图7是表示图5的制动装置的释放时的状态图。
图8是表示本发明的第三实施方式的电梯的制动装置的结构图。
图9是表示图8的制动装置的释放时的状态图。
图10是表示本发明的第四实施方式的电梯的制动装置的结构图。
图11是表示图10的制动装置的释放时的状态图。
图12是表示本发明的第五实施方式的电梯的制动装置的结构图。
图13是表示图12的可动铁心的移动距离与永久磁铁力、制动弹力、加力弹力的关系的模式图。
具体实施例方式
在本发明中,制动装置的制动状态和释放状态,通过碟形弹簧的逆转、或使用永久磁铁和可动铁心的磁回路的逆转进行切换,两个状态用同一个装置保持。并且,制动装置的制动状态和释放状态的切换装置由非磁性体排斥板和在两侧相对设置的两个线圈构成,并利用排斥力,所述排斥力通过在使电流向一方的线圈流动时产生在排斥板上的涡流而获得。并且,制动装置的制动状态和释放状态的切换装置,由可动铁心和在两侧相对地设置的两个线圈以及构成磁路的磁轭构成,并利用使电流向一方的线圈流动、进行励磁时的对可动铁心的吸引力。
由此,在现有的制动装置中、在从制动状态向释放状态转变时,由于需要抵抗产生制动力的弹力来吸引电枢,因此,在整个电枢移动行程区域需要大的力,需要大的能量,但根据本发明的装置,用于制动装置的释放状态、制动状态都利用同一装置的逆转,因此,切换状态所需要的能量只要可使机构逆转(即只到行程的大约一半)即可,可用较少的能量完成。并且,还具有加快制动时的制动装置的动作、或即使把持位置偏离中心也可随动的特征。以下根据各实施方式就本发明进行说明。
第一实施方式图1是表示本发明的第一实施方式的电梯制动装置的结构图。碟形弹簧10a的外缘部被支撑部10b支撑在固定部。并且碟形弹簧的内缘部(中央部)被支撑部10c固定在可动插杆5上。可动插杆5的一端通过支撑轴6与连杆4的一端连接,连杆4可相对于支撑轴6旋转。将连杆4的另一端通过支撑轴7可相对于支撑轴7可自由转动地连接在臂2的端部。臂2可自由转动地固定在固定轴3上。在臂2的前端安装有与盘部件或导轨(无图示)等直接接触的滑动部件1。在可动插杆5的另一端设置有可动插杆的驱动部20。驱动部20由以铝或铜等非磁性体为材料的排斥板20a和与排斥板20a相对设置的释放用线圈20b、制动用线圈20c构成。排斥板20a固定在可动插杆5上,释放用线圈20b和制动用线圈20c隔着排斥板20a设置在相反侧(以相对的方式)。另外,1~4、6、7构成制动机构、10a~10c构成第一驱动机构、20构成第二驱动机构。
以下就动作进行说明。图1表示将盘部件或导轨把持在滑动部件1之间、发挥制动力的状态。此时,碟形弹簧10a相对于支撑部10c向图中箭头A的方向产生弹力。这样,可动插杆5在箭头A方向也受力,连杆4的支撑轴7要向左右打开。臂2以固定轴3为支点,向要关闭滑动部件1的方向产生力,可以得到充分的制动力。
从图1的状态起,一旦使大电流瞬间向释放用线圈20b流动,则在排斥板20a中将产生涡流、以抵消在线圈上产生的磁场。释放用线圈20b的磁场和排斥板20a的涡流产生的磁场相互排斥,排斥板20a在箭头B的方向受力。若排斥板20a受到的力大于由碟形弹簧10a产生的力,则可动插杆5将开始向箭头B方向移动。图2模式地表示此时的可动插杆5的移动距离和碟形弹簧10a形成的向箭头A方向的力。图2的横轴将整个移动距离表示为10。若可动插杆5移动到规定的位置(碟形弹簧10a成为平的位置),则碟形弹簧将逆转,支撑部10c向支撑部10b的箭头B侧移动。这样,碟形弹簧10a相对于箭头A方向开始产生负的力(即向箭头B方向的力)(实际上产生越过中立位置朝向相反方向的力),因此,如图3所示,即使已不使电流向释放用线圈20b流动,通过碟形弹簧10a的力、可动插杆5也将向箭头B方向移动,通过连杆4的动作而使得支撑轴7从左右向关闭方向移动,臂2以固定轴3为支点向打开滑动部件1的方向旋转、释放制动力,利用碟形弹簧10a的弹力保持释放状态。此时,虽然碟形弹簧10a的弹力决定可动插杆5的可动区域,但最好在固定部10c或排斥板20a上设置限制可动区域的止挡部8,防止线圈20b、20c与排斥板20a碰撞。
对于从释放状态向制动状态的切换,使大电流瞬间向制动用线圈20c流动即可。动作原理与从制动状态向释放状态切换完全相同,只是所产生的力的方向相反,因此省略详细说明。
用于使上述的大电流瞬间向线圈20b、20c流动的电源装置如图4所示,通过闭合开关31、打开开关32可以事先从直流电源30向电容器33进行充电,然后通过打开开关31、闭合开关32可以对充电的电荷进行放电。此时,二极管34防止电流的逆流、保护电容器33,同时,发挥防止电磁力特性的振动、提高能量效率的作用。并且,制动状态和释放状态的切换是通过使开关32与释放用线圈20b连接或与制动用线圈20c连接来进行的。如果是这种方式,则即使在停电时、在电容器充满电期间也可以进行制动状态、释放状态的切换,也可以确保作为紧急用制动装置的安全性。此时,通过紧急用电池(无图示)向开关电源供电,该紧急用电池是电梯本来就具有的,在停电时用于将电梯移动到最近的楼层。进行开关(スイツチング)所需的电力非常小,即使不为进行开关而增强电池,也不会影响在停电时将电梯移动到最近一层所需的电力。并且,也可以增加紧急用电池的容量、向电容器充电。
这样,现有的制动器在从制动状态向释放状态转换时,由于需要抵抗产生制动力的弹力而吸引电枢,因此,需要大的能量,但根据本方式,由于制动器的释放状态、制动状态都是通过碟形弹簧的逆转来实现的,因此,状态的切换所需要的能量只需使机构逆转、即达到行程的大约一半即可,因此可以用小的能量解决。并且,由于将涡流形成的磁场的排斥力作为切换制动器的制动、释放状态的原动力而使用,因此制动动作迅速。
第二实施方式图5是表示本发明的第二实施方式的电梯的制动装置的结构图。磁铁弹簧40由永久磁铁40a、固定在可动插杆5上并形成一体而进行动作的可动铁心40b以及以包围上述部件的方式设置的磁轭40c构成。其他的结构与第一实施方式相同。另外,1~4、6、7构成制动机构、40构成第一驱动机构、20构成第二驱动机构。
以下就动作进行说明。图5表示将盘部件或导轨把持在滑动部件1之间、发挥制动力的状态。此时,可动铁心40b由于永久磁铁40a的箭头C方向的磁通、被向箭头A方向按压。这样,可动插杆5也在箭头A方向受力,连杆4的支撑轴7要向左右打开。臂2以固定轴3为支点,向要关闭滑动部件1的方向产生力,可以得到充分的制动力。
从图5的状态起,一旦使大电流瞬间流向释放用线圈20b,则在排斥板20a上将产生涡流、以抵消在线圈上产生的磁场。释放用线圈20b的磁场和由排斥板20a的涡流产生的磁场相互排斥,排斥板20a在箭头B的方向受力。若排斥板受到的力大于永久磁铁40a产生的磁力,则可动插杆5将开始向箭头B方向移动。图6模式地表示此时的可动插杆5的移动距离和由永久磁铁产生的朝向箭头A方向的磁力。图6的横轴将整个移动距离表示为10。若可动插杆5移动到规定的位置(行程的中间位置),则图5的箭头C方向的磁场和图7所示的箭头D方向的磁场平衡,力不对可动铁心40b作用而靠惯性移动。而且,一旦可动插杆5移动,则磁路如图7所示形成在箭头D方向上,相对于箭头A方向开始产生负的力(即,向箭头B方向的力),因此,如图7所示,即使已不使电流向释放用线圈流动,可动插杆5也将通过磁力向箭头B方向移动,并且通过连杆4的动作、支撑轴7将从左右向关闭方向移动,臂2以固定轴3为支点、向打开滑动部件1的方向旋转、释放制动力,并利用磁力保持释放状态。此时,最好在可动铁心40b或排斥板20a的可动区域的上下限上设置限制可动区域的止挡部8,防止可动铁心40b与磁轭40c的接触或线圈20b、20c与排斥板20a的接触。
对于从释放状态向制动状态的切换,使大电流瞬间向制动用线圈20c流动即可。动作原理与从制动状态向释放状态的切换完全相同,只是所产生的力的方向相反,因此省略详细说明。
这样,现有的制动器在从制动状态向释放状态转换时,由于需要抵抗产生制动力的弹力来吸引电枢,因此需要大的能量,但根据本方式,制动器的释放状态、制动状态都是通过移动可动铁心而逆转磁场来进行的,因此,状态的切换所需要的能量只需使磁场逆转、即达到行程的大约一半即可,因此可以用小的能量解决。并且,由于将涡流形成的磁场的排斥力作为切换制动器的制动、释放状态的原动力使用,因此制动动作迅速。
第三实施方式图8是表示本发明的第三实施方式的电梯制动装置的结构图。电磁吸引装置50由永久磁铁50a,固定在可动插杆5上并形成一体地进行动作的可动铁心50b,分别设置在永久磁铁50a两侧的相反侧(相互相对地)的制动用线圈51a、释放用线圈51b,以及以包围线圈51a、51b和永久磁铁50a、可动铁心50b的方式设置的磁轭50c构成。其他的结构与第一实施方式相同。另外,1~4、6、7构成制动装置,50构成第一驱动机构,51a、51b构成第二驱动机构。
以下就动作进行说明。图8是表示将盘部件或导轨把持在滑动部件1之间、发挥制动力的状态。此时,对制动用线圈51a、释放用线圈51b都不励磁,可动铁心50b通过由永久磁铁50a产生的箭头C方向的磁通而被向箭头A方向按压。这样,可动插杆5也在箭头A方向受力,连杆4的支撑轴7要向左右打开。臂2以固定轴3为支点,向要关闭滑动部件1的方向产生力,可以得到充分的制动力。
从图8的状态起,一旦使电流流向释放用线圈51b、进行励磁,则将形成箭头E方向的磁通,产生将可动铁心50b向箭头B方向拉回的力。如果流入线圈的电流足够大,则由线圈产生的磁场将比由永久磁铁产生的磁场强,可动铁心50b将开始向箭头B方向移动。一旦可动插杆移动到规定的位置(行程的中间位置),则磁力将不对可动铁心50b进行作用而是靠惯性移动。而且,一旦可动插杆5移动,则由永久磁铁形成的图8中的箭头C方向的磁场和由永久磁铁形成的图9所示的箭头D方向的磁场将平衡,来自永久磁铁50a的力不对可动铁心50b进行作用而是靠惯性移动。由于磁路如图9所示形成在箭头D方向上,并且相对于箭头A开始产生负的力(即、向箭头B方向的力),因此,如图9所示,即使已不使电流向释放用线圈51b流动,可动插杆5也利用由永久磁铁50a产生的磁力向箭头B方向移动,并且通过连杆4的动作、支撑轴7将从左右向关闭方向移动,臂2以固定轴3为支点、向打开滑动部件1的方向旋转、释放制动力,并利用磁力保持释放状态。此时,最好在可动铁心50b的可动区域的上下限设置限制可动区域的止挡部8,防止可动铁心50b与磁轭50c接触。
对于从释放状态向制动状态的切换,使电流向制动用线圈51a流动、进行励磁即可。动作原理与从制动状态向释放状态的切换完全相同,只是所产生的力的方向相反,因此省略详细说明。
这样,现有的制动器在从制动状态向释放状态转换时,由于需要抵抗产生制动力的弹力、吸引电枢,因此需要大的能量,但根据本方式,制动器的释放状态、制动状态都是通过将永久磁铁产生的磁场进行逆转而进行的,因此,状态的切换所需要的能量只需使机构反转、即行程的大约一半即可,因此可以用小的能量解决。
第四实施方式图10是表示本发明的第四实施方式的电梯的制动装置的结构图。电磁吸引装置60由固定在可动插杆5上并形成一体地进行动作的可动铁心60a,隔着可动铁心60a分别相对设置的制动用线圈61a、释放用线圈61b,以及以构成包围线圈61a、61b和可动铁心60a的磁路的方式设置的磁轭60b构成。其他的结构与第一实施方式相同。另外,1~4、6、7构成制动机构,10a~10c构成第一驱动机构,60、61a、61b构成第二驱动机构。
以下就动作进行说明。图10表示将盘部件或导轨把持在滑动部件1之间、发挥制动力的状态。此时,对制动用线圈61a、释放用线圈61b都不励磁,可动铁心60a通过碟形弹簧10a的反力被向箭头A方向按压。这样,可动插杆5也在箭头A方向受力,连杆4的支撑轴7要向左右打开。臂2以固定轴3为支点,向要关闭滑动部件1的方向产生力,可以得到充分的制动力。
从图10的制动状态起,一旦使电流流向释放用线圈61b进行励磁,则将形成箭头F方向的磁场,产生将可动铁心60a向箭头B方向拉回的力。如果流入线圈的电流足够大,则作用于可动铁心60a的吸引力将大于碟形弹簧10a的反力,可动铁心60a开始向箭头B方向移动。一旦可动插杆移动到规定的位置(碟形弹簧10a变平的位置),则碟形弹簧将反转、支撑部10c向支撑部10b的箭头B侧移动。这样,碟形弹簧将相对于箭头A方向开始产生负的力(即,向箭头B方向的力),因此,如图11所示,即使已不使电流向释放用线圈61b流动,可动插杆5也将通过碟形弹簧的力向箭头B方向移动,并且通过连杆4的动作、支撑轴7从左右向关闭方向移动,臂2以固定轴3为支点、向打开滑动部件1的方向旋转、释放制动力,并利用碟形弹簧的弹力保持释放状态。此时,最好在可动铁心60a的可动区域的上下限设置限制可动区域的止挡部8,防止可动铁心60a与磁轭60b的接触。
从释放状态向制动状态的切换,使电流向制动用线圈61a流动、进行励磁即可。由于动作原理与从制动状态向释放状态的切换完全相同,只是所产生的力的方向相反,因此省略详细说明。
这样,现有的制动器在从制动状态向释放状态转换时,由于需要抵抗产生制动力的弹力来吸引电枢,因此需要大的能量,但根据本方式,由于制动器的释放状态、制动状态都是通过碟形弹簧的反转来实现的,因此,状态的切换所需要的能量只需使机构逆转、即达到行程的大约一半即可,因此可以用小的能量解决。
第五实施方式图12是表示本发明的第五实施方式的电梯的制动装置的结构图。在可动插杆5和连杆4之间构成由弹簧框71、制动弹簧72以及弹簧托73构成的第一弹簧结构701。弹簧框71由支撑作为压缩弹簧的制动弹簧72的顶板71a、调节弹簧的压缩量的调节螺栓71c、切割有与调节螺栓71c螺合的螺纹的底板71b、以及与调节螺栓71c螺合使底板的位置不发生变化的止动螺母71d构成。支撑制动弹簧的一端的弹簧托73可沿着调节螺栓71c移动地安装在弹簧框71上。弹簧托73的向下方延伸的轴部73a的端部,通过支撑轴6可自由转动地连接在可动插杆5上。这样,即使在导轨或盘部件位置(即,把持位置)从滑动部件1之间的中心位置错开、支撑轴70的位置向左右移动的状态下,电磁吸引装置50动作、支撑轴6向轴方向移动,也可以一面改变支撑轴6与支撑轴70的距离一面进行随动。
电磁吸引装置50由可动铁心50b、永久磁铁50a、制动用线圈51a和释放用线圈51b以及磁轭50c构成,所述可动铁心50b固定有在同轴上且在该轴方向的制动侧和释放侧的相互相反侧设置的可动插杆5、74,并使之形成一体地进行移动;所述永久磁铁50a在可动铁心50b的周围与可动插杆的轴方向平行地延伸设置;所述制动用线圈51a和释放用线圈51b在永久磁铁50a的制动侧和释放侧(图中的上下)相互相对地设置;磁轭50c以包围线圈51a、51b、永久磁铁50a、可动铁心50b的方式设置。
可动插杆74从可动铁心50b向制动装置的相反侧突出,在其前端安装有调整弹簧托75。在调整弹簧托75和可动插杆74上分别切有螺纹以便分别螺合,可调整调整弹簧托75相对于可动插杆74的位置。作为压缩弹簧的加力弹簧76被调整弹簧托75和固定弹簧托77夹住,相对于可动铁心50b一直产生向箭头A方向的力。调整弹簧托75、加力弹簧76以及固定弹簧托77构成第二弹簧结构702。
在上述结构中,固定轴3、磁轭50c、固定弹簧托77固定在制动器底座或框体等固定部上。其他的结构与上述的实施方式相同。另外,1~4、7、70构成制动机构、50构成第一驱动机构、51a、51b构成第二驱动机构。
以下就动作进行说明。图12是表示将盘部件或导轨把持在滑动部件1之间、发挥制动力的状态。此时,设在弹簧托73和底板71b之间产生的间隙为δ。此时,对制动用线圈51a、释放用线圈51b都不励磁,可动铁心50b通过由永久磁铁50a产生的箭头C方向的磁通,被向箭头A方向按压。这样,弹簧托73也在箭头A方向受力,向压缩制动弹簧72的方向施力。此时,为了将可动铁心50b保持在磁轭50c上并得到充分的制动力,如图13所示必须将由永久磁铁50a和加力弹簧76形成的合力设定为大于制动弹簧72的力。滑动部件1把持导轨或盘部件,由于不能向使间隙变窄的方向移动,因此支撑轴70的位置也不发生变化,可以通过顶板71a、连杆4、臂2向滑动部件1传递压缩制动弹簧72的力,得到充分的制动力。
从图12的状态起,一旦使电流流向释放用线圈51b、进行励磁,则将形成箭头E方向的磁通,产生将可动铁心50b向箭头B方向拉回的力。如果流入线圈的电流足够大,则由线圈感应形成的磁场产生的向可动铁心50b施加的力,将大于永久磁铁50a、制动弹簧72以及加力弹簧76的合力,可动铁心50b开始向箭头B方向移动。即,释放用线圈51b和制动弹簧72的合力将大于永久磁铁50a和加力弹簧76的合力,可动铁心50b向箭头B方向移动。
虽然在可动插杆到达行程中间的规定位置(图13中的间隙δ是0位置)之前,永久磁铁50a、制动弹簧72以及加力弹簧76的合力都向箭头A方向作用,但一旦超过规定位置,则弹簧托73将与底板71b接触、与弹簧框71成一体地进行移动,通过连杆4和臂2的动作,滑动部件1离开导轨或盘部件、制动力被释放。此时,由于永久磁铁50a向可动铁心50b施加的力向箭头B方向逆转,因此,即使已不使电流向释放用线圈51b流动,可动铁心50b也被按压在箭头B侧,可通过永久磁铁50a的磁力保持释放状态。此时,最好在可动铁心50b的可动区域的上下限上设置限制可动区域的止挡部8,防止可动铁心50b与磁轭50c的接触。
对于从释放状态向制动状态的切换,使电流向制动用线圈51a流动、进行励磁即可。此时,由于由制动弹簧72产生的将可动铁心50b向箭头B方向按压的力作用不到δ=0的位置,因此,可动铁心50b的开始运动加快,可以使制动动作加快。动作原理与从制动状态向释放状态的切换完全相同,只是所产生的力的方向相反、以产生返回到制动状态的动作,因此省略详细说明。
这样,现有的制动器在从制动状态向释放状态转换时,由于需要抵抗产生制动力的弹力来吸引电枢,因此需要大的能量,但根据本方式,由于施加在可动铁心50b上的制动弹簧72、加力弹簧76以及永久磁铁50a的合力在行程的中途逆转,因此,状态的切换所需要的能量只需使装置逆转、即达到行程的一半即可,因此可以用小的能量解决。
并且,由于制动弹簧72是在释放状态向制动状态转换的行程的中途开始起作用,因此,为了使可动铁心50b开始运动而需要由制动用线圈51a产生的力为永久磁铁50a的力与加力弹簧76的力的差即可,可以加快制动器制动时的动作。
权利要求
1.一种电梯的制动装置,其特征在于,具有可动插杆、制动机构、第一驱动机构以及第二驱动机构,制动机构与所述可动插杆的一端结合、通过可动插杆在轴方向的移动向制动状态和释放状态进行切换;第一驱动机构使用机械或磁动力,用于使所述可动插杆在向制动状态和释放状态切换的轴方向的可动范围的中间逆转、以将所述可动插杆按压保持在制动侧或释放侧;第二驱动机构使用电磁力,为了进行制动状态和释放状态的切换,抵抗所述第一驱动机构的按压力、将所述可动插杆从制动侧或释放侧驱动到所述可动范围的中间的逆转位置。
2.如权利要求1所述的电梯的制动装置,其特征在于,所述第一驱动机构包括中央部固定在所述可动插杆上的碟形弹簧。
3.如权利要求1所述的电梯的制动装置,其特征在于,所述第一驱动机构由包括所述可动铁心和永久磁铁的磁回路构成,该磁回路将固定在所述可动插杆上的可动铁心按压保持在制动侧或释放侧。
4.如权利要求1至3中任一项所述的电梯的制动装置,其特征在于,所述第二驱动机构由固定在所述可动插杆上的排斥板和制动用线圈以及释放用线圈构成,所述制动用线圈以及释放用线圈设置在所述可动插杆的轴方向的所述排斥板的制动侧和释放侧,分别在所述排斥板上产生用于在与其之间获得排斥力的涡流。
5.如权利要求3所述的电梯的制动装置,其特征在于,所述第二驱动机构由制动用线圈和释放用线圈构成,该制动用线圈和释放用线圈设置在所述磁回路的所述可动插杆的轴方向的所述可动铁心的制动侧和释放侧,分别向所述可动铁心施加吸引力。
6.如权利要求1或2所述的电梯的制动装置,其特征在于,所述第二驱动机构由包括可动铁心、制动用线圈以及释放用线圈的磁回路构成,该磁回路从分别设置在所述可动插杆的轴方向的所述可动铁心的制动侧和释放侧的制动用线圈和释放用线圈向固定在所述可动插杆上的所述可动铁心施加吸引力。
7.如权利要求1所述的电梯的制动装置,其特征在于,具有从行程上的相互相对的位置、向相反的方向对所述可动插杆施力的两个弹簧结构。
8.如权利要求7所述的电梯的制动装置,其特征在于,所述两个弹簧结构中的、施加将所述可动插杆向释放侧按压的力的第一弹簧结构,包括限制延伸范围的弹簧,并且在所述可动插杆在从释放侧起处于规定的范围内期间不向所述可动插杆施力。
9.如权利要求8所述的电梯的制动装置,其特征在于,所述第一弹簧结构通过与所述可动插杆的轴方向垂直的支撑轴而可自由转动地与所述制动装置和所述第一以及第二驱动机构之间连接。
全文摘要
本发明提供一种可减少制动、释放所需能量的电梯的制动装置,其具有可动插杆(5)、制动机构(1~4)、(6)、(7)、第一驱动机构(10)以及第二驱动机构(20),所述制动装置(1~4)、(6)、(7)与可动插杆的一端连接,并通过可动插杆在轴方向的移动向制动状态和释放状态进行切换;第一驱动机构(10)使用机械或磁动力,用于使可动插杆在向制动状态和释放状态切换的轴方向的可动范围的中间逆转、以将其按压保持在制动侧或释放侧;第二驱动机构使用电磁力,为了进行制动状态和释放状态的切换,抵抗上述第一驱动机构的按压力而将上述可动插杆从制动侧或释放侧驱动到上述可动范围的中间的逆转位置。
文档编号B66B11/04GK1930073SQ20058000827
公开日2007年3月14日 申请日期2005年3月9日 优先权日2004年3月15日
发明者木川弘, 上田隆美, 冈本健一 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1