具有吸附及离子溶出功能的多孔陶瓷材料及其制造方法与流程

文档序号:24064109发布日期:2021-02-26 12:13阅读:228来源:国知局
具有吸附及离子溶出功能的多孔陶瓷材料及其制造方法与流程

[0001]
本发明涉及雾化技术领域,尤其涉及一种具有吸附及离子溶出功能的多孔陶瓷材料及其制造方法。


背景技术:

[0002]
随着社会的进步和人们健康意识的不断提高,健康的产品也陆续的成为人们日常的首选。多孔陶瓷雾化器作为雾化装置的核心部件之一,其使用场所已涉及到电子烟、医疗、室内加湿等领域,这些无不与人们生活息息相关。
[0003]
现有的雾化产品只是对雾化液进行简单的雾化,并没有其他方面较有益的功能,并且有些雾化芯的原材料在一定条件下会释放部分重金属离子,导致人们在使用雾化产品的过程中吸收过量的重金属,严重危害人们的身心健康。


技术实现要素:

[0004]
本发明要解决的技术问题在于,提供一种具有吸附及离子溶出功能的多孔陶瓷材料及其制造方法。
[0005]
本发明解决其技术问题所采用的技术方案是:提供一种具有吸附及离子溶出功能的多孔陶瓷材料,包括原料及其质量份数如下:陶瓷粉体20-80份、助烧剂10-50份、石蜡8-45份以及表面活性剂0.1-3份;
[0006]
所述陶瓷粉体的原料包括麦饭石。
[0007]
优选地,所述陶瓷粉体的粒度为80-1000目。
[0008]
优选地,所述陶瓷粉体的原料还包括六环石、玻璃微珠、长石、硅灰石、云母、多孔硅质岩、氧化铝和蛋白石中的至少一种。
[0009]
优选地,所述助烧剂为锂盐、氧化物、低熔点玻璃中的至少一种;所述助烧剂的粒度为500-5000目。
[0010]
优选地,所述低熔点玻璃的始熔温度为300℃-1000℃。
[0011]
优选地,所述石蜡为半炼或精炼石蜡,熔点为40℃-100℃。
[0012]
优选地,所述表面活性剂为脂肪酸甘油酯、失水山梨醇脂肪酸酯、聚山梨酯、硬脂酸及油酸中的至少一种。
[0013]
优选地,所述多孔陶瓷材料还包括造孔剂5-35份。
[0014]
优选地,所述造孔剂包括pmma、ps、cmc、淀粉、pva、pvb、天然纤维和有机酸中至少一种;所述造孔剂的粒度为100-2000目。
[0015]
本发明还提供一种多孔陶瓷材料的制造方法,包括:将各原料混合并压制成坯体,置于烧结炉中,在500℃-1000℃下烧结成型。
[0016]
优选地,以1-10℃/min的升温速率进行烧结。
[0017]
优选地,本发明的制造方法还包括:将成型的多孔陶瓷材料置于超声震荡或者震动盘中清洗,在100℃-200℃下干燥。
[0018]
本发明的具有吸附及离子溶出功能的多孔陶瓷材料,能溶出矿物质离子并吸附重金属离子,适用于电子烟、医疗、室内加湿等领域中,作为雾化部件之一,具有一定的强度且具有良好的雾化效果。
附图说明
[0019]
下面将结合附图及实施例对本发明作进一步说明,附图中:
[0020]
图1是本发明的多孔陶瓷材料中麦饭石的xrd图谱;
[0021]
图2是本发明的多孔陶瓷材料的sem图。
具体实施方式
[0022]
本发明的具有吸附及离子溶出功能的多孔陶瓷材料,包括原料及其质量份数如下:陶瓷粉体20-80份、助烧剂10-50份、石蜡8-45份以及表面活性剂0.1-3份。
[0023]
其中,陶瓷粉体作为主体材料,其原料包括麦饭石。麦饭石作为我国应用最早的一种传统天然矿物药石,在水中能溶出具有生物活性的人体所需的矿物质微量元素,是一种同时具有良好的矿物质溶出、杂质吸附和生物活性等功能的一种环境友好型材料。本发明中,采用麦饭石作为陶瓷粉体中的主要材料,利用其具有的性能赋予多孔陶瓷材料的可吸附重金属离子、溶出矿物质离子的功能。
[0024]
麦饭石的粒度优选为80-1000目。
[0025]
图1示出了麦饭石粉体的xrd图谱,由图中可知组成麦饭石的主要矿物有石英、长石等,主要晶相为sio2相以及(na,ca)al(si,al)3o8相,且该图谱中存在着多个衍射峰,与对应晶相衍射峰一致,衍射峰尖锐,说明麦饭石晶面生长有序度高,结晶度好,晶体结构完整。结合sem图,正是由于多孔陶瓷材料较大的微观孔隙率和比表面积以及麦饭石特有的晶相组织结构,使其具有良好的吸附及离子溶出能力。
[0026]
陶瓷粉体的原料还可包括六环石、玻璃微珠、长石、硅灰石、云母、多孔硅质岩、氧化铝和蛋白石中的至少一种。上述材料的粒度可选为80-1000目。
[0027]
助烧剂为锂盐、氧化物、低熔点玻璃中的至少一种。助烧剂的粒度优选为500-5000目。其中,低熔点玻璃的始熔温度为300℃-1000℃。
[0028]
石蜡为半炼或精炼石蜡,熔点为40℃-100℃。
[0029]
表面活性剂为脂肪酸甘油酯、失水山梨醇脂肪酸酯(司盘)、聚山梨酯(吐温)、硬脂酸及油酸中的至少一种。
[0030]
根据需要,本发明的多孔陶瓷材料的原料还包括造孔剂5-35份。造孔剂包括pmma(聚甲基丙烯酸甲酯)、ps(聚苯乙烯)、cmc(羧甲基纤维素钠)、淀粉、pva(聚乙烯醇)、pvb(聚乙烯醇缩丁醛酯)、天然纤维和有机酸中至少一种。造孔剂的粒度优选为100-2000目。
[0031]
本发明的多孔陶瓷材料的制造方法,可包括:将各原料混合并压制成坯体,置于烧结炉中,在500℃-1000℃下烧结成型;将成型的多孔陶瓷材料置于超声震荡或者震动盘中清洗,在100℃-200℃下干燥。
[0032]
其中,烧结时,以1-10℃/min的升温速率进行。干燥可通过烘箱烘干实现,效率高。
[0033]
本发明的多孔陶瓷材料的sem图如图2所示,从图中可看出,其中的孔隙分布均匀,使得雾化效果较佳。
[0034]
以下通过具体实施例对本发明作进一步说明。
[0035]
实施例1
[0036]
原料及其质量份数:麦饭石65份、低熔点玻璃35份、石蜡20份、司盘0.5份;将原料置于热压铸机中搅拌4-12h后进行压铸成型,经500℃-800℃烧结;烧结后进行超声或震动清洗,并置于100℃-200℃的烘箱中干燥30min。
[0037]
实施例2
[0038]
参考实施例1的各原料及制造方法,添加造孔剂20份,造孔剂为ps微球。
[0039]
实施例3
[0040]
参考实施例1的各原料及制造方法,添加造孔剂20份,造孔剂为pmma。
[0041]
实施例4
[0042]
参考实施例1的各原料及制造方法,不同之处在与:所添加麦饭石比例高于实施例1,添加量为80份。
[0043]
实施例5
[0044]
原料及其质量份数:麦饭石50份、锂云母30份、长石20份、石蜡5份、司盘0.3份;以干压成型方式压制成型,在600℃-1000℃下烧结;烧结后进行超声或震动清洗,并置于100℃-200℃的烘箱中干燥30min。
[0045]
比较例1
[0046]
木质活性炭
[0047]
比较例2
[0048]
原料及其质量份数:氧化铝65份、玻璃粉35份、石蜡20份、司盘0.5份、造孔剂ps20份。参考实施例1的方式制造成型。
[0049]
将实施例1-5及比较例1-2分别制成10mm*4mm的样件,在相同的条件下浸泡在含有重金属的雾化液中,4h后取滤液在电感耦合等离子体发射光谱仪上测试,结果如下表1所示。
[0050]
表1
[0051][0052]
[0053]
由表1可以看出,本发明实施例所制备的多孔陶瓷对重金属的吸附能力远远大于比较例。由实施例1和实施例2对比可知,造孔剂的加入使多孔陶瓷孔隙增加,比表面增大,吸附能力也随之提高。成型方式的不同以及造孔剂种类的不同对本发明多孔陶瓷的吸附性能影响不大。
[0054]
取实施例1-5及比较例1-2相同质量的成品置于雾化液中进行溶出试验,浸泡4h,取滤液在电感耦合等离子体发射光谱仪上测试,结果如下表2所示。
[0055]
表2
[0056] alcakmgnasihgas实施例10.0090.6195.3830.0377.6021.242n.d.n.d.实施例20.0160.7155.8090.0597.9931.339n.d.n.d.实施例30.0190.7215.9580.0428.5231.324n.d.0.002实施例40.0240.7057.3580.0688.8501.280n.d.n.d.实施例50.0170.6255.3980.0397.8461.188n.d.n.d.比较例1n.d.0.0250.036n.d.0.088n.d.n.d.n.d.比较例20.007n.d.n.d.0.010n.d.n.d.n.d.n.d.
[0057]
n.d.表示无溶出。
[0058]
由表2可知,从实施例1至实施例4,随着麦饭石占比增多,其溶出矿物质也随之增多。结合实施例1和实施例2,随着多孔陶瓷孔隙增加,基体内比表面增大,其溶出性能也随之提高;而造孔剂种类的不同和成型工艺的不同则对本发明多孔陶瓷的溶出性能影响不大。比较例1、2的木质活性炭和多孔陶瓷基本没有矿物质溶出。
[0059]
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1