换热器的制作方法

文档序号:12355204阅读:650来源:国知局
换热器的制作方法与工艺

本发明涉及一种高效换热器部件,以及使用该换热器部件的燃气热水器。



背景技术:

现有燃气热水器的核心部分是一种翅片管换热器,高温燃气流经换热器的翅片侧,以加热换热盘管内的水。换热方式以无氧铜换热器里的有限空间换热为主,高温烟气流经壳体间隙时与管道内流体发生有限空间内的辐射及对流换热,烟气流速低、呈层流流动状态,热流密度低,不能对热量有足够充足的利用,造成了热量浪费。虽然在烟气出口处增加冷凝换热装置,可以进一步利用烟气燃烧产生的少量水蒸汽。但高温燃气与被加热水的大温差造成不可逆损失,从而影响换热效率。

美国专利US2007/0133963A1所公开的燃气热水器中采用封闭真空腔体作为核心换热部件。用于加热水的换热盘管埋藏在该腔体内的导温粒子中,这些导温粒子充满整个封闭腔,工作时高温燃气的热量通过封闭腔壁以导热方式传入,再以热传导的方式传递给封闭腔内处于真空及干燥状态的导温粒子,依靠粒子的振动以强化热传导的能力。



技术实现要素:

本发明针对现有技术中燃气热水器的热量利用较低、产热速度慢的问题,提供一种快速产热的高效换热器部件。该部件应用于燃气热水器等以高温火焰或高温烟气为主要热源的供热设备中,将显著提高热利用效率。

本发明为了解决上述技术问题所采取的技术方案是:

提供一种换热器,以高温火焰或高温烟气作为热源,至少包括双层壳体。其中,内层壳体的内部空间下部,充入液态相变介质,上部设置至少一根第一换热管。被加热流体在所述第一换热管内流动。所述至少一根第一换热管下游侧管路穿出所述内层壳体后,在双层壳体之间的空腔内形成至少一根第二换热管。所述内层壳体的底部换热板位于热源上方。双层壳体之间的空腔形成烟气通道,热源对所述内层壳体的底部换热板加热后,烟气从所述内层壳体外侧底部四周沿烟气通道上升,并将热量传递给所述第二换热管内的被加热流体。

优选方案进一步包括如下任一技术特征:

所述双层壳体的外层壳体由绝热材料制成,或者在外层壳体外围包裹绝热材料。

所述第一换热管和所述第二换热管为一根管整体制成。

对所述第一换热管做疏水处理。

为排除所述内层壳体内部不凝气体的影响并防止漏气,对所述内层壳体内部进行抽真空处理,管道与壳体连接处进行密封。

所述内层壳体的内部空间的中部靠近液态相变介质沸腾侧设置阻液通气滤网。

所述双层壳体的外层壳体顶部设置引风机,对所述烟气通道内的烟气进行抽吸。

所述第二换热管环绕设置在双层壳体之间的空腔内,其管壁上设置翅片。

本发明同时提供一种选用上述换热器的热水器。

本发明还提供一种三热核相变燃气热水器,其特征在于,包括三层热核:第一热核为剩余烟气换热部分,第二热核为相变换热器,第三热核为换热室四周烟气换热部分;包括三层壳体,从外而内分别为第一、第二、第三层壳体,第三热核区位于第二、第三层壳体之间。

第一层壳体为最外层壳体,其顶部的左上方布置有换热水管,为第一热核区,位于第一、第二壳体的间隙中,第二壳体内底部布置有燃烧器,燃烧器上方即为第三壳体,第三壳体外布置有螺旋状环绕的换热水管,该处为第三热核区,第三壳体内部为第二热核区,即相变换热器,该换热器上部布置有换热水管,下部为有多孔结构的相变介质。换热水管依次进入第一、第二、第三热核区进行换热。

上述结构形成完整的相变式三热核换热体系,水管道自始至终为一根管道,燃烧器布置在相变换热器下侧换热板的下方,烟气在第二、第三层壳体间隙中向上流动并最后在热水器上部排出。

本发明与现有技术相比具有以下效果:

沸腾、冷凝换热是液态介质受热沸腾、气态介质遇冷凝结的有相变的换热过程。沸腾换热由于气泡的形成、成长以及脱离加热壁面所引起的各种扰动,冷凝换热利用蒸汽在壁面上冷凝成液膜或液珠的高效换热方式,二者在换热过程中,由于气化潜热的释放或回收从而具有传热强度高、热流密度大等优点,例如液态介质水在核态沸腾的范围内,沸腾时的热流密度可以高达10^5~10^6W/m^2的量级,比相同温差变化范围内水的强制对流传热的热流密度至少高了一个数量级,可以更好地吸收热量。

本发明提供的上述换热器结构,将高温火焰或高温烟气先用于加热封闭的内层壳体内部的相变介质,然后再流经双层壳体之间的环绕管道,温度依次降低从而实现高温火焰或高温烟气热量的梯级利用。

烟气辅助加热,即第一和第三热核,以及相变换热器内的高效相变换热,即第二热核,形成了完整的三热核换热模式,可以显著提升燃气热水器热效率,对于燃气燃烧所产生的热量可以充分利用,以在保证热水器原有功能的前提下达到快速启动、节省燃气的目的。气态相变介质在管道凝结后形成冷凝介质,下落后再次被汽化形成自循环,达到快速启动、循环工作的效果。为了降低不凝结气体对于凝结换热的影响,相变换热器进行抽真空处理,同时在相变换热器四周的环绕管道烟气换热装置外侧,包裹绝热材料或选择低导热材料作为外层壳体,使得烟气能够尽可能沿竖直方向流动,其热量为第三热核盘管内的水充分吸收,以达到更好的换热效果。与现有的燃气热水器相比,本发明增加了新的热核,使得燃气热水器的热效率得到显著提升。

附图说明

图1是本发明换热器的结构示意图;

图2是本发明换热器的剖面左视图;

图3是采用本发明换热器的燃气热水器的结构示意图。

其中:1:内层壳体。2:外层壳体。3:相变介质。4:盘管。

5:换热器入口管段。6:热源。7:底部换热板。

8:滤网。9:环绕管道。10:引风机。11:热水器外壳。

12:燃烧器。13:进水管。14:第一热核区。

15:第二热核区。16:第三热核区。17:出水管。

具体实施方式

图1和图2是本发明提供的换热器的结构示意图。

换热器包括双层壳体。内层壳体1内部空间下部充入液态相变介质3,上部设置第一换热管,第一换热管可设计成盘管4。被加热流体在盘管4内流动,盘管4可选用高导热系数的材料,盘管4的外壁可做疏水处理,以促进珠状凝结。液态相变介质3的相变温度应高于被加热流体的工作温度。盘管4上游侧为换热器入口管段5,该管段从双层壳体外部穿入。盘管4下游侧管路穿出内层壳体,在双层壳体之间的空腔内环绕后引出。高温火焰或高温烟气为换热器提供热源6,热源6上方为换热器内层壳体1的底部换热板7。内层壳体1内部进行抽真空处理,管道与壳体连接处进行密封,以排除不凝气体的影响并防止漏气。

内层壳体1内部空间下部的液态相变介质3,受热沸腾气化后,向内层壳体1内部空间的上部流动,气化后的相变介质3接触上方的盘管4后冷凝成液态,下落至内层壳体1内部空间的下部后再次被气化,由此,形成相变介质3的自循环。盘管4内流体被加热。

优选的,可以在内层壳体1内部空间的中部靠近液态相变介质3沸腾侧设置阻液通气滤网8,以防止冷凝液直接下落至气液界面而抑制蒸气的快速产生,降低传热效率。滤网8倾斜设置或中央比周边略高,以便冷凝后下落的液态相变介质3流动到滤网8在竖直方向较低的部分,经回流空间向下返回液态相变介质3的液面。

双层壳体之间的空腔形成烟气通道,热源6对换热器内层壳体底部换热板7加热后,烟气从内层壳体1外侧底部四周沿烟气通道垂直上升,并将热量传递给第二换热管内的被加热流体。第二换热管可设计成环绕管道9。由于烟气通道的烟囱效益,高温烟气以较快的速度掠过环绕管道9,其热量被环绕管道9内的被加热流体充分吸收,以达到更好的换热效果。

优选的,在外层壳体2顶部设置引风机10对烟气进行抽吸,以进一步提高烟气流速,增大换热量。此外,为了尽可能减少高温烟气热量通过外层壳体2向外散失,可在外层壳体2外围包裹绝热材料,或者外层壳体2由如陶瓷等绝热材料制成。在环绕管道9的管壁上可增设翅片,以增大高温烟气的给热面积。

上述换热器结构,将高温火焰或高温烟气先用于加热封闭的内层壳体1内部的相变介质3,然后再流经双层壳体之间的环绕管道9,温度依次降低从而实现高温火焰或高温烟气热量的梯级利用。

上述本发明的换热器可用于各种以高温火焰或高温烟气作为主要热源的供热设备中,用于提高供热设备的热效率。下面的实施例以燃气热水器为例,说明本发明换热器在供热设备中的应用。

本发明提供的燃气热水器结构示意图如图3所示,其核心部件为上述换热器。进水管13从热水器下部进入第一层壳体(即热水器外壳11),并沿壳体向上到达由引风机10从换热器抽吸出的剩余烟气进行换热的第一热核区14,第一热核区14的水管道呈盘管式排列,盘管出口管道穿过第二、第三层壳体(即换热器双层壳体1、2)进入第二热核区15(即换热器内层壳体内部),换热之后再穿出第三层壳体进入第三热核区16(即换热器双层壳体之间的空腔),在第二、第三层壳体之间绕换热器外围环绕,最后成为热水器下部出水管17。燃烧器12布置在换热器内层壳体1底部换热板7的下方。由此构成三热核相变换热燃气热水器。

当燃气热水器启动后,进水管13中的水从热水器下部进入第一热核区14,与燃烧器12中燃烧后,又经过第二、第三热核区15、16(即本发明的换热器)换热后的剩余烟气进行以烟气中水蒸气的冷凝为主的第一次换热。水经过第一热核区14被预热后,沿换热器入口管段5,穿过第二、第三层壳体进入第二热核区15。

第二热核区15以含有相变的冷凝换热为主。相变介质3的相变温度需高于热水出水温度,可选用如去离子水等。在第二热核区15,液态相变介质3沸腾汽化。液态相变介质3的沸腾气化的热量来自于燃烧器产生的高温火焰。与上方水盘管4冷凝换热,形成相变介质自循环并使水管道里的水得到充足加热。

完成在第二热核区15的换热后,水管道中的水向位于下游侧的环绕管道9流动,与第三热核区16的烟气进行辐射及对流换热。之后,热水从出水管17流出。

该燃气热水器通过整体式的三热核换热模式,实现了烟气热量的高效梯级利用,排出热水器的废气温度明显降低。为了尽可能降低流动阻力,燃气热水器中的水管道可设置成自始至终为一根管道,或多根管道并行排布均单进单出,无分支交叉。当然,也允许部分水管道与水管道之间采用其他方式连接以形成一根管道。此外,为了增大换热面积、增强换热效果,热水器水管道外均可不同程度的布置翅片结构,换热器底部换热板7可设计成曲面。

本发明未对燃气热水器中常规配置的燃烧器、水气联动阀以及自动控制电路进行详细描述。

本发明的实施方式只是对本专利的示例性说明,并不限定它的保护范围,本领域技术人员还可以对其局部进行改变,只要没超出本专利的精神实质,都在本专利的保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1