一种Bi9Ti3Fe5O27层状多铁外延薄膜及其制备方法与流程

文档序号:14397223阅读:564来源:国知局

本发明属于新材料制备技术领域,涉及一种bi9ti3fe5o27层状多铁外延薄膜及其制备方法。



背景技术:

多铁材料能够同时表现铁电性和铁磁性,并且它们之间存在磁电耦合作用,从而可以实现电与磁的相互调控(j.wangandr.ramesh,science299,1719(2003);w.eerensteinandj.f.scott,nature442,759(2006);)。因此,多铁材料作为一种新型多功能材料,在自旋电子学和其他众多领域有着广阔的应用前景。其中多铁性薄膜材料可与微电子工艺兼容,使得多铁薄膜可以广泛应用于微传感器和多态存储等领域。例如,磁记录读取速度快而写入慢,铁电记录读取复杂而写入快,如果使用多铁薄膜材料作为记录介质,可以实现高速度的读写过程。

实现多态存储就需要获得铁电性能好的多铁薄膜,这一目标目前通常采用的物理法沉积外延薄膜来实现,如脉冲激光沉积,分子束外延,磁控溅射等(ychu,andr.rameshetal,naturematerial7,478(2008);),其中脉冲激光沉积具有重复性高,制备薄膜更加符合化学计量比,外延薄膜质量高,过程简单等优势,更加适合制备成分复杂的多元氧化物薄膜。

近年来,利用不同激发单元(铁电单元和磁电单元)在原子层面上结合,来实现室温单相多铁特性的研究受到人们的广泛关注,其典型结构为多层层状钙钛矿多铁材料bim+1fem-3ti3o3m+3(m=4,5,6,7,8),该结构可以看成是bifeo3磁性单元插入到三层层状钙钛矿铁电体bi4ti3o12中(n.a.lomanova,m.i.morozov,v.l.ugolkov,andv.v.gusarov,inorganicmaterials,42,189(2006))。这类多铁薄膜材料化学组成相对复杂,绝大多数通过易于控制薄膜成分湿化学法制备而成,虽然湿化学法容易制备出纯相的多铁薄膜,但普遍存在铁电性能差、漏电流大等问题。对于m=8的bi9ti3fe5o27材料而言,目前已经有报道对其材料结构和陶瓷性能进行了研究(d.j.smithandj.l.hutchison,journalofmicroscopy,129,285(1983),m.mazurek,e.jartych,a.lisinska-czekaj,d.czekaj,andd.oleszak,journalofnon-crystallinesolids,356,1994(2010)),发现其在多铁特性方面有着很大的发展潜力,但bi9ti3fe5o27多铁薄膜化学组成相对复杂,制备过程易产生杂相,目前未见有文章对薄膜的铁电性能及磁性进行报道,而薄膜是多铁材料的最终应用的主要渠道,因而如何获得具有良好铁电性能和磁性的bi9ti3fe5o27高质量多铁薄膜,是当前亟待解决的课题,对该材料未来的应用与推广有着重要的意义。



技术实现要素:

针对现有技术的以上问题,本发明的目的在于提供一种bi9ti3fe5o27层状多铁外延薄膜及其制备方法,所述层状多铁外延薄膜结晶质量高,完全无杂相,且具有优异的铁电性能,在低温时具有可观的铁磁性,有望成为新型多铁材料获得应用。

在此,本发明提供一种层状多铁外延薄膜,所述薄膜采用脉冲激光沉积法制得,化学组成为bi9ti3fe5o27。

较佳地,所述层状多铁外延薄膜的厚度为10~200nm。

本发明中,所述薄膜的剩余极化强度能够达到20.9μc/cm2,100k时铁磁性达到11emu/cc。

又,本发明的薄膜漏电流小,例如5v时为5x10-5a/cm2

本发明的bi9ti3fe5o27层状多铁薄膜物相纯度高(xrd检测无杂峰),铁电性能良好且同时具备可观的铁磁性,是优异的室温多铁薄膜材料,非常有利于新型多铁薄膜的研发与推广。

本发明还提供一种所述层状多铁外延薄膜的制备方法,包括:

按照摩尔比9.4~10:3:5将铋源、钛源、铁源混合,压制成型得到bi9ti3fe5o27靶材;

脉冲激光沉积法生长bi9ti3fe5o27薄膜:抽真空至1x10-5torr以下,反应气体为氧气,氧分压20~100mtorr(优选50~80mtorr),衬底温度600~750℃(优选680~710℃),激光输出能量为80~200mj(优选100~150mj),轰击靶材能量密度为0.7~2.0j/cm2(优选1.0~1.5j/cm2),沉积时保持激光脉冲频率1~5hz(优选3~5hz),沉积时间10~200分钟(优选30~100分钟);

对bi9ti3fe5o27薄膜进行原位热处理,得到bi9ti3fe5o27层状多铁外延薄膜。

本发明首次采用bi9ti3fe5o27靶材,利用脉冲激光沉积法镀膜,沉积完成后进行原位退火处理,最终获得质量优异的bi9ti3fe5o27层状多铁外延薄膜。采用脉冲激光沉积具有重复性高,制备薄膜更加符合化学计量比,外延薄膜质量高,过程简单等优势。通过调整激光能量密度,生长频率,衬底加热升温速率,氧气分压,以及降温速率等关键参数,最终获得高质量的bi9ti3fe5o27多铁外延薄膜。所制备的bi9ti3fe5o27层状多铁外延薄膜结晶质量高,完全无杂相,且具有优异的铁电性能,同时薄膜在低温时具有可观的铁磁性。本发明可为研究开发新型多铁薄膜提供了可靠技术路线。此外,本发明的方法所需设备简单,直接一次成膜,可与微电子技术工艺兼容,适合往器件集成方向发展。

较佳地,按照摩尔比9.4~10:3:5将铋源、钛源、铁源混合。本发明中,通过使铋源过量,从而弥补在高温制备过程中bi元素的挥发。

较佳地,所述铋源为三价铋的氧化物,所述钛源为四价钛的氧化物,所述铁源为三价铁的氧化物。例如以氧化铋(bi2o3),二氧化钛(tio2),氧化铁(fe2o3)作为原料。

较佳地,所述铋源、钛源、铁源的纯度在99.9%以上,例如采用分析纯的原料。

较佳地,所述压制成型采用冷等静压,负载压力150~260mpa,保压时间5~20分钟。

较佳地,用银浆固定衬底。采用银浆固定衬底具有以下优点:1、高温条件下加热更加均匀;2、银浆本身对薄膜没有污染。

较佳地,所述衬底为晶格常数在3.8~4.0之间的钙钛矿结构单晶衬底,优选钛酸锶、铝酸镧、铝酸锶钽钕、钪酸镝、铝酸锶钽镧、钪酸钇、镓酸镧中的一种。

本发明的制备方法中,所述原位热处理包括:生长结束后,充入氧气至600torr~1atm,以5~10℃/分钟的速率降至室温。

附图说明

图1:本发明实施例1所制备的bi9ti3fe5o27外延薄膜的高分辨x射线衍射谱图;

图2:本发明实施例3所制备的bi9ti3fe5o27外延薄膜的高分辨x射线衍射谱图;

图3:本发明实施例1所制备的bi9ti3fe5o27外延薄膜层的倒易空间高分辨x射线衍射谱图,其中,qx表示沿x轴矢量,qy表示沿y轴矢量;

图4:本发明实施例3所制备的bi9ti3fe5o27外延薄膜层的倒易空间高分辨x射线衍射谱图;

图5:本发明实施例1所制备的bi9ti3fe5o27外延薄膜的压电力显微镜(pfm)铁电翻转图;

图6:本发明实施例2所制备的bi9ti3fe5o27外延薄膜的压电力显微镜(pfm)铁电翻转图;

图7:本发明实施例1所制备的bi9ti3fe5o27外延薄膜的低温磁性测试图(m-h曲线);

图8:本发明实施例2所制备的bi9ti3fe5o27外延薄膜的低温磁性测试图(m-h曲线);

图9:本发明实施例3所制备的bi9ti3fe5o27外延薄膜的漏电流图(i-v曲线);

图10:本发明实施例3所制备的bi9ti3fe5o27外延薄膜的铁电回线图(p-eloops);

图11:本发明实施例3所制备的bi9ti3fe5o27外延薄膜的低温磁性测试图(m-h曲线)。

具体实施方式

以下结合附图和下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。

本发明涉及一种bi9ti3fe5o27多铁外延薄膜及其制备方法。所述方法是将五层八面体基团bifeo3插入到三层层状钙钛矿型铁电体bi4ti3o12中形成新型八层层状钙钛矿型bi9ti3fe5o27多铁薄膜。本发明首次采用bi9ti3fe5o27陶瓷靶材,利用脉冲激光沉积法在单晶衬底上镀膜,沉积完成后在o2气氛中原位退火处理,最终获得质量优异的bi9ti3fe5o27层状多铁外延薄膜。所述方法所需设备简单,可与微电子技术工艺兼容。制备出的bi9ti3fe5o27层状多铁薄膜物相纯度高,铁电性能良好且同时具备可观的铁磁性,是优异的室温多铁薄膜材料,非常有利于新型多铁薄膜的研发与推广。

(bi9ti3fe5o27靶材的压制)

本发明中,bi9ti3fe5o27陶瓷靶材由作为原料的铋源、钛源、铁源混合压制成型得到。

铋源可以采用三价铋的氧化物,铋源的纯度在99.9%%以上。例如采用分析纯的氧化铋(bi2o3)。

钛源可以采用四价钛的氧化物,钛源的纯度在99.9%以上。例如采用分析纯的二氧化钛(tio2)。

铁源可以采用三价铁的氧化物,铁源的纯度在99.9%以上。例如采用分析纯的氧化铁(fe2o3)。

原料配比可以是元素摩尔比bi:ti:fe=9.4~10:3:5。其中,为了弥补在高温制备过程中bi元素的挥发,适当地使铋源过量。对于原料的混合方式没有特别限定,可采用已知的方法混合。例如将粉体原料放入自动研钵进行充分混合并研磨24h以上。

原料充分混合细磨后,将混合完成的粉体装入模具预压成型,形状可为圆柱状,直径通常为2~2.5cm,厚度0.5-1cm。

接着,压制成型得到bi9ti3fe5o27靶材。压制成型可以采用冷等静压方式,负载压力150~260mpa,保压时间5~20min。

本发明采用bi9ti3fe5o27陶瓷靶材,可以在用脉冲激光沉积过程中,保证薄膜生长的化学计量比。

(衬底的准备与清洗)

本发明中,可以以晶格常数在3.8~4.0之间的钙钛矿结构单晶衬底作为生长基底。例如,可以采用钛酸锶(srtio3)、铝酸镧(laalo3)、铝酸锶钽钕(nsat)、钪酸镝(dysco3)、铝酸锶钽镧(last)、钪酸钇(ysco3)、镓酸镧(lagao3)等。晶格常数在3.8~4.0之间的钙钛矿结构单晶衬底具有晶格失配度低的优点。衬底的取向可为(001)(110)(111),优选为(001)(110)。通过选择衬底的取向,可以生长出相应取向的薄膜。

使用前,对衬底进行清洗。具体的,作为一个示例,例如依次采用丙酮、异丙醇等有机溶剂进行超声清洗,清洗时间为5分钟以上,最后用氮气枪吹干。

本发明中,可以通过银浆将衬底固定于加热板。具体的,固定衬底的步骤可以包括:室温下先刷一层银浆,将衬底放置于银浆上并用镊子压实,升温至60~80℃,升温速率保持在20℃/min以下,目的是为防止银浆因急剧升温产生气泡。采用银浆固定衬底具有以下优点:1、高温条件下加热更加均匀;2、银浆本身对薄膜没有污染。

(bi9ti3fe5o27薄膜的生长)

本发明中,利用脉冲激光沉积法沉积薄膜,该方法具有重复性高,制备薄膜更加符合化学计量比,外延薄膜质量高,过程简单等优势。具体的,脉冲激光沉积法沉积薄膜可以包括:真空抽至1x10-5torr以下,反应气体为氧气,氧分压20~100mtorr;调整激光光路,保持激光输出能量为80~200mj,轰击靶材能量密度为0.7~2.0j/cm2,沉积时保持激光脉冲频率1~5hz,沉积时间10~200min。通过调整激光能量密度,生长频率,衬底加热升温速率,氧气分压,以及降温速率等关键参数,最终可获得高质量的bi9ti3fe5o27多铁外延薄膜。

其中,氧气纯度可以在99.99%以上。另外,沉积前可以将衬底温度升至600~750℃,升温速率可以在5~20℃/min。

(bi9ti3fe5o27薄膜原位热处理)

在生长结束后,对bi9ti3fe5o27薄膜进行原位热处理。具体的,原位热处理包括:生长结束后,关闭闸板阀,充入氧气至600torr~1atm,降至室温后将薄膜取出,得到bi9ti3fe5o27多铁外延薄膜。其中,降温速率可以在5~10℃/min。通过原位热处理,可以使得薄膜获得较好结晶度。另外,在氧气气氛中原位退火处理可以进一步改善薄膜的结晶特性。

本发明中,所述薄膜厚度在10~200nm。薄膜厚度在10~200nm时,具有适用于目前微电子器件的优点。

又,如上所述,本发明将五层八面体基团bifeo3插入到三层层状钙钛矿型铁电体bi4ti3o12中形成新型八层层状钙钛矿型bi9ti3fe5o27多铁薄膜,具有新的室温多铁性的优点。

另外,每次样品制备之前,为保证实验的重复性与稳定性,可以用砂纸将衬底加热台打磨干净,并用异丙醇将沉积室清理干净,且每次安装靶材之前用砂纸将靶材打磨平整并用氮气枪吹扫干净。

本发明的优点:

采用脉冲激光沉积具有重复性高,制备薄膜更加符合化学计量比,外延薄膜质量高,过程简单等优势。本发明中,通过使铋源过量,从而弥补在高温制备过程中bi元素的挥发。本发明的方法所需设备简单,直接一次成膜,可与微电子技术工艺兼容,适合往器件集成方向发展。所制备的bi9ti3fe5o27层状多铁外延薄膜结晶质量高,完全无杂相,且具有优异的铁电性能,剩余极化强度高达20.9μc/cm2。薄膜漏电流小,5v时为5x10-5a/cm2,且薄膜在低温时具有可观的铁磁性,100k时铁磁性大概有11emu/cc,有望成为新型多铁材料获得应用。

下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。

实施例1

(a)bi9ti3fe5o27靶材的压制:以分析纯的氧化铋(bi2o3),二氧化钛(tio2),氧化铁(fe2o3)为主要原料;按bi9ti3fe5o27称取符合化学计量比的各种原料进行配置;为了弥补在高温制备过程中bi元素的挥发,称量时bi2o3过量8mol%;将粉体原料混合,放入自动研钵进行充分混合并研磨24h以上;将混合完成的粉体装入模具预压成型,形状为圆柱状,直径为2cm,厚度0.5cm;采用冷等静压方式压制成bi9ti3fe5o27靶材,负载压力260mpa,保压时间15min。

(b)衬底的准备与清洗:采用(001)取向的钛酸锶(srtio3)单晶衬底作为生长基底,依次采用丙酮、异丙醇等有机溶剂进行超声清洗,清洗时间为5分钟,最后用氮气枪吹干。

(c)bi9ti3fe5o27薄膜的生长:采用脉冲激光沉积法,将靶材固定于沉积室合适位置,通过银浆将衬底固定于加热基板上,真空抽至1x10-5torr以下,充入高纯氧气,保持氧分压77mtorr,以20℃/min的升温速率,升温至700℃;调整激光光路,保持激光输出能量为100mj,轰击靶材能量密度为1.2j/cm2,沉积时保持激光脉冲频率5hz,沉积时间20min。

(d)bi9ti3fe5o27薄膜原位热处理:生长结束后,关闭闸板阀,充入高纯氧气至600torr,以5℃/min的降温速率,降至室温后将薄膜取出,得到沿c轴即(001)方向取向的bi9ti3fe5o27多铁外延薄膜。

本实例制备的bi9ti3fe5o27多铁外延薄膜相纯度高(由附图1所示),外延结晶质量好(由附图3所示);薄膜厚度为55nm。薄膜具有好的铁电性能,在电场作用下可实现铁电畴面内极化的翻转(由附图5所示)。采用超导量子干涉仪(squid)低温磁性测试结果表明,bi9ti3fe5o27薄膜在低温时具有可观的铁磁性,100k时铁磁性大概有9emu/cc(如图7所示)。

实施例2

(a)bi9ti3fe5o27靶材的压制:以分析纯的氧化铋(bi2o3),二氧化钛(tio2),氧化铁(fe2o3)为主要原料;按bi9ti3fe5o27称取符合化学计量比的各种原料进行配置;为了弥补在高温制备过程中bi元素的挥发,称量时bi2o3过量8mol%;将粉体原料混合,放入自动研钵进行充分混合并研磨24h以上;将混合完成的粉体装入模具预压成型,形状为圆柱状,直径为2cm,厚度0.5cm;采用冷等静压方式压制成bi9ti3fe5o27靶材,负载压力260mpa,保压时间15min。

(b)衬底的准备与清洗:采用(001)取向的钛酸锶(srtio3)单晶衬底作为生长基底,依次采用丙酮、异丙醇等有机溶剂进行超声清洗,清洗时间为5分钟,最后用氮气枪吹干。

(c)bi9ti3fe5o27薄膜的生长:采用脉冲激光沉积法,将靶材固定于沉积室合适位置,通过银浆将衬底固定于加热基板上,真空抽至1x10-5torr以下,充入高纯氧气,保持氧分压77mtorr,以20℃/min的升温速率,升温至700℃;调整激光光路,保持激光输出能量为100mj,轰击靶材能量密度为1.2j/cm2,沉积时保持激光脉冲频率5hz,沉积时间80min。

(d)bi9ti3fe5o27薄膜原位热处理:生长结束后,关闭闸板阀,充入高纯氧气至600torr,以5℃/min的降温速率,降至室温后将薄膜取出,得到沿c轴即(001)方向取向的bi9ti3fe5o27多铁外延薄膜。

本实例制备的bi9ti3fe5o27多铁外延薄膜厚度为200nm。薄膜具有好的铁电性能,在电场作用下可实现铁电畴面内极化的翻转(由附图6所示)。采用超导量子干涉仪(squid)低温磁性测试结果表明,bi9ti3fe5o27薄膜在低温时具有可观的铁磁性,100k时铁磁性大概有10emu/cc,如图8所示。

实施例3

(a)bi9ti3fe5o27靶材的压制:以分析纯的氧化铋(bi2o3),氧化钛(tio2),氧化铁(fe2o3)为主要原料;按bi9ti3fe5o27称取符合化学计量比的各种原料进行配置;为了弥补在高温制备过程中bi元素的挥发,称量时bi2o3过量8mol%;将粉体原料混合,放入自动研钵进行充分混合并研磨24h以上;将混合完成的粉体装入模具预压成型,形状为圆柱状,直径为2cm,厚度0.5cm;采用冷等静压方式压制成bi9ti3fe5o27靶材,负载压力200mpa,保压时间10min。

(b)衬底的准备与清洗:采用(110)取向的钛酸锶(srtio3)单晶衬底作为生长基底,依次采用丙酮、异丙醇等有机溶剂进行超声清洗,清洗时间为5分钟,最后用氮气枪吹干。

(c)bi9ti3fe5o27薄膜的生长:采用脉冲激光沉积法,将靶材固定于沉积室合适位置,通过银浆将衬底固定于加热基板上,真空抽至1x10-5torr以下,充入高纯氧气,保持氧分压77mtorr,以20℃/min的升温速率,升温至700℃;调整激光光路,保持激光输出能量为100mj,轰击靶材能量密度为1.2j/cm2,沉积时保持激光脉冲频率5hz,沉积时间20min。

(d)bi9ti3fe5o27薄膜原位热处理:生长结束后,关闭闸板阀,充入高纯氧气至600torr,以5℃/min的降温速率,降至室温后将薄膜取出,得到沿(110)方向外延取向的bi9ti3fe5o27多铁薄膜。

本实例制备的bi9ti3fe5o27多铁外延薄膜相纯度高(由附图2所示),外延结晶质量好(由附图4所示);薄膜厚度为80nm。薄膜漏电流小,5v时为5x10-5a/cm2(由附图9所示),且具有良好好的铁电性能,剩余极化强度高,为20.9μc/cm2(由附图10所示),采用低温磁性测试结果表明,bi9ti3fe5o27薄膜在低温(4k-150k)时具有可观的铁磁性,100k时铁磁性大概有11emu/cc(由附图11所示)。

本发明制备的bi9ti3fe5o27单相多铁外延薄膜结晶质量高,完全无杂相,且具有优异的铁电性能,剩余极化强度高达20.9μc/cm2。薄膜漏电流小,5v时为5x10-5a/cm2,且薄膜在低温时具有可观的铁磁性,100k时铁磁性大概有11emu/cc,有望成为新型多铁材料获得应用。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1