一种制备纳米多孔金属材料的方法与流程

文档序号:14397221阅读:144来源:国知局

本发明属于制备纳米多孔金属材料的技术领域,基于金属诱导晶化这一理论来研究经过膜层生长的半导体/金属双层膜,经过退火处理后进行选择性刻蚀以去除半导体从而获得纳米多孔金属材料。



背景技术:

纳米多孔金属材料是当今发展较为迅猛的一类功能结构材料,其兼备了金属与其它纳米材料的特性,在催化、过滤、水解离、传感器、化学合成、储氢、汽车尾气处理、药物装载和释放、电化学能源储存和转换等都展示出了广泛的潜在应用前景。takeshifujita[1]等人的研究成果表明纳米多孔金具有显著的催化效应以及在co催化氧化中的“优良”表现;其他的研究团队同样对纳米多孔金属在其他领域的催化效应进行了验证,纳米多孔金属材料已然作为新一代的高效催化剂得到了越来越多的认可。尤其当今世界能源系统处在快速转换的过程当中,纳米多孔金属材料研究领域的兴起与当前许多能源领域如新能源技术、催化、环境与生物检测等的快速发展密切相关。在新能源的研究领域,peng[2]等人的研究成果已经证明了纳米多孔金可作为li-o2电池高效率和高可逆性的阳极材料,此外电荷上的li-o2的氧化动力学的速率比碳电极约快10倍;lang[3]等人的研究表明由纳米多孔金和纳米晶mno2组成的杂化结构能显著提高导电性,使mno2组分的比电容达到了接近理论值。经过功能化设计的纳米多孔金属材料期望在许多应用领域中大放异彩,这有望在某些重要的领域起到积极的促进、推动作用。

纵观纳米多孔金属材料的传统制备方法,自身均存在着些许的局限性。作为当前研究较为广泛的脱合金法,其最早可追溯到印加文明的“损耗镀金法”。最早的工业应用是上世纪20年代美国m.raney制备的raney镍。脱合金法是指合金材料在一定的腐蚀条件下,其不同组分间由于电化学行为的差别,产生活泼组分的溶解或析出,而相对稳定组分富集的一个现象。该方法包括合金基体的选择、制备及选择性腐蚀两个过程。其中前一过程中常采用高温熔炼法等,对设备和温度的要求较高,且操作具有一定的危险性;在后一过程中则不可避免的发生再结晶现象且存在活泼组分的残余;造成了材料(尤其是贵金属)的浪费,而且腐蚀液涉及剧毒性、危险性的溶剂。纳米粉体烧结法是把一定尺寸的金属粉末填入模具成形,进行压力烧结而获得多孔烧结体的方法,该方法制备的纳米多孔金属材料孔隙率较低、强度低,会极大地降低该类材料的实际应用价值。模板法是通过物理、化学方法将目标金属材料沉积到多孔模板的孔隙中,然后移去模板,从而得到与模板在形貌、尺寸类似或相关的纳米多孔金属材料,其中硬模板法的后续处理过程繁琐,且硬模板结构比较单一,形貌变化较少;而软模板制备的纳米多孔材料稳定性差、模板效率不高。整体而言,模板法的制备过程复杂、成本较高,不适合批量生产,限制了纳米多孔金属材料的实际应用。



技术实现要素:

考虑到目前纳米多孔金属材料传统制备方法存在的不足之处,以及当前一些与应用该类材料密切相关的新能源领域的迅猛发展。为了克服传统制备方法中存在的问题,本发明提供了一种制备纳米多孔金属材料的方法。

为了实现本发明的目的,制备纳米多孔金属的技术方案为:

一种纳米多孔金属材料,所述材料是以半导体/金属双层膜为基材构筑,制备纳米多孔金属材料的具体方法,如附图1所示,包括以下三步:

(1)将金属和半导体材料在衬底上进行膜层生长,得到半导体/金属双层膜;

(2)对制备出的半导体/金属双层膜进行退火处理;

(3)对退火后的半导体/金属双层膜进行选择性刻蚀处理,以除去半导体从而获得纳米多孔金属材料。

所述步骤(1)膜层生长过程可以为电化学沉积镀膜、磁控溅射镀膜、离子束溅射镀膜、真空蒸发镀膜、脉冲激光沉积制膜或熔融电镀等其中之一或其组合;所述步骤(1)中的金属为au、pt、ag、pd、ti、ir、cr、ru、mn、fe、co、ni、cu、zr、nb、rh、al、ta、re、w等其中之一或其合金;所述步骤(1)中的半导体为si或ge或sixge1-x(0<x<1)化合物;所述步骤(1)中的衬底材料可以是聚合物、聚合物膜、塑料、塑料膜、半导体、玻璃、氧化物、陶瓷、金属、金属合金、金属箔、金属合金箔的一种或组合;所述步骤(1)中单膜层(包括金属膜层和半导体膜层)的厚度小于等于1000nm,优选的单膜层厚度为100~500nm,最优选的单膜层厚度为20~100nm。

所述步骤(2)的退火处理,退火温度为100~500℃,优选范围为120~350℃。

本发明的目的是提供一种廉价的、高效的纳米多孔金属材料制备方法。该理论的事实依据源自半导体原子(例如si,ge)沿自由(润湿的)金属晶界扩散速率即使在低温下也被认为是非常快的[4]。在退火条件下,非晶半导体原子首先润湿多晶金属的晶界。界面处半导体原子共价键的弱化提高了界面原子的移动速率[5]。非晶半导体原子的异质形核可能发生在润湿的金属晶界处或者界面处[6-7]。当在优先形核位置(如晶界、界面等处)形成了一个晶体半导体的核心时,在膜层界面处的金属晶界会被两个金属|晶体半导体中间相界所代替。为了继续推进非晶半导体的结晶过程,非晶膜层中的原子必须继续进行扩散,进入到金属|晶体半导体中间相界面处继续润湿并且继续发生晶化。开始在原始金属晶界处连续的内扩散、结晶和晶体半导体晶粒的长大造成了导致了二元膜层系统中产生了应力梯度,使原始金属层内产生了压应力、非晶亚层产生了拉应力[8-9]。在两者相互作用下,原始连贯的纳米晶金属层由于部分原子向原始表层的扩散、迁移,导致纳米孔洞结构在金属层的产生,这就是纳米多孔金属雏形的形成过程。通过后续的选择性刻蚀处理以去除半导体从而获得了纳米多孔金属材料。

本发明是以ge/au双层膜为例就所述的方法进行详细说明。其中附图1展示了纳米多孔金结构的演化过程。附图2展示了所述步骤得到的三种不同膜厚纳米多孔金的微观结构。根据金属诱导晶化的原理并结合附图3,经过退火处理的双层膜,在应力梯度的作用下,原始连续的纳米晶金膜层中部分原子向表层区扩散、迁移,导致原始的金层出现了纳米孔状结构。

本发明的主旨是克服上述传统制备方法效率低、规模化扩展差的问题,采用金属诱导晶化这一方法来制备纳米多孔金属材料。对比上述的传统方法,本发明具有低成本,操作方便,高效率等优势,同时能与大型工业设施、装备相兼容,易于实现大规模的工业化应用。本方法的创新点在于借鉴金属诱导晶化方法在低温制备半导体薄膜的研究成果,利用固相-固相之间的反应实现纳米化,能够较好地制备出纳米多孔纯金属和合金材料,且衬底材料不受限制。

附图说明

图1:纳米多孔金的结构演化示意图;

图2:120℃退火1h的ge/au双层膜试样经过选择性刻蚀后的扫描电镜图;其中a,b和c分别是50nmge/10nmau,50nmge/20nmau和50nmge/40nmau;

图3:ge/au双层膜试样在120℃退火1h的俄歇电子能谱强度-溅射时间剖析图;其中a和b分别是50nmge/20nmau和50nmge/40nmau。

具体实施方式

实施例1:在氮化硅衬底上先后进行auag的离子束溅射镀膜和ge的离子束溅射镀膜,制备出70nmge/40nm(auag)双层膜。将上述制备出的ge/(auag)双层膜进行退火处理,退火温度为100℃,退火时间为75min。用h2o2对上述退火处理的ge/au双层膜进行选择性刻蚀处理,刻蚀时间为60min。

实施例2:在聚合物衬底上先后进行al和ge的离子束溅射镀膜,制备出100nmge/50nmal双层膜。将上述制备出的ge/al双层膜进行退火处理,退火温度为160℃,退火时间为50min。用h2o2对上述退火处理的ge/al双层膜进行选择性刻蚀处理,刻蚀时间为80min。

实施例3:在nacl晶体衬底上先后进行ag和si的真空蒸发镀膜,制备出60nmsi/30nmag双层膜。将上述制备出的si/ag双层膜进行退火处理,退火温度为380℃,退火时间为45min。用koh对上述退火处理的si/ag双层膜进行选择性刻蚀处理,刻蚀时间为40min。

实施例4:在玻璃衬底上先后进行pt和ge的离子束溅射镀膜,制备出60nmge/20nmpt双层膜。将上述制备出的ge/pt双层膜进行退火处理,退火温度为470℃,退火时间为60min。用h2o2对上述退火处理的ge/pt双层膜进行选择性刻蚀处理,刻蚀时间为30min。

实施例5:在铜箔衬底上先后进行ni的电化学沉积和si、ge的磁控共溅射镀膜,制备出1000nm(sige)/500nmni双层膜。将上述制备出的(sige)/ni双层膜进行退火处理,退火温度为450℃,退火时间为120min。用naoh对上述退火处理的si/ni双层膜进行选择性刻蚀处理,刻蚀时间为180min。

实施例6:在陶瓷衬底上先后进行cu的脉冲激光沉积和si的离子束溅射镀膜,制备出150nmge/100nmcu双层膜。将上述制备出的si/cu双层膜进行退火处理,退火温度为500℃,退火时间为60min。用hf对上述退火处理的si/cu双层膜进行选择性刻蚀处理,刻蚀时间为120min。

实施例7:在si/sio2衬底衬底上先后进行au和ge的真空蒸发镀膜,制备出50nmge/20nmau双层膜。将上述制备出的ge/au双层膜进行退火处理,退火温度为120℃,退火时间为60min。用h2o2对上述退火处理的ge/au双层膜进行选择性刻蚀处理,刻蚀时间为20min。

实施例8:在紫铜片衬底上先后进行pd的电化学沉积和si的磁控溅射镀膜,制备出80nmsi/40nmpd双层膜。将上述制备出的si/pd双层膜进行退火处理,退火温度为430℃,退火时间为75min。用naoh对上述退火处理的si/pd双层膜进行选择性刻蚀处理,刻蚀时间为70min。

尽管上述结合实例对本发明中纳米多金属的制备进行了描述,但本发明并不仅局限于上述具体实施方式。以上所述仅仅是优选的示意性实施方式,对于本领域的普通技术人员而言,在不脱离本发明宗旨的情况下,还可以做出若干变形、改进、润饰或尝试,这些均应视为本发明的保护范畴。

参考文献:

[1]t.fujita,p.guan,k.mckennaetal.atomicoriginsofthehighcatalyticactivityofnanoporousgold[j].naturematerials,2012,11(9):775-780.

[2]z.peng,safreunberger,y.chenetal.areversibleandhigher-rateli-o2battery[j].science,2012,337(6094):563-577.

[3]x.lang,a.hirataetal.nanoporousmetal/oxidehybridelectrodesforelectrochemicalsuper-capacitors[j].naturenanotechnology,2011,6(4):232-236.

[4]mehrer,h.diffusioninsolids:fundamentals,methods,materials,diffusion-controlledprocesses[m].springerseriesinsolid-statesciences,2014,33(2).

[5]hirakia.lowtemperaturereactionsatsi/metalinterfaces;whatisgoingonattheinterfaces?[j].surfscirep,1983;3:357-412.

[6]z.m.wang,j.y.wang,l.p.h.jeurgens,e.jmittemeijer.thermodynamicsandmechanismofmetal-inducedcrystallizationinimmisciblealloysystems:experimentsandcalculationsonal/a-geandal/a-sibilayers[j].physicalreviewb,77,045424.

[7]l.p.h.jeurgens,z.m.wang,e.jmittemeijer.thermodynamicsofreactionsandphasetransformationsatinterfacesandsurfaces[j].internationaljournalofmaterialsresearch,2009,100(10),1281-1307.

[8]z.m.wang,j.y.wang,l.p.h.jeurgens,f.phillipp,e.j.mittemeijer.originsofstressdevelopmentduringmetal-inducedcrystallizationandlayerexchange:annealingamorphousge/crystallinealbilayers[j].actamaterialia,2008,56(18),5047-5057.

[9]z.m.wang,gu,l.p.h.jeurgens,f.phillipp,e.jmittemeijer,real-timevisualizationofconvectivetransportationofsolidmaterialsatnanoscale.nanoletters,2012,12(12),1133–1136.

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1