连续式沥青混合料搅拌设备的粉料给料系统及控制方法与流程

文档序号:22800075发布日期:2020-11-04 03:57阅读:186来源:国知局
连续式沥青混合料搅拌设备的粉料给料系统及控制方法与流程

本发明涉及沥青生产设备技术领域,特别涉及连续式沥青混合料搅拌设备的粉料给料系统及控制方法。



背景技术:

现有的沥青混合料搅拌设备,按照搅拌工作方式可分为间歇式和连续式,连续式沥青混合料搅拌设备对原材料要求较高,原材料的规格必须均匀。随着工程机械行业的发展,骨料整形机、破碎筛分机械已经相当成熟,合格的原材料很容易获得。由于连续式沥青混合料搅拌设备各部分负载稳定、没有复杂重复的动作,其可靠性、寿命、故障率大大优于间歇式沥青混合料搅拌设备。连续式沥青混合料搅拌设备的产量稳定,给定多少产量的原材料,就会生产出多少产量的成品料,稳定的产量对整个筑路工程提供了稳固的后勤保障,而间歇式沥青混合料搅拌设备的产量取决很多因素,比如原材料与筛网是否匹配、设备的计量周期、设备的搅拌周期、设备的小车运料周期、搅拌缸的容量、生产的配方等等,产量不易掌控,一旦控制不当,还可能造成溢料,导致材料、能源的浪费,增加工人工作量。

连续式沥青混合料搅拌设备给料系统主要包括骨料给料系统、沥青给料系统、粉料给料系统、固态添加剂给料系统、液态添加剂给料系统等,然而,现有的连续式沥青混合料搅拌设备的粉料给料系统及控制方法对于粉料控制的精度较差,另外粉料给料系统的稳定性较差,存在较多的废料问题无法解决。



技术实现要素:

(一)要解决的技术问题

为了解决现有技术的上述问题,本发明提供一种连续式沥青混合料搅拌设备的粉料给料系统及控制方法,能够提高粉料控制的精度,给料系统的稳定性高,且能减少废料的产生。

(二)技术方案

为了达到上述目的,本发明采用的一种技术方案为:

连续式沥青混合料搅拌设备的粉料给料系统,包括粉罐、过渡称、螺旋秤、提升机螺旋和骨料提升机;

所述粉罐内的粉料依次通过所述过渡称、螺旋秤和提升机螺旋进入所述骨料提升机,并与所述骨料提升机内的骨料混合后进入搅拌缸。

为了达到上述目的,本发明采用的一种技术方案为:

连续式沥青混合料搅拌设备的粉料给料控制方法,包括步骤:

s1、确定过渡称粉料的重量区间,并根据所述重量区间和所述过渡称粉料的实时重量启动破拱电动阀自动破拱,进行补粉;

s2、所述过渡称根据延时时间延时启动过渡称螺旋,并根据所述螺旋秤的实时流量调节所述过渡称螺旋的转速,将所述过渡称中的粉料定量输送至螺旋秤;

s3、所述螺旋秤中的粉料通过提升机螺旋进入骨料提升机,并与所述骨料提升机内的骨料混合后进入搅拌缸。

(三)有益效果

本发明的有益效果在于:通过设置粉罐、过渡称、螺旋秤、提升机螺旋和骨料提升机;确定过渡称粉料的重量区间,并根据所述重量区间和所述过渡称粉料的实时重量启动破拱电动阀自动破拱,进行补粉;所述过渡称根据延时时间延时启动过渡称螺旋,并根据所述螺旋秤的实时流量调节所述过渡称螺旋的转速,将所述过渡称中的粉料定量输送至螺旋秤;所述螺旋秤中的粉料通过提升机螺旋进入骨料提升机,并与所述骨料提升机内的骨料混合后进入搅拌缸,不仅能够提高粉料控制的精度,而且给料系统的稳定性高,且能减少废料的产生。

附图说明

图1为本发明实施例的连续式沥青混合料搅拌设备的粉料给料系统的结构示意图;

图2为本发明实施例的连续式沥青混合料搅拌设备的粉料给料控制方法的流程图;

图3为本发明实施例的过渡称重量与流量关系示意图;

图4为本发明实施例的过渡秤重量与流量曲线关系示意图;

图5为本发明实施例的过渡秤重量与流量关系示意图;

图6为本发明实施例的过渡秤螺旋的额定流量与上下极限示意图;

图7为本发明实施例的续式沥青混合料搅拌设备的粉料给料控制方法自动调节原理示意图。

【附图标记说明】

1:粉罐;2:破拱电动阀;3:压差表;4:透气帽;5:过渡称螺旋;6:螺旋秤;7:第二称重传感器;8:提升机螺旋;9:骨料提升机;10:蝶阀;11:叶轮给料器;12:第一称重传感器;13:过渡称;14:过渡称砝码;15:验秤砝码。

具体实施方式

为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。

实施例一

请参照图1,连续式沥青混合料搅拌设备的粉料给料系统,包括粉罐1、过渡称13、螺旋秤6、提升机螺旋8和骨料提升机9;

所述粉罐1内的粉料依次通过所述过渡称13、螺旋秤6和提升机螺旋8进入所述骨料提升机9,并与所述骨料提升机9内的骨料混合后进入搅拌缸。

具体地,与所述骨料提升机9内的骨料混合,经骨料预热后,随骨料一起投入连续式搅拌缸。

与直接投入搅拌缸相对比,粉料直接投入搅拌缸会造成搅拌缸负压增加,不利于搅拌缸负压控制,环保性能差;粉料温度较低,常温粉料与沥青混合,会造成部分沥青温度迅速降低,沥青温度降低将影响沥青混合料的质量,粉料输出至骨料提升机9可以完全避免以上问题。

所述粉罐1的底部设有破拱电动阀2和蝶阀10;

所述蝶阀10下设有叶轮给料器11;

所述粉罐1内的粉料依次通过所述蝶阀10和叶轮给料器11输送至所述过渡称13。

具体地,所述破拱电动阀2设置于所述粉罐1底部侧壁,用于维持粉罐1底部气压和防止起拱的作用;

所述过渡称13上设有透气帽4、压差表3和第一称重传感器12;

所述过渡称13的底部设有过渡称砝码14。

具体地,所述透气帽4用于保持过渡秤压力与大气压力保持一致,所述压差表3,用于检测过渡秤所处的压力状态,是处于正压还是负压状态,所述过渡秤底部悬挂过渡秤砝码,用气缸控制,用于开机动态验秤操作;

所述过渡称13的底部还设有过渡称螺旋5,所述过渡称螺旋5采用变频控制,编码器测速,所述过渡称螺旋5用于将所述过渡称13中的粉料定量输送至螺旋秤6。

所述螺旋秤6的采用轴承支撑,另一端连接有第二称重传感器7,所述第二称重传感器7用于实时检测所述螺旋秤6中粉料的重量。

具体地,所述螺旋秤6正下方设有验秤砝码15,用气缸控制,用于开机动态验秤操作。

实施例二

请参照图2,连续式沥青混合料搅拌设备的粉料给料控制方法,包括步骤:

s1、确定过渡称粉料的重量区间,并根据所述重量区间和所述过渡称粉料的实时重量启动破拱电动阀自动破拱,进行补粉;

步骤s1具体为:

s11、根据粉料流量,确定过渡称粉料的重量区间;

s12、当所述过渡称粉料的实时重量低于所述重量区间时,启动破拱电动阀,所述破拱电动阀根据脉冲时间和脉冲间隔自动破拱,进行补粉,当所述过渡称粉料的实时重量高于所述重量区间时,自动破拱停止。

s2、所述过渡称根据延时时间延时启动过渡称螺旋,并根据所述螺旋秤的实时流量调节所述过渡称螺旋的转速,将所述过渡称中的粉料定量输送至螺旋秤;

步骤s2具体为:

s21、所述过渡称根据延时时间延时启动过渡称螺旋,并根据所述重量区间确定所述过渡称螺旋的预设转速;

s22、当所述过渡称螺旋的转速达到预设转速时,根据所述螺旋秤的实时流量调节所述过渡称螺旋的转速,将所述过渡称中的粉料定量输送至螺旋秤。

s3、所述螺旋秤中的粉料通过提升机螺旋进入骨料提升机,并与所述骨料提升机内的骨料混合后进入搅拌缸。

实施例三

本实施例和实施例二的区别在于,本实施例将结合具体的应用场景,进一步说明本发明上述连续式沥青混合料搅拌设备的粉料给料控制方法是如何实现的:

采用的过渡秤高度和容积有限,而且是生产时实时补料,粉料的密度变化很小,所以密度对粉料流量的影响很小,可以忽略不计。

第一,在生产前,先对整个粉料系统进行调试。

首先用标准砝码进行螺旋秤和过渡秤的校核,校核秤完成后,将螺旋秤的验秤砝码和过渡秤砝码用气缸拉起,确定验秤砝码和过渡称砝码的重量,并确定验秤砝码和过渡称砝码的允许误差重量。

第二,确定料位与粉料流量的之间关系。

由于过渡秤采用第一称重传感器实时显示料位,料位与粉料流量的关系即为过渡秤重量与粉料流量之间的关系,首先确定过渡秤的容量上限,假设其上限为1200kg,打开蝶阀和叶轮给料器,将过渡秤的粉料加至1200kg后关闭蝶阀和叶轮给料器,同时打开透气帽,保持过渡秤内气压与大气压一致,然后开启骨料提升机、提升机螺旋、螺旋秤,待这些部件开启稳定后,通过变频器以固定速度开启过渡秤螺旋,当编码器显示的速度稳定后,每隔5s对过渡秤重量进行记录,绘制曲线,如图3所示。

在图3中可以得出,曲线中棕色线为过渡秤螺旋在恒定转速下,过渡秤重量的变化,其关系为一条曲线,棕色线的斜率就是过渡秤螺旋的流量,曲线表示过渡秤螺旋在恒定转速的流量是随着过渡秤粉料的重量而变化的。然后将曲线化分为一条折线,如图4,该折线由三条直线构成,划分后的折线与曲线刚好吻合。在实际生产中,可以根据所需的粉料流量的多少,将过渡秤的重量控制到一定范围。例如:生产需要大量的粉料,那就将保持过渡秤粉料重量在520-900kg之间,如何需要适当粉料,则将过渡秤粉料重量控制在380-520kg之间,如果需要少量粉料,则将过渡秤粉料重量控制在180-520kg之间。

第三,校核螺旋秤流量。

首先对螺旋秤做力的分析如图5所示,g0位置为螺旋秤的重心,g0为螺旋秤空秤时的重量,l0为螺旋重心的力臂,f1为此时的第二称重传感器显示的重量,l3为其力臂,此时f1*l3=g0*l0。由于粉料在螺旋秤的是均匀分布的,粉料的重心位置不会随螺旋秤内粉料流量的增加而改变,当螺旋有粉料流过时,粉料的重心位置为g1,其力臂为l1,此时f2为此时第二称重传感器显示的重量,l3为其力臂,f2*l3=g0*l0+g1*l1,即f2*l3=f1*l3+g1*l1,也就是(f2-f1)*l3=g1*l1,由于l3和l1都是定值,所以f2-f1与g1是线性关系,也就是螺旋秤显示值f0=f2-f1=(g1*l1)/l3。由于螺旋秤为定速螺旋,粉料从进口到出口输送时间为定值t0,螺旋秤流量q0=g1/t0,g1=q0*t0,f0=(q0*t0*l1)/l3,q0=(f0*l3)/(t0*l1),由于t0、l1、l3都为常量,设k0=l3/(t0*l1),q0=k0*f0,k0为常量。

其次,先将骨料提升机、提升机螺旋、螺旋秤开启,当螺旋秤运行平稳后清零,打开蝶阀和叶轮给料器,将过渡秤的粉料加至1200kg后关闭蝶阀和叶轮给料器,同时打开透气帽,保持过渡秤内气压与大气压一致,然后按恒定速度开启过渡秤螺旋,当编码器显示的速度稳定后,每隔5s对过渡秤重量进行记录,绘制曲线,并实时记录螺旋秤重量值。由于螺旋秤显示的重量会有滞后性,粉料从螺旋秤进口到出口的时间为4s,由于过渡秤螺旋很短,当编码器测得过渡秤螺旋转速稳定后,粉料到螺旋秤进口的时间为1s,从过渡秤转速改变到螺旋秤重量变化的时间在6s以内。通过过渡秤重量随时间变化的曲线,计算出过渡秤重量在520-900kg之间、380-520kg之间、180-520kg之间,三条折线的斜率,即为过渡秤的流量qa,同时记录6s后螺旋秤显示的重量fa。螺旋秤的流量qb=qa=ka*fa,计算出螺旋秤的流量qb与螺旋秤显示重量fa的ka值,即qb=ka*fa。

第四,消除过渡秤内气压对流量的影响。

由于过渡秤装有透气帽,在过渡秤螺旋正常生产给定过程中,过渡秤内空气压力与大气压力基本一致,当压差表显示超过一定压力范围时提前微量调节转速控制给粉量并报警提示处理。

第五,当叶轮给料器打开,大量粉从粉罐落下,粉料受到外部压力,同样的过渡秤螺旋的转速下,粉料的给定量将微量增加,此时过渡秤处于一边加料一边出料状态,过渡秤是无法计算粉料流量,只能以螺旋秤显示的流量为准,但是螺旋秤具有6s滞后性,为了更为准确的控制粉料流量,我们应该在调试叶轮给料器补料时流量的变化,并在生产中提前改变过渡秤螺旋的转速。

首先装上透气帽,开启骨料提升机、提升机螺旋、螺旋秤,当螺旋秤运行平稳后清零,待这些部件开启稳定后,然后按之前的恒定速度开启过渡秤螺旋,开启过渡秤螺旋,当编码器显示的速度稳定后,打开蝶阀和叶轮给料器,使得过渡秤处于一边进料一边出料状态,记录螺旋秤实时显示值,并与之前螺旋秤流量作对比,反复试验得出相同流量下,叶轮给料在不同状态下转速调整系数。

第六,初始流量和流量调节上下限的确定。

螺旋的额定流量作为初始初始流量,由于粉料本身特性,过渡秤螺旋转速与流量在宏观上不是一种线性关系,如图6所示,是一种正相关区域性关系,也就是粉料含水率、粒径发生变化后,同一转速对应的不是固定的流量,但是对同一粉料,随着转速增加,流量增加的正相关理论仍然成立。所以需在初始流量确定下进行自动调节,调节范围需设定上下限,假定过渡秤螺旋100%转速在过渡秤重量380-520kg额定产量是45t/h,通过不同的转速多次试验得出其产量在在35-55t/h之间,如图5所示,我们确定35t/h下极限,55t/h为上极限,此极限的目的是为了防止出现机械故障后导致的自动调节时的过渡调节。

第七,生产过程中的自动调节方法,本发明采用的是非线性调节方法可以实现对粉料的精准快速调节。

图6为粉料自动调节的基本原理。上下黑色直线的流量的上下极限,中间那条黑色直线为首次给定过渡秤螺旋转速时所用的额定流量。绿色曲线为粉料流量与转速之间的实际关系,由于含水率的变化、粒径形状的不同,此曲线具有不确定性,但不会超过上下极限。假设过渡秤螺旋在速度100%的额定产量为45t/h,粉料配方为5%和总产量为270t/h,则粉料给定流量为13.5t/h,自动生产时先采用螺旋的额定产量给定的直线进行计算,a点的横坐标即为首次给定过渡秤螺旋的转速为30%,当螺旋秤显示流量稳定后,其实际显示的流量为b点的纵坐标,以b点和原点做一条蓝色的直线,c点的横坐标为调节后的转速,蓝色直线与绿色曲线相交于d点,螺旋秤显示流量稳定后,其实际显示的流量为d点的纵坐标,如果此时流量误差仍在允许误差范围外,就以d点和原点做一条红色直线,蓝色直线与绿色曲线相交于e点,e点的横坐标为调节后的转速,蓝色直线与绿色曲线相交于f点,当螺旋秤显示流量稳定后,其实际显示的流量为f点的纵坐标,e点的纵坐标与f点的纵坐标非常接近,满足流量误差要求,即调节完成。

开始生产时,先将设备其他电机开启,提升机螺旋、螺旋秤也要依次开启,待总电流稳定后,执行开机验秤工作,螺旋秤空转60s后清零,通过验秤气缸把螺旋秤验秤砝码和过渡秤验秤砝码分别拉起,拉起60s时将显示值与验秤砝码值作对比,超过允许误差后报警,对比值60s后结束验秤,确保生产前螺旋秤和过渡秤准确无误。

验秤结束后,根据所需粉料流量,确定过渡秤粉料的重量区间,假定为380-520kg,当过渡称粉料的实时重量低于380kg时自动补粉,同时开启自动破拱,按照设定脉冲时间和脉冲间隔破拱,防止由于产生负压和起拱造成粉料排料的不畅,过渡秤粉料重量达到520kg自动补粉停止,同时自动破拱停止。

给料启动后,过渡秤根据粉料延时时间延时开启过渡秤螺旋,确保骨料、沥青、矿粉、添加剂同时添加至搅拌缸。过渡秤螺旋开启转速按当前过渡秤粉料的重量区间的额定转速计算的结果来给定,通过编码器测定过渡秤螺旋转速,当转速稳定后执行流量自动调节动作,根据所述螺旋秤的实时流量调节所述过渡称螺旋的转速,使之达到指定转速。当过渡秤上的压差表显示正压并超过一定压力范围时,将提前微量调低转速来控制给粉量并报警提示,当过渡秤上的压差表显示负压压并超过一定压力范围时,将提前微量调高转速来控制给粉量并报警提示。当叶轮给料器打开,大量粉从粉罐落下,需根据调试时叶轮给料器补料时流量的变化,提前降低过渡秤螺旋的转速,控制粉料精度,满足设备使用需求。

本发明支持实时更改粉料配方和产量的功能,根据骨料、沥青、粉料、添加剂到达搅拌缸的时间,按设定时间进行粉料配方更改,更改配方和产量时减少不必要的排料。

生产结束时,粉料也将延时停止,保证沥青、骨料、矿粉同时停止进入搅拌缸,最大限度减少原材料的浪费。

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1