新型吸附剂、其制备方法及其用途的制作方法

文档序号:4990510阅读:363来源:国知局
专利名称:新型吸附剂、其制备方法及其用途的制作方法
新型吸附剂、其制备方法及其用途发明背景发明领域本发明涉及吸附剂及其用途。具体地,本发明提供从水性溶液和分散体中去除锑含氧-阴离子(oxo-anion)的新型吸附剂。发明也涉及制备新型吸附剂的方法。另外,发明涉及阴离子吸附剂用于从核废液中去除放射性核素和非放射性种类的锑和锝,包括它们的含氧-阴离子形式(锑酸根和高锝酸根)的用途。相关技术描述选择性离子介质,例如无机吸附剂和离子交换剂,由于它们的辐射稳定性、高的处理能力和高的净化效率,日渐增长地用于从核废液去除关键放射性核素,诸如Co-60、Sr-90 和Cs-137[l,2]。使用的材料为市场上可得的阳离子交换剂或吸附剂(例如沸石、钛酸盐、 硅钛酸盐、铁氰化物(hexacyanoferrate)),它们可有效去除阳离子放射性种类。无机阴离子交换材料相当少见且不具有高选择性。就对人员和环境的放射剂量而言,Co-60、Co-58和Cs_137是核能发电厂(NPP)的废液和水流中最危险的放射性核素。改进的处理系统可显著地减少许多公共场所中的这些放射性核素的排放,并且进一步的努力为针对去除其他放射性核素,诸如在去除铯和钴后的溶液中占主要地位的Cr-51、Ag-IlO和釙-125。近期,更多地注意到125Sb。它可完全以可溶形式存在于地漏水中[3]。在溶液中,锑可以两种氧化态(+3,+5)和数种羟基类别(例如釙(0H)6_、Sb(0H)3(水性,aq)和釙(OH)4+) 存在,其取决于PH和氧化还原条件W]。这些化学特征表明从溶液中去除锑是困难的。近期试验已表明标准脱矿质器树脂和离子选择性介质对于从液体放射性废物中去除Sb是无效的[5]。然而,一些市场上可得的无机阳离子交换剂,诸如CoTreat,可在某些情况下效率良好地从NPP地漏水中去除Sb-125[3],但它们的使用明显限于阳离子锑类另IJ。考虑其他方法,在Duke Power Company的Oconee设备W]中进行的试验方案中,化学添加剂结合超滤显示为去除Sb-125的有效方法。其他方法的研究诸如电去离子和中空纤维过滤正在进行中,例如在EPRI Low-Level Waste (低放废物)方案中[7]。已公布了一些关于使用基于氧化锆的材料去除锑的报道[8,9]。在这些研究中,使用氯氧化锆(ZrOCl2)作为氧化锆的前体,且仅有阳离子锑的吸收在研究。这些研究的结果表明,使用所述氧化锆材料可获得痕量锑的低于96%的吸收(相当于低于2000ml/g的分配系数)。然而,这样的选择性对于工业用途是相当不令人满意的。相似地,使用氧化锆吸附剂和聚丙烯腈(PAN)粘合剂[10,11]获得了不令人满意的结果。在完成纵览时可以注意到,本领域中已预先讨论过无载体的115llIn从11Yd中以及 132I从132Te中经氧化锆柱的分离。发明概述基于以上,本发明的目的是消除本领域中至少一部分问题,并提供对NPP废液中的锑具有高选择性,且由此能够进行工业应用的新型阴离子吸附剂材料。本发明的另一目的是提供制备能够去除锑放射性同位素的新型阴离子吸附剂的方法。本发明的再一目的是提供去除锑和任选的锝,包括它们含氧-阴离子的方法和吸附单元。特别的目的是提供能够去除选自Sb-122、Sb-124, Sb-125和Tc_99及其混合物的放射性核素以及相应的非放射性类别的阴离子吸附剂。本发明基于以下观念提供从水溶液中去除锑还有任选的锝的新型材料,其包含具有至少10,000ml/g的锑分配系数的氧化锆材料,所述材料以精细粉碎的形式存在,例如为粉末或细粒材料。材料可通过沉淀过程制备,其中锆前体溶于强酸的酸或水溶液中,且溶液的pH 为,当前体溶解时,增加(优选逐渐地)到至少PH 2,特别是2-10的范围内的值,且在洗涤后收集并回收沉淀物。材料可与掺杂离子例如锑离子共沉淀,用于制备还能够从水溶液吸附锝的材料。更具体地,本发明材料的主要特征如权利要求1的特征部分所述。制备新型材料交换剂的方法的特征如权利要求8的特征部分所述,并且从水溶液中去除锑和任选的锝的方法的特征如权利要求15的特征部分所述。根据本发明的吸附单元的特征如权利要求20所述。 本发明获得相当大的优点。本发明提供新型吸附剂或离子交换材料——氧化锆粉末或细粒,其性能的数量级高于先前报道的氧化锆材料。分配系数很高,使得材料可容易地应用于工业用途。出于在缓和的条件下使用容易得到的材料这一方面,制备方法简单且不昂贵。然后,借助于参考附图
的详细描述,将更仔细地研究本发明。附图简述图Ia和Ib显示XRD衍射图样,即图Ia为^O2材料且图Ib为rLr (Sb) O2材料;图2显示在0. IM NaNO3中125Sb (锑酸根)在ZrO和Zr (Sb) 0(Sb 5% )材料上的分配系数,作为PH的函数;图3显示在模拟地漏水BWRl中通过Ir (Sb) 0_材料(Sb 5% )对12Sb的柱吸收; 禾口图4显示装填&0-材料的柱中124Sb的吸收-在780床体积时将初始流速22BV/ h 变为 8BV/h。优选实施方案详述为了本发明的目的,术语"吸附剂"可与"离子交换剂"互换使用,用于指明本发明的氧化锆材料。尚未阐明锑阴离子和锝离子吸附于材料的实际机理。可能该吸附基于离子交换,但同样可能涉及例如氧化还原过程和表面络合过程。自然地,可能接近的是多种吸附机理的组合,且本发明不限于任何特定的机理。对于吸附剂用途,氧化锆材料可原样使用,即伴随其他吸附类别或群组的加入,但为了从液体溶液中吸附锝,优选加入掺杂剂,优选为诸如锑的三价离子。如上所述,能够吸附锑阴离子(锑酸根)和锝,包括其含氧-阴离子的本发明的材料,基本由具有高的放射性锑分配系数的氧化锆(二氧化锆)微粒或细粒组成。分配系数为至少10,000ml/g或至少15,000ml/g,特别为至少50,000ml/g。在2-10的pH范围内优选的分配系数为至少100,000ml/g且特别为250,000ml/g,例如,至少500,000ml/g,任选为 1, 000, 000ml/g或甚至更高。当吸附剂或离子交换剂包含粉状材料时,微粒的平均粒径为约IOnm-IOOum的范围,且它们的流速(也被称为"物料通过量")通常为100-10,000床体积/小时。另一方面,当离子交换剂包含粒状材料时,微粒的平均粒径为0. l-2mm且流速为10-50床体积/小时。本发明的微粒或细粒优选为"自支持的"或"无粘合剂的",这是指使用不含任何可增加其机械强度性能的组分的微粒或细粒本身。“床体积"由吸附剂容器中材料内容物的总体积来计算。本发明提供基本包含以下步骤的组合的方法,即-在低于1的pH下将锆化合物溶于水性介质,以形成含锆的溶液;-通过加入碱将溶液的pH提高到至少为2的值;-沉淀出包含氧化锆的沉淀物;-洗涤氧化锆沉淀物;和-回收氧化锆。[13]中描述了制备水合氧化锆的方法。在已知的方法中,固体锆盐与相对低浓度的不会完全溶解锆的酸(0. 1M)混合。在这之后,加入碱金属氢氧化物以获得碱性条件(pH =11. 5),用于在升高的温度下进行的反应。相比之下,在本发明的方法中,锆盐首先溶于浓酸中,随后用碱将氧化锆/氢氧化锆沉淀。因此,正如已经提及且将在以下要研究的,在给出具有关注特性的产品的氧化物/ 氢氧化物形成反应(沉淀)之前,锆原材料完全溶解。如以下更详细讨论的,阴离子交换剂可进一步包含掺杂金属离子,诸如锑,例如锑 (III),以提高自水溶液中的锝的共吸附作用。锆前体通常为卤化锆或含氧卤化锆,诸如氯化锆(IV)、硫酸锆(IV)、碳酸锆(IV)、 硝酸锆(IV)、含氧硝酸锆(IV),亚氯氧酸锆(IV) (zirconium(IV)0XyChl0rite)或其混合物。在方法的第一步中,锆前体溶于无机酸的水溶液中。无机酸可为盐酸、硝酸或硫酸,但也可使用强有机酸,诸如磺酸。同样也可使用两种或更多种的混合物。水溶液的关于酸的摩尔浓度通常为0. 1-10M,且pH为1或更小,通常接近于0或甚至低于0。前体溶于酸后,通过加入碱或通常的"碱剂",将溶液的PH增加到2-10范围内的值。碱剂可选自于碱金属氢氧化物、碱土金属氢氧化物、氨和氢氧化铵。在实施例中,使用氨。自然地,也可使用有机碱,诸如有机胺、脂肪族胺或芳族胺。作为pH增加的结果,氧化锆将从水相中分离。优选广泛地,用水或水溶液将其洗涤直至上清液和沉淀物的界面不清楚,显示某种轻微浑浊。随后,回收沉淀物,加热并干燥以提供本发明的材料。当要包括掺杂剂时,优选将其加入酸性的含锆溶液中。取决于洗涤和分离程序,可回收颜料尺寸的微粒或细粒。通常地,微粒的粒径为从约IOnm到约IOOum的范围,优选平均粒径为约50nml0um。细粒的平均粒径为约从0. Ium到约2mm的范围,且通常适合于工业规模吸附剂用途的细粒的粒度为约0. l-2mm。通过所示工艺制备的材料通常为非晶态的。术语"非晶态的"表示XRD分析给出宽的衍射峰图谱的材料状态。也认为这种状态是指"纳晶",即材料包含具有宽的晶体尺寸范围的微小晶体。如以下报道的结果所显示,非晶态材料具有优异的对锑以及对锝(特别是在掺杂后)的吸附性能。可通过热处理或水热处理增加结晶度,即通过加热干燥或湿润的粉末或细粒或通过在浆料中加热材料。然而,在本发明的一个优选实施方案中,本发明的吸附剂为不需粘合剂而容易用于动态应用的玻璃状细粒。本发明也提供从水溶液中,特别地从核废液中去除锑离子的方法。方法通常包含以下步骤-将含锑的水溶液与氧化锆接触,使锑与氧化锆结合并提供锑含量减少的水溶液, 禾口-将水溶液与氧化锆分离,其中氧化锆包含阴离子吸附剂或离子交换剂,其基本由具有至少为10,00ml/g,特别地至少为100,000ml/g的锑分配系数的氧化锆微粒或细粒组成。如上所述,方法可用于从核废液中去除放射性同位素,即放射性锑和任选的锝,包括它们的含氧-阴离子形式。这将在以下实施例中显示。然而,也可能使用本发明的材料从溶液中去除非-放射性的锑和锝离子。对于工业规模的用途,优选以吸附床的形式布置或提供吸附剂材料。特别地,将吸附材料布置在吸附单元中,例如在离子交换柱外壳中。通常地,吸附单元包含吸附床,由本发明的吸附材料形成,被布置在外壳内。典型地,外壳包含允许待处理液体流入物——液体流通过吸附剂材料的装置,以及允许取回已处理液体(废水)的装置。入口装置可连接至含锑液体的来源。若干不同的结构是可能的。在传统的柱中,将材料安装或填充到两个支撑结构间以形成吸附剂床。可将吸附剂床放置在压力容器或非压力容器中。可使待处理的液体作为塞流引导通过吸附剂,或通过用分配装置分配该流通过吸附剂。另一选择是将材料布置在具有环形截面的圆筒状容器中,并在内部或外部或两者中提供多孔壁,以允许液体从内部或外部流入环形外壳中的吸附剂层。可使液体从外部通过吸附剂层进入由环形结构内壁限定的内部空间,或反之亦然。自然地可预期其他结构。通常,在工业用途中,吸附剂单元的上游存在用于将固体物质从待处理液体中分离的过滤装置。可以只存在一个吸附单元或多个吸附单元,至少一个单元提供有本发明的吸附材料。自然地,本发明的材料可结合到包含另一离子交换或吸附床的吸附单元中的吸附床或层中。如果存在若干单元,可将它们以串联排列(作为级联)或并联或串联和并联的组合进行装配。优选存在至少两个并联的单元,以允许在操作其他并联单元时,对一个单元中的吸附剂材料进行维护和替换。
然后,更详细地描述材料的制备,且随后通过工作实施例的帮助研究该新型材料的性质。制备可制备纯&_氧化物材料或锑掺杂的&_氧化物材料。对于高锝酸根的有效去除, 锑掺杂是必须的。ZrO-材料(无Sb掺杂)在恒定搅拌下将ZrCl4溶于3M无机酸中(HCl或HNO3,也可能为H2SO4)。缓慢加入 /滴加浓氨水(25%-30%)以提高锆溶液的pH,直至pH在2-9的范围内,且继续搅拌30 分钟。让浆料静置30分钟并排出澄清的上清液。通过加入等体积的蒸馏水洗涤浆料并施用搅拌5分钟。将浆料静置60分钟并排出澄清的上清液。持续洗涤程序直至上清液在60 分钟静置时间后保持微浑浊,且上清液和浆料之间的界面不清楚。排出微浑浊的上清液,且浆料于70°C在表面皿中干燥48小时,直至产品干燥且形成硬的微粒。如图Ia所示,在XRD 分析下发现材料为非晶态。Zr (Sb) 0 (Sb 掺杂材料) 在恒定搅拌下将&C14溶于3M无机酸中(HCl或HNO3,也可能为H2SO4)。将 1%-50% (原子的掺杂元素,氯化锑(III)加入溶液中并使其溶解15分钟。缓慢加入/滴加浓氨水(25%-30%)以提高锆/锑溶液的pH,直至pH在2-9的范围,且持续搅拌30分钟。让浆料静置30分钟并排出澄清的上清液。通过加入等体积的蒸馏水洗涤浆料并施用搅拌5分钟。将浆料静置60分钟并排出澄清的上清液。持续洗涤程序直至上清液在60分钟静置时间后保持微浑浊,且上清液和浆料之间的界面不清楚。排出微浑浊的上清液,且浆料于70°C在表面皿中干燥48小时,直至产品干燥且形成硬微粒。由图Ib可见,在 XRD分析下发现材料为非晶态。代替氯化锆(IV),也可使用硫酸锆(IV)、碳酸锆(IV)、硝酸锆(IV)、含氧硝酸锆 (IV),亚氯氧酸锆(IV)作为上述合成中的锆的前体。上述合成与Miattacharyya和Dutta [8]所描述合成的不同之处主要在于锆前体是如何溶解的。Miattacharyya将&0C12溶于水中,然而上述合成使用酸,特别是强酸诸如无机酸来溶解锆前体。去除锑和锝的表现氧化锆材料被广泛地使用模拟和真实的核废液试验,用于去除124Sb、125Sb和"Tc。 在静态和动态的条件下进行试验。在静态实验中,对放射性核素确定分配系数,kd。对于包括如下离子交换的吸附过程R-B + AR-A + B(1)其中A是放射性含氧阴离子(例如124Sb (OH) 4_),B是连接于固体基质R+的可交换阴离子(例如CD (此处为了简单性,假设阴离子是单价的),其“强度”通过选择性系数Ka/ B表征[14,15],即
Γ00781 κ - Ir-aM (2)K^B~[a][r_b](2)其中[R-A]和[R-B]是吸附剂中阴离子的浓度(例如mmol/g)且[A]和[B]是溶液中阴离子的浓度。分配系数kd[14,15],即
权利要求
1.用于锑阴离子的吸附剂,其基本由具有至少10,000ml/g的锑阴离子分配系数的氧化锆的微粒或细粒组成。
2.根据权利要求1所述的吸附剂,其具有至少15,000ml/g的锑分配系数,特别为至少50,000ml/g ;合适的锑分配系数为,在2-10的pH范围至少100,000ml/g,优选至少 250,000ml/g。
3.根据权利要求1或2所述的吸附剂,其包含平均粒径在约IOnm-IOOum范围内的微粒,且流速为100-10,000床体积每小时。
4.根据权利要求1或2所述的吸附剂,其包含平均粒径为0.l-2mm的细粒,且流速为 10-50床体积每小时。
5.根据任一项前述权利要求所述的吸附剂,其由包含以下步骤的方法获得 在低于1的PH下将锆化合物溶于水性介质中,以形成含锆的溶液; 通过加入碱,将所述溶液的PH提高到至少为2的值;沉淀出包含氧化锆的沉淀物; 洗涤所述氧化锆沉淀物;和回收所述氧化锆。
6.根据任一项前述权利要求所述的吸附剂,其进一步包含掺杂金属离子,诸如锑,特别为 Sb(III)。
7.根据任一项前述权利要求所述的吸附剂,其基本由非晶态氧化锆的微粒或细粒组成。
8.制备氧化锆吸附剂的方法,所述方法包含以下步骤 在低于1的PH将锆化合物溶于水性介质中,以形成含锆的溶液; 通过加入碱,将所述溶液的PH提高到至少为2的值;沉淀出包含氧化锆的沉淀物; 洗涤所述氧化锆沉淀物;和回收所述氧化锆。
9.根据权利要求8所述的方法,其中所述锆化合物选自卤化锆和含氧卤化锆,诸如氯化锆(IV),、硫酸锆(IV)、碳酸锆(IV)、硝酸锆(IV)、含氧硝酸锆(IV)、亚氯氧酸锆或其混合物。
10.根据权利要求8或9所述的方法,其中所述锆化合物溶于酸的水溶液中,优选为无机或有机酸的水溶液。
11.根据权利要求8-10中任一项所述的方法,其中通过加入选自于碱金属氢氧化物、 碱土金属氢氧化物、氨和氢氧化铵的碱将溶液的PH增加到2-10范围内的值。
12.根据权利要求8-11中任一项所述的方法,其中所述氧化锆沉淀物用水或水溶液洗涤,直至上清液和沉淀物之间的界面不清楚。
13.根据权利要求8-12中任一项所述的方法,其中向所述含锆的溶液中加入掺杂剂, 所述掺杂剂优选包含锑前体,优选为Sb(III)的前体。
14.根据权利要求8-13中任一项所述的方法,其中所述氧化锆是非晶态的。
15.从水溶液中,特别是从核废液中去除放射性或非-放射性锑阴离子的方法,所述方法包含以下步骤将所述含锑的水溶液与氧化锆吸附剂接触,以使锑与所述氧化锆结合,和提供锑含量减少的水溶液,和将所述水溶液与所述氧化锆吸附剂分离,其中所述氧化锆吸附剂包含对于放射性锑的分配系数为至少10,000ml/g的氧化锆的微粒或细粒。
16.根据权利要求15所述的方法,其包含使用三价锑阳离子掺杂的氧化锆吸附剂,以从所述溶液中同时去除锝。
17.根据权利要求15或16所述的方法,其包含使用根据权利要求1-7中任一项的氧化锆离子交换剂,或根据权利要求8-16中的任一项制备的氧化锆离子交换剂。
18.根据权利要求15-17中任一项所述的方法,其中所述接触在包含填装有所述吸附剂的容器的吸附单元内进行。
19.根据权利要求1-7中任一项的吸附剂的用途,用于从核废液中去除锑和任选的锝, 包括它们的含氧-阴离子形式。
20.从核废液中去除锑和任选的锝,包括它们的含氧-阴离子形式的吸附单元,所述单元包含具有合适吸附剂的容器,所述容器提供有废液入口和已处理废液出口,所述吸附剂基本由具有至少10,000ml/g的锑阴离子分配系数的氧化锆微粒或细粒组成。
21.根据权利要求20所述的单元,其中所述吸附剂材料被布置在离子交换柱外壳中。
22.根据权利要求20或21所述的单元,其中所述吸附单元包含吸附床,所述吸附床由吸附剂材料形成,布置在包含允许待处理液体流入的装置和允许已处理液体取出的装置的外壳中,所述入口装置与含锑液体的来源相连接。
全文摘要
本发明涉及锑阴离子的吸附剂,其基本由具有至少10,000ml/g的锑阴离子的分配系数的氧化锆的微粒或细粒组成。本发明也提供制备该新型吸附剂的方法以及从溶液中去除锑和任选的锝的方法。分配系数很高,因此该材料可容易地应用于工业用途。制备方法是简单的,且吸附剂可在缓和条件下由容易获得的材料制备。
文档编号B01J20/06GK102458649SQ201080027394
公开日2012年5月16日 申请日期2010年4月20日 优先权日2009年4月20日
发明者H·曼尼, R·哈尔祖拉, R·科伊弗拉 申请人:福图姆股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1