基于亲水性多孔支撑体的复合质子交换膜的制备方法

文档序号:10678498阅读:637来源:国知局
基于亲水性多孔支撑体的复合质子交换膜的制备方法
【专利摘要】本发明揭示了一种基于亲水性多孔支撑体的复合质子交换膜的制备方法,包括:称取设定质量的醋酸纤维素,倒入设定容器中,加入适当体积的溶剂;溶解后静止放置脱泡;将脱泡后的铸膜液流延至一平板表面,将其分布在平板上;待蒸发设定时间后,将刮制好的膜连同平板一起浸入凝固浴中成膜;溶剂清除干净后,将醋酸纤维膜烘干;将醋酸纤维膜浸入全氟磺酸树脂混合溶液中;将浸渍后的膜沥干附着的树脂溶液,烘干去除膜中的溶剂,得到以亲水醋酸纤维为支撑体的复合质子交换膜。本发明提出的基于亲水性多孔支撑体的复合质子交换膜的制备方法,所制备的以亲水性基体的复合质子交换膜的树脂分布均匀、填充量高、质子传导率、气体渗透小,机械强度好。
【专利说明】
基于亲水性多孔支撑体的复合质子交换膜的制备方法
技术领域
[0001] 本发明属于质子交换膜制备技术领域,涉及一种质子交换膜的制备方法,尤其涉 及一种基于亲水性多孔支撑体的复合质子交换膜的制备方法。
【背景技术】
[0002] 质子交换膜燃料电池是将储存于氢气中的化学能直接转化为电能的装置,具有结 构简单、高效清洁,启动温度低,安静无噪音等优点,是汽车、通信基站和可移动电子设备等 动力电源的优先选择。在过去十几年中,燃料电池技术取得了重大突破,电池的体积和重量 比功率密度得到了显著提高。
[0003] 膜电极是质子交换膜燃料电池的核心部件,化学能转化为电能的场所,通常由阴、 阳极的多孔气体扩散电极及质子交换膜组成。质子交换膜作为关键组分之一,需具有高质 子传导率,低气体渗透性,良好的机械强度和化学稳定性,成本低廉。近几十年来,美国杜邦 公司生产的Nafion系列膜因质子传导率高、化学稳定性好而被广泛采用,但其高昂的价格、 高的燃料渗透率以及贵金属催化剂的稀缺增加了燃料电池的成本,阻碍了质子交换膜燃料 电池作为动力电源的商业化进程和普及。
[0004] 减少全氟磺酸树脂用量和开发非氟聚合物膜成为降低质子交换膜成本的主要途 径。聚四氟乙烯(PTFE)多孔膜因具有强的机械强度和尺寸及化学稳定性而被用作支撑体, 通过直接向孔内浇铸全氟磺酸树脂制成复合膜,减少了全氟磺酸树脂的用量,而且能够减 少膜的厚度,降低了质子交换膜的成本和电池内阻。利用氟乙烯多孔膜和全氟磺酸树脂制 备复合膜工作始于上世纪90年代中期,美国的戈尔(W.L.Gore)公司成功研制了基于聚四氟 乙烯多孔膜复合质子交换膜及相应的膜电极,用于汽车及便携式燃料电池电源系统,并开 启了膜电极的商业化。此后,以聚四氟乙烯(PTFE)多孔膜为基体,复合质子交换膜的研究成 为燃料电池关键材料的一个热点[US Patent 5,547,551、US Patent 5,599,614、US Patent 5,082,472、US Patent 5,599,614、US Patent 6,613,203、W0 Patent 00/ 78850A1、CN1416186A、CN1861668A、CN101050285A、CN1697224A、CN10101510614A、 CN1845363A、CN102891332A、CN101960658A]。
[0005] 由于聚四氟乙烯多孔膜具有较大的表面张力,通常采用酸碱改性聚四氟乙烯多孔 膜的表面,或使用表面活性剂、高沸点溶剂,甚至施加高压电场来提高全氟磺酸树脂的填充 量和分布均匀性,以便得到高性能复合膜。例如在US Patent 5,547,551中采用非离子表面 活性剂TritonX-100来增加树脂溶液的润湿性,高温成膜后再利用异丙醇清除表面活性剂。 这种方法增加了复合膜制备的工序,而且异丙醇容易溶解树脂,导致树脂流失和膜致密性 受损。总之,上述的各种处理方式,虽然在一定程度上有效,但碍于聚四氟乙烯多孔膜强烈 的憎水性和丰富的微孔,浇铸树脂后的复合膜仍保留少许孔隙,致使膜电极两侧的燃料和 氧化剂容易渗透,降低了燃料的利用率、电池的放电性能和稳定性。
[0006] 有鉴于此,如今迫切需要设计一种新的制备方式,以便克服现有制备方式存在的 上述缺陷。

【发明内容】

[0007] 本发明所要解决的技术问题是:提供一种基于亲水性多孔支撑体的复合质子交换 膜的制备方法,所制备的以亲水性基体的复合质子交换膜的树脂分布均匀、填充量高、质子 传导率、气体渗透小,机械强度好。
[0008] 为解决上述技术问题,本发明采用如下技术方案:
[0009] -种基于亲水性多孔支撑体的复合质子交换膜的制备方法,所述制备方法包括:
[0010] 步骤S1:称取设定质量的醋酸纤维素,倒入烧杯或烧瓶中,加入适当体积的溶剂; 同时开启电动搅拌机或磁搅拌进行低速搅拌,直至溶解完全,得到均匀透明的制膜液,醋酸 纤维素的含量在5~15wt. % ;溶解过程持续2~5个小时,静止放置自行脱泡或抽气脱泡;
[0011] 其中的溶剂为二甲基甲酰胺、二甲基乙酰胺、N-甲基-吡咯烷酮中、丙酮的一种或 几种的混合溶液;
[0012] 步骤S2:将脱泡后的铸膜液流延至干净的玻璃板表面,用刮膜器将其均匀地分布 在玻璃板上,通过刮膜器来控制膜的厚度;待蒸发设定时间后,将刮制好的膜连同玻璃板一 起浸入凝固浴中,采用相转移法成膜;溶剂清除干净后,将醋酸纤维膜置于真空箱中烘干; 醋酸纤维膜的厚度为10~80微米,孔隙率在80% ;
[0013] 在室温下,将铸膜液倒在玻璃板上分布均勾,在空气中放置1~1〇分钟后,再放入 水或乙醇浴中凝固成膜,取下后用去离子水浸泡2~10小时,去除残留的溶剂;
[0014] 步骤S3:将醋酸纤维膜浸入全氟磺酸树脂混合溶液中,浸渍时间为5~10分钟,多 次浸渍,直至膜透明;全氟磺酸树脂的含量为5~20wt. %,溶剂为水、乙醇、异丙醇中任一种 或其混合物;为防止醋酸纤维膜因液体浸润而变形,将醋酸纤维膜的四周固定在夹具上,同 时方便浸渍过程中操作;浸渍过程中,多次浸渍,在常压常温下进行,或借助真空负压促进 浸渍过程;
[0015] 步骤S4:将浸渍后的膜沥干附着的树脂溶液,置于真空烘箱中烘干,去除膜中的溶 剂,得到以亲水醋酸纤维为支撑体的复合质子交换膜;热处理温度在1〇〇~200°C之间,热处 理温度不高于全氟磺酸树脂和醋酸纤维膜的玻璃化温度。
[0016] -种基于亲水性多孔支撑体的复合质子交换膜的制备方法,所述制备方法包括:
[0017] 步骤S1、称取设定质量的醋酸纤维素,倒入设定容器中,加入适当体积的溶剂;溶 解后静止放置脱泡;
[0018] 步骤S2:将脱泡后的铸膜液流延至一平板表面,将其分布在平板上;待蒸发设定时 间后,将刮制好的膜连同平板一起浸入凝固浴中成膜;溶剂清除干净后,将醋酸纤维膜烘 干;
[0019] 步骤S3:将醋酸纤维膜浸入全氟磺酸树脂混合溶液中;
[0020] 步骤S4:将浸渍后的膜沥干附着的树脂溶液,烘干去除膜中的溶剂,得到以亲水醋 酸纤维为支撑体的复合质子交换膜。
[0021] 作为本发明的一种优选方案,所述步骤S1中,称取设定质量的醋酸纤维素,倒入烧 杯或烧瓶中,加入适当体积的溶剂;同时开启电动搅拌机或磁搅拌进行低速搅拌,直至溶解 完全,得到均匀透明的制膜液;溶解过程持续2~5个小时,静止放置自行脱泡或抽气脱泡。 [0022]作为本发明的一种优选方案,所述步骤S1中的溶剂为二甲基甲酰胺、二甲基乙酰 胺、N-甲基-吡咯烷酮中、丙酮的一种或几种的混合溶液。
[0023] 作为本发明的一种优选方案,所述步骤S2中,将脱泡后的铸膜液流延至干净的玻 璃板表面,用刮膜器将其均匀地分布在玻璃板上,通过刮膜器来控制膜的厚度;待蒸发设定 时间后,将刮制好的膜连同玻璃板一起浸入凝固浴中,采用相转移法成膜;溶剂清除干净 后,将醋酸纤维膜置于真空箱中烘干;醋酸纤维膜的厚度为10~80微米,孔隙率在80%;在 室温下,将铸膜液倒在玻璃板上分布均匀,在空气中放置1~10分钟后,再放入水或乙醇浴 中凝固成膜,取下后用去离子水浸泡2~10小时,去除残留的溶剂。
[0024] 作为本发明的一种优选方案,所述步骤S3中,将醋酸纤维膜浸入全氟磺酸树脂混 合溶液中,浸渍时间为5~10分钟,多次浸渍,直至膜透明;全氟磺酸树脂的含量为5~ 20wt. %,溶剂为水、乙醇、异丙醇中任一种或其混合物;为防止醋酸纤维膜因液体浸润而变 形,将醋酸纤维膜的四周固定在夹具上,同时方便浸渍过程中操作;浸渍过程中,多次浸渍, 在常压常温下进行,或借助真空负压促进浸渍过程。
[0025] 作为本发明的一种优选方案,所述步骤S4中,将浸渍后的膜沥干附着的树脂溶液, 置于真空烘箱中烘干,去除膜中的溶剂,得到以亲水醋酸纤维为支撑体的复合质子交换膜; 热处理温度在100~200°C之间,热处理温度不高于全氟磺酸树脂和醋酸纤维膜的玻璃化温 度。
[0026] 本发明的有益效果在于:本发明提出的基于亲水性多孔支撑体的复合质子交换膜 的制备方法,所制备的以亲水性基体的复合质子交换膜的树脂分布均匀、填充量高、质子传 导率、气体渗透小,机械强度好。
【附图说明】
[0027] 图1为醋酸纤维膜表面的扫描电镜照片(放大10000倍)。
[0028]图2为醋酸纤维膜断面扫描电镜照片(放大5000倍)。
[0029] 图3为醋酸纤维复合质子交换膜膜的扫描电镜照片(放大5000倍)。
[0030] 图4为本发明制备方法的流程图。
【具体实施方式】
[0031] 下面结合附图详细说明本发明的优选实施例。
[0032] 实施例一
[0033] 请参阅图4,本发明揭示了一种基于亲水性多孔支撑体的复合质子交换膜的制备 方法,所述制备方法包括:
[0034] 【步骤S1】称取设定质量的醋酸纤维素,倒入烧杯或烧瓶中,加入适当体积的溶剂; 同时开启电动搅拌机或磁搅拌进行低速搅拌,直至溶解完全,得到均匀透明的制膜液;溶解 过程持续2~5个小时,静止放置自行脱泡或抽气脱泡;
[0035]其中的溶剂为二甲基甲酰胺、二甲基乙酰胺、N-甲基-吡咯烷酮中、丙酮的一种或 几种的混合溶液;
[0036]【步骤S2】将脱泡后的铸膜液流延至干净的玻璃板表面,用刮膜器将其均匀地分布 在玻璃板上,通过刮膜器来控制膜的厚度;待蒸发设定时间后,将刮制好的膜连同玻璃板一 起浸入凝固浴中,采用相转移法成膜;溶剂清除干净后,将醋酸纤维膜置于真空箱中烘干; 醋酸纤维膜的厚度为10~80微米,孔隙率在80% ;
[0037] 在室温下,将铸膜液倒在玻璃板上分布均勾,在空气中放置1~10分钟后,再放入 水或乙醇浴中凝固成膜,取下后用去离子水浸泡2~10小时,去除残留的溶剂;
[0038] 【步骤S3】将醋酸纤维膜浸入全氟磺酸树脂混合溶液中,浸渍时间为5~10分钟,多 次浸渍,直至膜透明;全氟磺酸树脂的含量为5~20wt. %,溶剂为水、乙醇、异丙醇中任一种 或其混合物;为防止醋酸纤维膜因液体浸润而变形,将醋酸纤维膜的四周固定在夹具上,同 时方便浸渍过程中操作;浸渍过程中,多次浸渍,在常压常温下进行,或借助真空负压促进 浸渍过程;
[0039]【步骤S4】将浸渍后的膜沥干附着的树脂溶液,置于真空烘箱中烘干,去除膜中的 溶剂,得到以亲水醋酸纤维为支撑体的复合质子交换膜;热处理温度在100~200°c之间,热 处理温度不高于全氟磺酸树脂和醋酸纤维膜的玻璃化温度。
[0040]本实施例中,所述制备方法包括如下步骤:称取一定质量的醋酸纤维素,倒入烧 杯,加入N-甲基-吡咯烷酮溶剂,配制成9wt. %的混合溶液,磁搅拌进行慢速搅拌,大约持续 3个小时,醋酸纤维素粉末完全溶解,得到均匀透明的溶液,静止放置4小时自行脱泡。采用 相转移法成膜,将制膜液流延至干净的玻璃板表面,用刮膜器成膜,厚度控制在200微米。将 刮好的膜放入乙醇溶液中,持续10分钟。将醋酸纤维膜在去离子水中浸泡2小时清除溶剂, 并在60°C真空箱中烘干,醋酸纤维膜的厚度为45微米。把干燥的醋酸纤维膜四周固定在夹 具,浸入浓度为20wt. %全氟磺酸树脂溶液中,浸渍三次,每次持续30分钟,沥干附着的树脂 溶液,置于l〇〇°C真空烘箱中处理10小时,得到以醋酸纤维为支撑体的复合质子交换膜,厚 度为60微米。置入去离子水中保存,用于含水量、质子传导率、电池性能的测试。
[0041 ]表1.醋酸纤维复合质子交换膜的一些物性参数
[0043] 实施例二
[0044]将在实施例一得到的醋酸纤维膜四周固定在夹具上,浸入浓度为20wt. %全氟磺 酸树脂溶液中,把夹具和盛有全氟磺酸树脂溶液的容器一同放入真空箱,抽气使箱内压力 降至0.02MPa,保持10分钟。重复上述过程2次,沥干附着的树脂溶液,置于100°C真空烘箱中 处理10小时,得到以醋酸纤维为支撑体的复合质子交换膜,厚度为65微米。置入去离子水中 保存,用于含水量、质子传导率、电池性能的测试。
[0045] 实施例三
[0046]将在实施例一中得到的质子交换复合膜在80°C的0.5mo 1/L的硫酸溶液中处理1 小时,使其进一步质子化,用去离子多次洗涤,用于含水量、质子传导率、电池性能的测试。
[0047] 实施例四
[0048] -种基于亲水性多孔支撑体的复合质子交换膜的制备方法,所述制备方法包括:
[0049] 步骤S1、称取设定质量的醋酸纤维素,倒入设定容器中,加入适当体积的溶剂;溶 解后静止放置脱泡;
[0050] 步骤S2:将脱泡后的铸膜液流延至一平板表面,将其分布在平板上;待蒸发设定时 间后,将刮制好的膜连同平板一起浸入凝固浴中成膜;溶剂清除干净后,将醋酸纤维膜烘 干;
[0051 ]步骤S3:将醋酸纤维膜浸入全氟磺酸树脂混合溶液中;
[0052]步骤S4:将浸渍后的膜沥干附着的树脂溶液烘干,去除膜中的溶剂,得到以亲水醋 酸纤维为支撑体的复合质子交换膜。
[0053]综上所述,本发明提出的基于亲水性多孔支撑体的复合质子交换膜的制备方法, 所制备的以亲水性基体的复合质子交换膜的树脂分布均匀、填充量高、质子传导率、气体渗 透小,机械强度好。
[0054]这里本发明的描述和应用是说明性的,并非想将本发明的范围限制在上述实施例 中。这里所披露的实施例的变形和改变是可能的,对于那些本领域的普通技术人员来说实 施例的替换和等效的各种部件是公知的。本领域技术人员应该清楚的是,在不脱离本发明 的精神或本质特征的情况下,本发明可以以其它形式、结构、布置、比例,以及用其它组件、 材料和部件来实现。在不脱离本发明范围和精神的情况下,可以对这里所披露的实施例进 行其它变形和改变。
【主权项】
1. 一种基于亲水性多孔支撑体的复合质子交换膜的制备方法,其特征在于,所述制备 方法包括: 步骤S1、称取设定质量的醋酸纤维素,倒入烧杯或烧瓶中,加入适当体积的溶剂;同时 开启电动搅拌机或磁搅拌进行低速搅拌,直至溶解完全,得到均匀透明的制膜液,醋酸纤维 素的含量在5~15wt. % ;溶解过程持续2~5个小时,静止放置自行脱泡或抽气脱泡; 其中的溶剂为二甲基甲酰胺、二甲基乙酰胺、N-甲基-吡咯烷酮中、丙酮的一种或几种 的混合溶液; 步骤S2、将脱泡后的铸膜液流延至干净的平板表面,用刮膜器将其均匀地分布在玻璃 板上,通过刮膜器来控制膜的厚度;在空气中放置1~10分钟后,将刮制好的膜连同玻璃板 一起浸入凝固浴(水或乙醇)中,采用相转移法成膜;取下后用去离子水浸泡2~10小时,去 除残留的溶剂;将醋酸纤维膜置于真空箱中烘干;醋酸纤维膜的厚度为10~80微米,孔隙率 在80% ; 步骤S3、将醋酸纤维膜浸入全氟磺酸树脂混合溶液中,浸渍时间为5~10分钟,多次浸 渍,直至膜透明;全氟磺酸树脂的含量为5~20wt. %,溶剂为水、乙醇、异丙醇中任一种或其 混合物;为防止醋酸纤维膜因液体浸润而变形,将醋酸纤维膜的四周固定在夹具上,同时方 便浸渍过程中操作;浸渍过程中,多次浸渍,在常压常温下进行,或借助真空负压促进浸渍 过程; 步骤S4、将浸渍后的膜沥干附着的树脂溶液,置于真空烘箱中烘干,去除膜中的溶剂, 得到以亲水醋酸纤维为支撑体的复合质子交换膜;热处理温度在100~200°C之间,热处理 温度不高于全氟磺酸树脂和醋酸纤维膜的玻璃化温度。2. -种基于亲水性多孔支撑体的复合质子交换膜的制备方法,其特征在于,所述制备 方法包括: 步骤S1、称取设定质量的醋酸纤维素,倒入设定容器中,加入适当体积的溶剂;溶解后 静止放置脱泡; 步骤S2、将脱泡后的铸膜液流延至一平板表面,将其分布在平板上;待蒸发设定时间 后,将刮制好的膜连同平板一起浸入凝固浴中成膜;溶剂清除干净后,将醋酸纤维膜烘干; 步骤S3、将醋酸纤维膜浸入全氟磺酸树脂混合溶液中; 步骤S4、将浸渍后的膜沥干附着的树脂溶液烘干,去除膜中的溶剂,得到以亲水醋酸纤 维为支撑体的复合质子交换膜。3. 根据权利要求2所述的基于亲水性多孔支撑体的复合质子交换膜的制备方法,其特 征在于: 所述步骤S1中,称取设定质量的醋酸纤维素,倒入烧杯或烧瓶中,加入适当体积的溶 剂;同时开启电动搅拌机或磁搅拌进行低速搅拌,直至溶解完全,得到均匀透明的制膜液, 醋酸纤维素的含量在5~15wt. % ;溶解过程持续2~5个小时,静止放置自行脱泡或抽气脱 泡。4. 根据权利要求3所述的基于亲水性多孔支撑体的复合质子交换膜的制备方法,其特 征在于: 所述步骤S1中的溶剂为二甲基甲酰胺、二甲基乙酰胺、N-甲基-吡咯烷酮中、丙酮的一 种或几种的混合溶液。5. 根据权利要求2所述的基于亲水性多孔支撑体的复合质子交换膜的制备方法,其特 征在于: 所述步骤S2中,将脱泡后的铸膜液流延至干净的玻璃板表面,用刮膜器将其均匀地分 布在玻璃板上,通过刮膜器来控制膜的厚度;待蒸发设定时间后,将刮制好的膜连同玻璃板 一起浸入凝固浴中,采用相转移法成膜;溶剂清除干净后,将醋酸纤维膜置于真空箱中烘 干;醋酸纤维膜的厚度为10~80微米,孔隙率在80% ; 在室温下,将铸膜液倒在玻璃板上分布均勾,在空气中放置1~10分钟后,再放入水或 乙醇浴中凝固成膜,取下后用去离子水浸泡2~10小时,去除残留的溶剂。6. 根据权利要求2所述的基于亲水性多孔支撑体的复合质子交换膜的制备方法,其特 征在于: 所述步骤S3中,将醋酸纤维膜浸入全氟磺酸树脂混合溶液中,浸渍时间为5~10分钟, 多次浸渍,直至膜透明;全氟磺酸树脂的含量为5~20wt. %,溶剂为水、乙醇、异丙醇中任一 种或其混合物;为防止醋酸纤维膜因液体浸润而变形,将醋酸纤维膜的四周固定在夹具上, 同时方便浸渍过程中操作浸渍过程中,多次浸渍,在常压常温下进行,或借助真空负压促进 浸渍过程。7. 根据权利要求2所述的基于亲水性多孔支撑体的复合质子交换膜的制备方法,其特 征在于: 所述步骤S4中,将浸渍后的膜沥干附着的树脂溶液,置于真空烘箱中烘干,去除膜中的 溶剂,得到以亲水醋酸纤维为支撑体的复合质子交换膜;热处理温度在100~200°C之间,热 处理温度不高于全氟磺酸树脂和醋酸纤维膜的玻璃化温度。
【文档编号】H01M8/1069GK106046403SQ201610378741
【公开日】2016年10月26日
【申请日】2016年5月31日
【发明人】赵新生, 李建伟, 王中伟, 王敏
【申请人】江苏师范大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1