制备乙醇醛的方法

文档序号:3556177阅读:1160来源:国知局
专利名称:制备乙醇醛的方法
技术领域
本发明涉及一种制备乙醇醛的方法以及一种从这样制备的乙醇醛制备乙二醇的方法。
不饱和底物与一氧化碳和氢的反应被称为加氢甲酰基化。以前已公开过,适用作制备乙二醇的中间体的乙醇醛可通过利用铑催化剂进行甲醛的加氢甲酰基化反应来制备。然而,这样制备乙醇醛受到阻碍,因为铑催化剂还促进甲醛氢化成甲醇,降低乙醇醛的产率。
研究者试图抑制甲醇生成和增大乙醇醛产物的选择性,而且在这方面的研究发现,通过利用含芳基取代的膦配体例如三苯膦的铑催化剂,任选与质子酸组合,可实现乙醇醛的良好产率(例如参见Pure &Appl.Chem.,Vol.62,No.4,pp.661-669,1990)。然而,这样的芳基取代的配体缺点在于,它们在反应条件下不稳定,减小了它们的效果。
制备乙醇醛的该方法另一个局限性(尤其当它被用作制备乙二醇的中间体时)在于,仅当在非水条件下应用低聚甲醛时才获得良好的结果,而且应用廉价的甲醛水溶液(福尔马林)给出至乙醇醛的更低转化率和选择性。认为这是由于催化剂在含水条件下的不稳定性。确实,将甲醛水溶液加氢甲酰基化的难度反映了该方法在工业上生产乙二醇的主要障碍。
欧洲专利申请EP-A-0331512综述了铑-膦配体配合物在甲醛水溶液制备乙醇醛的加氢甲酰基化中的应用,所述配合物中膦配体是三有机膦,然后可将乙醇醛用来制备乙二醇。
现已开发了对甲醛进行加氢甲酰基化的方法,它基于铑催化剂和特定形式的膦配体的应用。该方法与已知的具有芳基取代的膦配体的铑催化剂相比具有性能优势。此外,本发明的催化剂在含水条件下比含有芳基取代的膦配体的催化剂更稳定,而且可容易用来将含水甲醛转化为乙醇醛。
本发明提供了一种制备乙醇醛的方法,它包括,在催化剂组合物存在下,将甲醛与氢和一氧化碳反应,所述催化剂组合物基于a)铑源,和b)下列通式的配体,R1P-R2(I)其中,R1是二价基,该二价基与它连接的磷原子一起是任选取代的2-磷杂-三环[3.3.1.1{3,7}]-癸基,其中1~5个碳原子已被杂原子置换,而且其中,R2是一价基,它是具有1~40个碳原子的任选取代的烃基。
本发明的催化剂组合物需要铑源。方便的铑源包括无机酸的铑盐,例如硫酸、硝酸和磷酸的盐;磺酸的盐,例如甲磺酸和对甲苯磺酸的盐;以及羧酸的盐,特别是那些具有至多6个碳原子的羧酸,例如乙酸、丙酸和三氟乙酸。备选地,铑源可能包含与配体例如一氧化碳、乙酰丙酮化物和膦配体配合的呈零价形式的铑。铑金属源可能包含阴离子和无电荷的配体的混合物,例如在Rh·Cl(CO)2或Rh(acac)(CO)2中。
在通式(I)的配体中,R1表示二价基,该二价基与它连接的磷原子一起是任选取代的2-磷杂-三环[3.3.1.1{3,7}]癸基,其中1~5个碳原子已被杂原子置换。
三环[3.3.1.1{3,7}]癸烷是关于更常称为金刚烷的化合物的系统命名。因此,为方便引用,在本说明书中将任选取代的2-磷杂-三环[3.3.1.1{3,7}]癸基或其衍生物称为“2-PA”基(如在2-磷杂金刚烷基中)。
在本发明中应用的配体中,“2-PA”基中的1~5个碳原子已被杂原子置换。可就便应用的杂原子的实例有氧和硫原子,其中氧原子是优选的。所述被杂原子置换的1~5个碳原子优选是处于“2-PA”基的4、6、8、9或10位的那些。更优选地,“2-PA”基的3个碳原子已被杂原子置换,优选在6、9和10位。
优选地,“2-PA”基在1、3、5或7位中一个或多个位置被至多20个原子的一价基取代、优选包含1~10个碳原子、更优选1~6个碳原子的基。合适的一价基的实例包括甲基、乙基、丙基、苯基和4-十二烷基苯基,其中甲基和乙基是优选的。更优选地,“2-PA”基在1、3、5和7位中每一个位置被取代。最优选地,1、3、5和7位中每一个上的取代基是相同的。
在本发明中已给出特别好的结果的配体是那些配体,其中,二价基R1与它连接的磷原子一起是2-磷杂-1,3,5,7-四烷基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸基,如下列

图1所示 图1在通式(I)的配体中,R2是一价基,它是具有1~40个碳原子的任选取代的烃基。该烃基可能是取代的或未取代的,直链或支化的,饱和或不饱和的;优选的这样的烃基是烷基、环烷基、芳基、烷芳基和芳烷基。当该烃基被取代时,该烃基可就便携带的取代基可独立地选自下列基中的一个或多个卤素原子(例如氟或氯),烷氧基,烯氧基,芳氧基,羟基,二烷基酰氨基,二芳基酰氨基,烷硫基,芳硫基,烷基磺酰基,烷基亚磺酰基,烷氧羰基,二烷基氨基和二芳基氨基。这里,作为取代基,烷基部分适当地具有1~4个碳原子,烯基部分具有2~4个碳原子,而且芳基具有6~12个碳原子,尤其是苯基。优选的取代基是二烷基酰氨基和二芳基酰氨基。
在第一个优选的实施方案中,本发明的方法应用一种配体,其中,一价基R2是具有4~34个碳原子的烷基。优选地,该实施方案中的烷基R2包含至少6个碳原子,更优选至少10个,特别是至少12个碳原子;而且优选至多28个碳原子,更优选至多22个碳原子。该烷基可能是线形或支化的,然而,它将优选是线形的。该实施方案中的配体是优选的,因为它们表现出至乙醇醛的高转化率,而且可能增强催化剂的稳定性。在非水条件下甲醛的加氢甲酰基化中它们表现特别好。
可根据第一个优选实施方案就便用于本发明的配体包括2-磷杂-2-己基-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷、2-磷杂-2-辛基-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷、2-磷杂-2-十二烷基-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷和2-磷杂-2-二十烷基-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷。
在第二个优选的实施方案中,本发明的方法应用一种配体,其中,一价基R2具有下列通式-R3-C(O)NR4R5(II)其中,R3是亚烷基,而且R4和R5独立地表示烷基、环烷基、芳基或烷芳基,或者R4和R5一起表示二价桥连基。就便地,亚烷基R3是亚甲基、亚乙基、亚丙基或亚丁基,最便利地是亚乙基。优选地,R4和R5独立地表示芳基,例如苯基;或者烷基,优选是具有1~22个碳原子的烷基。可就便应用的烷基的实例包括甲基、乙基、丙基、丁基和戊基。其中R2具有通式(II)的配体是优选的,因为它们表现出至乙醇醛的优异转化率,而且特别有利于用含水甲醛进行的加氢甲酰基化反应。
可根据第二个优选实施方案就便用于本发明的配体包括2-磷杂-2-(乙基-N,N-二乙基酰氨基)-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷、2-磷杂-2-(乙基-N,N-二苯基酰氨基)-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷和2-磷杂-2-(乙基-N,N-二甲基酰氨基)-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷。
通式(I)的配体可通过将任选取代的2-磷杂-三环[3.3.1.1{3,7}]-癸烷(其中1~5个碳原子已被杂原子置换)与合适的R2基母体偶合来制备。所述2-磷杂-三环[3.3.1.1{3,7}]-癸烷可就便通过与US-A-3,050,531中所述类似的化学法来制备,其中例如,2-磷杂-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷是通过将2,4-戊二酮与膦在盐酸存在下反应而制备的。类似的化学法还描述于Ms.Joanne H Downing的“PRECIOUS METAL COMPLEXES OFSOME NOVEL FUNCTIONALISED SECONDARY AND TERTIARY PHOSPHINES”(1992年11月提交给布里斯托尔大学的论文)中的第3章。
R2基母体的实例包括式R2-X的化合物,其中,X是卤化物,例如氯化物或溴化物,当制备其中R2是烷基的通式(I)配体时,可就便应用它们;例如通过R2-X化合物与2-磷杂-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷或其硼烷加合物的反应。备选地,当R2具有通式-R3-C(O)NR4R5(II)时,R2基母体可就便是N,N-二取代的烯基酰胺。例如,其中R3是亚乙基而且R4和R5是烷基的配体可通过在酸例如乙酸存在下二烷基-丙烯酰胺与“2-PA”基的反应来制备。本发明的其它配体可通过本领域技术人员能理解的类似的化学法制备。
本发明中应用的催化剂组合物可任选包含阴离子源c)作为又一种催化剂组分。优选的阴离子是具有小于6、优选小于4的pKa(在18℃的水中测定)的质子酸的阴离子。衍生自这些酸的阴离子不与铑配位或者仅仅与铑弱配位,由此它说明在阴离子和铑之间几乎不发生或者不发生共价相互作用。包含这样的阴离子的催化剂表现出良好的活性。
合适的阴离子的实例包括衍生自布朗斯台德酸例如磷酸和硫酸的那些;以及衍生自磺酸例如甲磺酸、三氟甲磺酸、对甲苯磺酸和2,4,6-三甲基苯磺酸的阴离子;还有衍生自羧酸的阴离子,所述羧酸例如2,4,6-三甲基苯甲酸、2,4,6-三异丙基苯甲酸;9-蒽甲酸和卤代羧酸,例如三氟乙酸、2,6-二氯苯甲酸和2,6-双(三氟甲基)苯甲酸。应用烷基取代的苯甲酸、特别是C1~C4烷基取代的苯甲酸作为阴离子源已获得了特别好的结果。
还合适的是配阴离子,例如由路易斯酸与质子酸结合产生的阴离子,路易斯酸例如BF3、B(C6F5)3、AlCl3、SnF2、Sn(CF3SO3)2、SnCl2或GeCl2,质子酸优选具有小于5的pKa,例如磺酸,诸如CF3SO3H或CH3SO3H,或者氢卤酸,例如HF或HCl;或者路易斯酸与醇的组合。这样的配阴离子的实例有BF4-、SnCl3-、[SnCl2·CF3SO3]-和PF6-。
提供给本发明的方法的一氧化碳与氢的摩尔比不是关键的,可在宽范围变动,例如5∶95至95∶5,优选30∶70至80∶20。然而,通常优选应用CO∶H2的摩尔比至少是1∶1的气流,因为这样将甲醇的生成减到最少。该方法优选在压力下进行,就便在5~200巴(0.5~20MPa)的范围内,而优选在10~50巴(1~5MPa)的范围内。可应用更高的压力,但是一般认为更高的压力不经济。所述气流中还可存在惰性气体,但由于这样导致总压力的增大,这通常是不希望的。
本发明的加氢甲酰基化反应可就便在适度的温度下进行,优选在22~180℃、更优选在50~130℃范围内。与所需反应速率相称的尽可能低的温度的应用是优选的,因为在更高温度下,乙醇醛产物易经历副反应,例如羟醛缩合反应。
本发明的方法的反应时间当然取决于利用的温度和压力条件。通常已发现,反应时间可以在1~10小时、优选1~6小时、特别是2~5小时范围内。
在本发明中应用的催化剂体系的量不是关键的,可在宽范围内变动。然而,铑金属的摩尔原子的量相对于每摩尔甲醛将优选在1∶1~1∶106、更优选1∶10~1∶105、甚至更优选1∶100~1∶104的范围内。
为制备用于本发明的催化剂体系,通式(I)的配体的用量一般过量于铑的量,以相对于每摩尔原子的铑配体的摩尔数表示。通常,这样选择配体的量,以致每摩尔原子的铑存在1~20摩尔配体。然而,对于优选的催化剂体系来说,相对于每摩尔的铑配体的摩尔量优选在2~10范围内,更优选在2~5范围内。当存在时,阴离子源c)的量虽然不是关键的,但可在1~500、优选1~150、而更优选1~20摩尔/摩尔原子铑的范围内。
本发明的方法可在溶剂存在下进行。可就便应用的溶剂的实例包括腈,吡啶,取代的或未取代的脲,例如N,N,N′,N′-四取代的脲,以及取代的或未取代的酰胺,例如N,N-二取代的酰胺。
可将甲醛以任何合适的形式导入反应体系,或者它可就地产生。方便的甲醛源是低聚甲醛。此外,本发明一个有利的特征在于,当应用含水甲醛作为甲醛源时,实现良好的结果。因此,在本发明的一个优选方法中,甲醛源是含水甲醛。
如果甲醛源是含水甲醛,进一步优选的是,该方法在包含水相和有机相的反应介质中进行,其中,有机相和水相在22℃下是不溶混的。为了避免疑问,“不溶混的”表示在22℃下静置时,有机相和水相将分离成明显的两层。包含水相和有机相的反应介质是优选的,因为反应完毕时催化剂将处于有机相中,而乙醇醛产物将处于水相中,所以通过相分离可轻易将产物与催化剂分离。这种方法在本发明中是可能的,因为该催化剂组合物在水性条件下比基于芳基取代的膦配体的已知催化剂更稳定。
如果在包含水相和有机相的反应介质中进行所述方法,有机相的溶剂可就便是水不溶混的酰胺溶剂。可应用于本发明的水不溶混的酰胺溶剂的实例是包含长链烷基部分的那些,而且包括N-烷基-2-吡咯烷酮,其中,烷基包含至少7个碳原子,优选在8~20个碳原子范围内;N,N-二烷基乙酰胺,其中,每个烷基具有1~10个碳原子,优选1~6个碳原子;以及N,N-二芳基乙酰胺,优选是N,N-二苯基乙酰胺。当应用于本发明时已给出特别好的结果的水不溶混的酰胺溶剂的实例包括N-辛基-吡咯烷酮和N,N-二丁基-乙酰胺。
本发明的一个特别优选的实施方案是,其中,在包含水相和有机相(包含水不溶混的酰胺溶剂)的反应介质中实施本发明的方法,而且其中,在通式R1P-R2(I)的配体中,一价基R2具有通式-R3-C(O)NR4R5(II)。
特别开发了本文前述的含铑催化剂组合物供用于本发明的方法中。
这类催化剂组合物属于US-A-2003/0092935关于烯烃例如α-烯烃、内烯烃和内支化的烯烃的加氢甲酰基化所描述的金属-配体配合物的宽范围定义。用于本发明方法中的优选的催化剂组合物远远不同于US-A-2003/0092935的优选的金属-配体配合物,并且在非水条件和含水条件下甲醛(很不同的底物)的加氢甲酰基化中表现出优异的活性。其中配体(I)的一价基R2具有通式-R3-C(O)NR4R5(II)的催化剂组合物在含水条件下表现特别好,例如当福尔马林用作底物时,或者当反应介质中存在水时。因此,本发明还提供了一种可通过将下列组分结合获得的催化剂组合物a)铑源,b)下列通式的配体R1P-R2(I)其中,R1是二价基,该二价基与它连接的磷原子一起是任选取代的2-磷杂-三环[3.3.1.1{3,7}]-癸基,其中1~5个碳原子已被杂原子置换,而且其中,R2是一价基,它是具有10~40个碳原子的任选取代的烷基,或者优选具有通式-R3-C(O)NR4R5,其中R3是亚烷基,而且R4和R5独立地表示烷基、环烷基、芳基或烷芳基,或者R4和R5一起表示二价桥连基,以及任选地c)阴离子源。在R2的这些定义中,前文关于本发明的方法描述的优选催化剂组合物同样优选作为本发明的催化剂组合物。
乙醇醛的一个重要应用是它至乙二醇的转化,所以本发明还提供一种通过对由本文前述加氢甲酰基化法制备的乙醇醛进行氢化而制备乙二醇的方法。
用于乙醇醛至乙二醇的转化的氢化催化剂是本领域熟知的,例如钯、铂或镍催化剂,通常呈多相形式。当在非水条件下制备乙醇醛时,可将选定的氢化催化剂直接加到未经处理的从制备乙醇醛得到的反应混合物中,并且导入氢气。备选地,可在将乙醇醛氢化以前处理所述反应混合物,例如通过用合适的溶剂(例如水或乙二醇自身)提取,再将所得溶液按照常规方式氢化。当在包含水相的反应介质中从含水甲醛制备乙醇醛时(借助本发明,这已成为可能),该方法特别方便。
从下列阐述性的实施例将进一步理解本发明。
配体合成利用标准Schlenk技术在纯化氩气氛中进行的如下实施例阐述了根据本发明的配体的典型制备,其中,(i)R2是烷基(2-磷杂-2-二十烷基-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷),以及(ii)R2具有通式(II)(2-磷杂-2-(乙基-N,N-二甲基酰氨基)-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷)。
(i)2-磷杂-2-二十烷基-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷的合成这样制备了2-磷杂-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷的硼烷加合物,即,在0℃下,将BH3·THF(70ml在THF中的1M溶液)加到2-磷杂-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷(60mmol)的THF溶液中。让反应混合物暖至室温并搅拌2小时,随后真空除去溶剂而得硼烷加合物。
在-70℃的温度下,向该加合物(16mmol在THF中)的溶液中添加己基锂(6.4ml,2.5M在己烷中)的溶液,让反应混合物在1小时期间缓慢地暖至-20℃。再次冷却到-70℃后,添加1-溴-二十碳烷(16mmol在THF中)的溶液。然后让反应混合物暖至环境温度并搅拌2小时,接着添加二乙胺(3ml),再将反应混合物回流12小时。反应完毕,真空除去溶剂。然后通过在二氯甲烷-甲苯和水中溶剂提取来分离产物,蒸发甲苯部分而余下固体残余物,用甲醇洗涤残余物而得2-磷杂-2-二十烷基-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷(96%)。
(ii)2-磷杂-2-(乙基-N,N-二甲基酰氨基)-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷的合成将2-磷杂-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷(40mmol)和N,N-二甲基丙烯酰胺(100mmol)导入装有甲苯和乙酸混合物的Schlenk管内,加热到115℃的温度。18小时后,将反应混合物冷却到80℃并且真空蒸发溶剂。然后将残余物溶于三乙胺,将混合物加热到100℃的温度达2.5小时,此后将所得均匀的混合物冷却到环境温度。再通过用甲苯和水的溶剂提取来分离产物,将甲苯部分蒸发而得2-磷杂-2-(乙基-N,N-二甲基酰氨基)-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷(79%)。
甲醛的加氢甲酰基化在磁力搅拌的250ml高压釜中进行了如下实施例。将高压釜填充反应物和溶剂,随后除去空气,用一氧化碳和氢对高压釜加压,各自达到30巴(3MPa)的分压。然后将高压釜的内含物加热到反应温度。反应完毕,冷却内含物,利用二甘醇二甲醚作为内标,通过气-液色谱法测定了甲醛的转化率和乙醇醛的产率。应用与关于前文配体(i)和(ii)描述的方法类似的化学法制备了全部配体。
实施例1(非水条件下的“2-PA”-C20配体)在高压釜中装入0.17mol呈低聚甲醛形式的甲醛、62ml(0.58mol)N-甲基-吡咯烷酮、0.25mmol二羰基丙酮基丙酮合铑(Rh(acac)(CO)2)、0.50mmol 2-磷杂-2-二十烷基-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷和9.1mmol三甲基苯甲酸。然后将高压釜中的内含物加热到110℃的温度并在该温度下保持2小时。
甲醛的转化率是100%,而基于甲醛摄入量计算的乙醇醛的产率是76%。通过测定压力降计算的初始反应速率是595mol CO/mol Rh.h。
实施例2(含水条件下的“2-PA”-C20配体)在高压釜中装入0.17mol呈低聚甲醛形式的甲醛、35ml(0.22mol)二丁基-乙酰胺、25ml软化水、0.25mmol Rh(acac)(CO)2、0.53mmol2-磷杂-2-二十烷基-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷和9.1mmol三甲基苯甲酸。将高压釜中的内含物加热到110℃的温度并在该温度下保持5小时。
甲醛的转化率是64%,而基于甲醛摄入量计算的两相反应产物中乙醇醛的产率是45%。通过测定压力降计算的初始反应速率是115molCO/mol Rh.h。
实施例3(非水条件下的“2-PA”-CH2CH2C(O)NMe2配体)在高压釜中装入0.18mol呈低聚甲醛形式的甲醛、23ml(0.15mol)二仲丁基-乙酰胺、0.25mmol Rh(acac)(CO)2、0.49mmol 2-磷杂-2-(乙基-N,N-二甲基酰氨基)-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷和9.1mmol三甲基苯甲酸。然后将高压釜中的内含物加热到100℃的温度并在该温度下保持3小时。
甲醛的转化率是72%,而基于甲醛摄入量计算的单相反应产物中乙醇醛的产率是69%。通过测定压力降计算的初始反应速率是275molCO/mol Rh.h。
实施例4(非水条件下的“2-PA”-CH2CH2C(O)NMe2配体)在高压釜中装入0.25mol呈低聚甲醛形式的甲醛、35ml(0.26mol)N,N′-二甲基亚丙基脲(N,N′-dimethylpropylenurea)、0.10mmolRh(acac)(CO)2、0.20mmol 2-磷杂-2-(乙基-N,N-二甲基酰氨基)-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷和3.1mmol三甲基苯甲酸。然后将高压釜中的内含物加热到90℃的温度并在该温度下保持5小时。
甲醛的转化率是73%,而基于甲醛摄入量计算的单相反应产物中乙醇醛的产率是71%。通过测定压力降计算的初始反应速率是595molCO/mol Rh.h。
实施例5(非水条件下的“2-PA”-CH2CH2C18配体)在高压釜中装入0.25mol呈低聚甲醛形式的甲醛、35ml(0.26mol)N,N′-二甲基亚丙基脲、0.10mmol Rh(acac)(CO)2、0.20mmol 2-磷杂-2-辛基-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷和3.1mmol三甲基苯甲酸。然后将高压釜中的内含物加热到90℃的温度并在该温度下保持5小时。
甲醛的转化率是69%,而基于甲醛摄入量计算的单相反应产物中乙醇醛的产率是66%。通过测定压力降计算的初始反应速率是518molCO/mol Rh.h。
实施例6
(含水条件下的“2-PA”-CH2CH2C(O)NMe2配体)在高压釜中装入0.15mol呈福尔马林溶液(37%甲醛水溶液)形式的甲醛、37ml(0.22mol)二丁基-乙酰胺、7.5ml软化水、0.49mmolRh(acac)(CO)2、0.96mmol 2-磷杂-2-(乙基-N,N-二甲基酰氨基)-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷和9.1mmol三甲基苯甲酸。然后将高压釜中的内含物加热到90℃的温度并在该温度下保持5小时。
甲醛的转化率是90%,而基于甲醛摄入量计算的两相反应产物中乙醇醛的产率是90%。通过测定压力降计算的初始反应速率是170molCO/mol Rh.h。
实施例7(含水条件下的“2-PA”-CH2CH2C(O)NPh2配体)在高压釜中装入0.15mol呈福尔马林溶液(37%甲醛)形式的甲醛、37ml(0.22mol)二丁基-乙酰胺、7.5ml软化水、0.44mmolRh(acac)(CO)2、0.89mmol 2-磷杂-2-(乙基-N,N-二苯基酰氨基)-1,3,5,7-四甲基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸烷和9.1mmol三甲基苯甲酸。将高压釜中的内含物加热到110℃的温度并在该温度下保持3小时。
甲醛的转化率是100%,而基于甲醛摄入量计算的两相反应产物中乙醇醛的产率是52%。通过测定压力降计算的初始反应速率是180mol CO/mol Rh.h。
对比例A(非水条件下的PPh3配体)在高压釜中装入0.17mol呈低聚甲醛形式的甲醛、37ml(0.24mol)二丁基-乙酰胺、0.25mmol Rh(acac)(CO)2、0.52mmol三苯膦和9.3mmol三甲基苯甲酸。然后将高压釜中的内含物加热到90℃的温度并在该温度下保持10小时。
甲醛的转化率是61%,而基于甲醛摄入量计算的单相反应产物中乙醇醛的产率是40%。通过测定压力降计算的初始反应速率是75molCO/mol Rh.h。
对比例B(含水条件下的PPh3配体)在高压釜中装入0.17mol呈低聚甲醛形式的甲醛、37ml(0.22mol)二丁基-乙酰胺、12.5ml软化水、0.25mmol Rh(acac)(CO)2、0.52mmol三苯膦和9.1mmol三甲基苯甲酸。将高压釜中的内含物加热到90℃的温度并在该温度下保持10小时。
甲醛的转化率是54%,而基于甲醛摄入量计算的两相反应产物中乙醇醛的产率是25%。通过测定压力降计算的反应速率是51molCO/mol Rh.h。
对比例C(含水条件下的9-二十烷基-9-磷杂二环[3.3.1]壬烷配体)在高压釜中装入0.17mol呈低聚甲醛形式的甲醛、37ml(0.19mol)N-辛基-吡咯烷酮、25ml软化水、0.25mmol Rh(acac)(CO)2、0.52mmol9-二十烷基-9-磷杂二环[3.3.1]壬烷和9.1mmol三甲基苯甲酸。将高压釜中的内含物加热到110℃的温度并在该温度下保持5小时。
甲醛的转化率是17%,而基于甲醛摄入量计算的两相反应产物中乙醇醛的产率是6%。
对比例D(含水条件下的9-CH2CH2C(O)NMe2-9-磷杂二环[3.3.1]壬烷配体)在高压釜中装入0.17mol呈低聚甲醛形式的甲醛、37ml(0.22mol)二丁基-乙酰胺、25ml软化水、0.25mmol Rh(acac)(CO)2、0.50mmol9-磷杂-9-(乙基-N,N-二甲基酰氨基-二环[3.3.1]壬烷和9.1mmol三甲基苯甲酸。然后将高压釜中的内含物加热到110℃的温度并在该温度下保持5小时。
甲醛的转化率是3%,而基于甲醛摄入量计算的两相反应产物中乙醇醛的产率是0%。
前述实施例阐明了,本发明的催化剂组合物与包含三苯膦配体的对比组合物在含水条件和非水条件下相比(例如对比实施例1和3与对比例A比较,以及实施例2和4与对比例B比较),而且和基于其它形式的二环含膦配体相比(参见对比例C和D)显示优越的性能。此外,从实施例4和5还可看出,其中R2具有通式-R3-C(O)NR4R5的通式(I)的催化剂组合物甚至在含水条件下也显示良好水平的性能。
至乙二醇的氢化为了阐明根据本发明制备的乙醇醛容易被转化为乙二醇,用阮内镍浆处理从与实施例2的条件(含水条件下的“2-PA”-C20配体)相似的条件下进行的加氢甲酰基化反应分离的水相。将该水相(25ml,9.5%wt乙醇醛)与阮内镍浆(2ml)混合并在40℃的温度下搅拌15小时,然后用氢在50巴(5Mpa)的压力下处理。从乙醇醛至乙二醇的转化率是90%。
权利要求
1.一种制备乙醇醛的方法,它包括,在催化剂组合物存在下,将甲醛与氢和一氧化碳反应,所述催化剂组合物基于a)铑源,和b)下列通式的配体,R1P-R2(I)其中,R1是二价基,该二价基与它连接的磷原子一起是任选取代的2-磷杂-三环[3.3.1.1{3,7}]-癸基,其中1~5个碳原子已被杂原子置换,而且其中,R2是一价基,它是具有1~40个碳原子的任选取代的烃基。
2.权利要求1的方法,其中,所述催化剂组合物进一步包含c)阴离子源。
3.权利要求1或权利要求2的方法,其中,二价基R1与它连接的磷原子一起是2-磷杂-1,3,5,7-四烷基-6,9,10-三氧杂-三环[3.3.1.1{3,7}]-癸基。
4.权利要求1~3任一项的方法,其中,一价基R2是具有4~34个碳原子的烷基。
5.权利要求1~权利要求3任一项的方法,其中,一价基R2是下列通式的基-R3-C(O)NR4R5(II)其中,R3是亚烷基,而且R4和R5独立地表示烷基、环烷基、芳基或烷芳基,或者R4和R5一起表示二价桥连基。
6.权利要求1~5任一项的方法,其中,甲醛的来源是含水甲醛,而且所述反应是在包含水相和有机相的反应介质中进行的,其中,有机相和水相在22℃下是不溶混的。
7.权利要求6的方法,其中,所述有机相包含水不溶混的酰胺溶剂。
8.可通过将下列组分结合而获得的催化剂组合物a)铑源,b)下列通式的配体R1P-R2(I)其中,R1是二价基,该二价基与它连接的磷原子一起是任选取代的2-磷杂-三环[3.3.1.1{3,7}]-癸基,其中1~5个碳原子已被杂原子置换,而且其中,R2是一价基,它是具有10~40个碳原子的任选取代的烷基,或者一价基R2是下列通式的基-R3-C(O)NR4R5(II)其中,R3是亚烷基,而且R4和R5独立地表示烷基、环烷基、芳基或烷芳基,或者R4和R5一起表示二价桥连基,以及任选地c)阴离子源。
9.权利要求8的催化剂组合物,其中,在配体b)中,R2是通式II的基。
10.一种制备乙二醇的方法,它包括,通过权利要求1~7任一项的方法制备乙醇醛,然后将所述乙醇醛氢化。
全文摘要
本发明提供了制备乙醇醛的方法,即,通过在催化剂组合物存在下,将甲醛与氢和一氧化碳反应,所述催化剂组合物基于a)铑源,和b)通式R
文档编号C07C29/141GK1894188SQ200480037694
公开日2007年1月10日 申请日期2004年12月15日 优先权日2003年12月16日
发明者K·Q·阿尔梅达莱涅罗, E·德伦特, R·范欣克尔, R·I·皮尤 申请人:国际壳牌研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1