一种改性多孔磁性黄原胶/石墨烯复合微球的制备方法与流程

文档序号:11714982阅读:194来源:国知局

本发明涉及一种复合生物吸附剂的制备方法的技术领域,特别涉及一种改性多孔磁性黄原胶/石墨烯复合微球的制备方法及对银吸附的应用技术,属于环境与化学技术领域。



背景技术:

当进社会,水污染问题引起人们越来越多的关注。随着水污染问题的日益加重,制备针对性强、处理效果好、可重复利用的新材料已成为研究重点。由于工业发展和生活的需要,许多重金属被排放到大气和水中,危害着生态环境和人类的健康,银及含银产品在电子电镀、感光材料、化工和科研等领域的广泛应用所产生的大量含银废液不仅造成了严重的环境污染,而且使得银资源大量浪费。因此,含银离子废液中银的去除和回收具有非常重要的研究和实用意义。3-巯丙基三乙氧基硅的分子中含有丰富的巯基,具有良好的金属离子吸附性能。黄原胶是一种重要的天然生物多糖分子,它的分子骨架结构类似于纤维素,但其分子链中每隔一个结构单元便存在由甘露糖乙酸盐、终端甘露糖以及两者之间的一个葡萄糖酸酐组成的三糖侧链,侧链上的葡萄糖酸酐和丙酮酸群赋予其负电荷的活性基团。石墨烯自发现以来,由于其独特的理化性质,其应用研究已成为当前的研究热点。与传统普通材料相比,氧化石墨烯具有巨大的比表面积和丰富的纳米孔隙结构、高的热稳定性和化学稳定性、中空的内腔和层状结构以及丰富的含氧官能团,表面很容易被修饰等优点,因而在作为吸附材料方面有着广阔的应用前景。通过合成工艺将黄原胶与氧化石墨烯制备成具有磁性的多孔的黄原胶/石墨烯复合微球,这种多孔磁性黄原胶/石墨烯复合微球具有三维网状结构的软性凝胶特性的同时还具有良好的机械性能,具有比表面积大、良好的生物相容性、亲水性等。本申请黄原胶/石墨烯复合材料中加纳米fe3o4磁性微粒,采用冷冻干燥的方法,制备多孔磁性黄原胶/石墨烯复合微球。然后在采用3-巯丙基三乙氧基硅进行改性。

天然高分子磁性微球是近些年发展起来并已广泛应用于生物医学、化学分离富集等领域的一种新型多功能材料,它兼具磁性粒子和高分子粒子的特性,可方便地从介质中分离,同时高分子上的活性基团经过修饰可以负载多种功能性分子,以提高吸附剂的选择性的特异功能,并由于其具有良好的生物相容性,从而可制备多功能磁性微球,在许多领域得到广泛的应用。

多孔磁性黄原胶/石墨烯复合微球是具有多孔性三度空间网状结构的高分子化合物,属于软性凝胶,其微孔能吸入大量溶剂,比表面积大,可反复使用,又具有磁性容易从介质中分离。它即具有无机材料的机械性能好的优点,又具有有机材料的所有优点,目前未见3-巯丙基三乙氧基硅改性多孔磁性黄原胶/石墨烯复合微球制备吸附剂的报道。

吸附剂利用其丰富的结构、比表面积加之通过表面各种活性基团与吸附质的相互作用,从液相中吸附富集银。与此同时,吸附法也存在许多不足之处,其中吸附剂的固液分离困难一直是阻碍吸附技术进步的一大问题,因而近年来许多学者致力于研究磁性吸附剂并应用于吸附分离中。可在外加磁场的帮助下,磁性吸附剂能够快速实现固液分离,并同时拥有高速的传质速率和良好的接触效率,因而可在很大程度上可以解决传统吸附法所面临的问题。

本申请将黄原胶/石墨烯复合材料进行磁化制得多孔磁性黄原胶/石墨烯复合微球,再采用3-巯丙基三乙氧基硅改性多孔磁性黄原胶/石墨烯复合微球制备吸附剂吸附分离银,使其即具有磁性吸附剂的特性,又具有生物吸附剂特性,同时还具有特殊活性基团,提高选择性。



技术实现要素:

本发明的目的之一是提供一种改性多孔磁性黄原胶/石墨烯复合微球的制备方法,获取的改性多孔磁性黄原胶/石墨烯复合微球吸附剂对水体系中银的进行吸附分离。

本发明的目的通过以下技术方案实现。

一种改性多孔磁性黄原胶/石墨烯复合微球的制备方法,其特征在于,该方法具有以下工艺步骤:

(1)有机相配制:在反应器中,按如下组成质量百分浓度加入,葵花籽油:74~80%,二甲胺基丙胺:10~16%,三硬脂酸甘油酯:8~12%,各组分之和为百分之百,搅拌均匀,为有机相;

(2)水相配制:在反应器中,按如下组成质量百分浓度加入,去离子水:68~76%,黄原胶:10~16%,氧化石墨烯:4~8%,纳米fe3o4磁性微粒:2~5%,三乙醇胺:5~10%,各组分之和为百分之百,超声分散,为水相;

(3)多孔磁性黄原胶/石墨烯复合微球的制备:在反应器中,在室温下,以3000转/min的速度搅拌下,将步骤(2)的水相喷雾到步骤(1)的有机相中,体积比为水相:有机相为1:0.9~1.1,搅拌反应1h,温度升至65±2℃,继续反应30min,冷却到室温,固液分离,固相用去离子水浸泡24h,置于塑料容器中于-18℃迅速冷冻4h,取出后放入冷冻干燥箱内,冷冻干燥24h,得到多孔磁性黄原胶/石墨烯复合微球;

(4)改性多孔磁性黄原胶/石墨烯复合微球的制备,在反应器中,按如下组成质量百分浓度加入,乙醇:64~70%,3-巯丙基三乙氧基硅:15~20%,溶解,加入多孔磁性黄原胶/石墨烯复合微球:12~18%,各组分之和为百分之百,于60±2℃恒温、搅拌、回流反应6h,冷却后,分别用去离子水、乙醇洗涤、固液分离,干燥,得到改性多孔磁性黄原胶/石墨烯复合微球,所述的改性多孔磁性黄原胶/石墨烯复合微球的粒径在150~200μm之间。

在步骤(2)中所述的纳米fe3o4磁性微粒的粒径在150~200nm之间。

在步骤(2)中所述的氧化石墨烯与黄原胶质量比为1:2.5~2.8之间最佳。

步骤(2)的水相与步骤(1)的有机相的体积比为1:1为最佳。

在步骤(2)中所述氧化石墨烯是石墨烯经过浓h2so4、高锰酸钾加热氧化处理的。

本发明的另一目的是提供改性多孔磁性黄原胶/石墨烯复合微球吸附剂对水体系中对银的吸附,特点为:将制备好的改性多孔磁性黄原胶/石墨烯复合微球吸附剂用去离子水浸泡1~2h,按静态法吸附。

将制备好的改性多孔磁性黄原胶/石墨烯复合微球球吸附剂用去离子水浸泡1~2h,按动态法吸附。

本发明与现有技术比较,具有如下优点及有益效果:

(1)本发明获得的改性多孔磁性黄原胶/石墨烯复合微球吸附剂具有良好的物理化学稳定性和优异的机械强度,吸附容量大,对银的最大吸附容量达208.56mg/g,耐磨可反复使用次数可达10次以上,吸附的速度快,吸附选择好,解吸性能好,能够在较宽的酸碱范围内使用。

(2)本发明获得的改性多孔磁性黄原胶/石墨烯复合微球吸附剂既具有固相载体材料的优点,也解决了活性基团3-巯丙基三乙氧基硅应用到水环境中的流失问题。

(3)稳定性好,是天然绿色产品,再生材料,废弃物可生物降解,具有磁性,容易从介质中分离出来。

(4)合成的过程要求的条件容易控制,能耗低,操作简单,属于清洁生产工艺,易于工业化生产。

具体实施方式

实施例1

(1)有机相配制:在反应器中,加入葵花籽油:98ml,二甲胺基丙胺:16ml,三硬脂酸甘油酯:10g,搅拌均匀,为有机相;

(2)水相配制:在反应器中,加入去离子水:72ml,黄原胶:13g,氧化石墨烯:5g,纳米fe3o4磁性微粒:3g,三乙醇胺:6ml,超声分散,为水相;

(3)多孔磁性黄原胶/石墨烯复合微球的制备:在反应器中,在室温下,以3000转/min的速度搅拌下,将100ml的水相喷雾到100ml的有机相中,搅拌反应1h,温度升至65±2℃,继续反应30min,冷却到室温,固液分离,固相用去离子水浸泡24h,置于塑料容器中于-18℃迅速冷冻4h,取出后放入冷冻干燥箱内,冷冻干燥24h,得到多孔磁性黄原胶/石墨烯复合微球;

(4)改性多孔磁性黄原胶/石墨烯复合微球的制备,在反应器中,加入乙醇:85ml,3-巯丙基三乙氧基硅:18ml,溶解,加入多孔磁性黄原胶/石墨烯复合微球:15g,于60±2℃恒温、搅拌、回流反应6h,冷却后,分别用去离子水、乙醇洗涤、固液分离,干燥,得到改性多孔磁性黄原胶/石墨烯复合微球。

实施例2

(1)有机相配制:在反应器中,加入葵花籽油:95ml,二甲胺基丙胺:17ml,三硬脂酸甘油酯:12g,搅拌均匀,为有机相;

(2)水相配制:在反应器中,加入去离子水:68ml,黄原胶:16g,氧化石墨烯:4g,纳米fe3o4磁性微粒:2g,三乙醇胺:9ml,超声分散,为水相;

(3)多孔磁性黄原胶/石墨烯复合微球的制备:在反应器中,在室温下,以3000转/min的速度搅拌下,将100ml的水相喷雾到90ml的有机相中,搅拌反应1h,温度升至65±2℃,继续反应30min,冷却到室温,固液分离,固相用去离子水浸泡24h,置于塑料容器中于-18℃迅速冷冻4h,取出后放入冷冻干燥箱内,冷冻干燥24h,得到多孔磁性黄原胶/石墨烯复合微球;

(4)改性多孔磁性黄原胶/石墨烯复合微球的制备,在反应器中,加入乙醇:81ml,3-巯丙基三乙氧基硅:20ml,溶解,加入多孔磁性黄原胶/石墨烯复合微球:16g,于60±2℃恒温、搅拌、回流反应6h,冷却后,分别用去离子水、乙醇洗涤、固液分离,干燥,得到改性多孔磁性黄原胶/石墨烯复合微球。

实施例3

(1)有机相配制:在反应器中,加入葵花籽油:97ml,二甲胺基丙胺:20ml,三硬脂酸甘油酯:8g,搅拌均匀,为有机相;

(2)水相配制:在反应器中,加入去离子水:74ml,黄原胶:10g,氧化石墨烯:6g,纳米fe3o4磁性微粒:5g,三乙醇胺:5ml,超声分散,为水相;

(3)多孔磁性黄原胶/石墨烯复合微球的制备:在反应器中,在室温下,以3000转/min的速度搅拌下,将100ml的水相喷雾到110ml的有机相中,搅拌反应1h,温度升至65±2℃,继续反应30min,冷却到室温,固液分离,固相用去离子水浸泡24h,置于塑料容器中于-18℃迅速冷冻4h,取出后放入冷冻干燥箱内,冷冻干燥24h,得到多孔磁性黄原胶/石墨烯复合微球;

(4)改性多孔磁性黄原胶/石墨烯复合微球的制备,在反应器中,加入乙醇:88ml,3-巯丙基三乙氧基硅:16ml,溶解,加入多孔磁性黄原胶/石墨烯复合微球:14g,于60±2℃恒温、搅拌、回流反应6h,冷却后,分别用去离子水、乙醇洗涤、固液分离,干燥,得到改性多孔磁性黄原胶/石墨烯复合微球。

实施例4

(1)有机相配制:在反应器中,加入葵花籽油:102ml,二甲胺基丙胺:12ml,三硬脂酸甘油酯:10g,搅拌均匀,为有机相;

(2)水相配制:在反应器中,加入去离子水:76ml,黄原胶:12g,氧化石墨烯:4g,纳米fe3o4磁性微粒:3g,三乙醇胺:6ml,超声分散,为水相;

(3)多孔磁性黄原胶/石墨烯复合微球的制备:在反应器中,在室温下,以3000转/min的速度搅拌下,将100ml的水相喷雾到100ml的有机相中,搅拌反应1h,温度升至65±2℃,继续反应30min,冷却到室温,固液分离,固相用去离子水浸泡24h,置于塑料容器中于-18℃迅速冷冻4h,取出后放入冷冻干燥箱内,冷冻干燥24h,得到多孔磁性黄原胶/石墨烯复合微球;

(4)改性多孔磁性黄原胶/石墨烯复合微球的制备,在反应器中,加入乙醇:85ml,3-巯丙基三乙氧基硅:15ml,溶解,加入多孔磁性黄原胶/石墨烯复合微球:18g,于60±2℃恒温、搅拌、回流反应6h,冷却后,分别用去离子水、乙醇洗涤、固液分离,干燥,得到改性多孔磁性黄原胶/石墨烯复合微球。

实施例5

称取0.10g2改性多孔磁性黄原胶/石墨烯复合微球吸附剂置于250ml具塞锥形瓶中浸泡1.0h,过滤洗涤后,加入100ml浓度为500mg/l银标准溶液中,以稀酸或碱调节体系的ph值为0~11.0范围内,在室温下震荡吸附20~60min,取上清液,用分光光度方法测定银的浓度,根据吸附前后水中银的浓度差,计算出改性多孔磁性黄原胶/石墨烯复合微球吸附剂的吸附容量,本发明所制得的改性多孔磁性黄原胶/石墨烯复合微球吸附剂对银的吸附ph值在0~8.0范围内吸附剂对银的吸附容量最大而且稳定,在室温下震荡吸附20min,银被吸附完全,银的吸附容量可达208.56mg/g。

实施例6

称取1.0g改性多孔磁性黄原胶/石墨烯复合微球吸附剂置于250ml具塞锥形瓶中浸泡1~2h,过滤洗涤后,加入100ml浓度为200mg/l银标准溶液中,以稀酸或碱调节体系的ph值为6.0,在室温下震荡吸附20min,取上清液,用分光光度方法测定银的浓度,根据吸附前后水中银的浓度差,计算出改性多孔磁性黄原胶/石墨烯复合微球吸附剂对银的去除率,本发明所制得的改性多孔磁性黄原胶/石墨烯复合微球吸附剂对银的去除率都在95.82%以上,最高可达99%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1