一种介孔过渡金属复合氧化物的制备方法

文档序号:5265793阅读:666来源:国知局
专利名称:一种介孔过渡金属复合氧化物的制备方法
技术领域
本发明涉及一种有序介孔过渡金属复合氧化物及其制备方法和应用,具体涉及高比表面积有序介孔Cr203-Co304、Cr2O3-MnO2或Co3O4-MnO2复合氧化物,利用有序介孔二氧化硅(即KIT-6)作为硬模板制备。
背景技术
介孔纳米材料由于具有较大的比表面积、孔径可调、三维骨架可控以及优越的表面性质等优势,在催化、分离、吸附等方面有着广泛的应用。介孔金属氧化物是近几年兴起的新型非硅基介孔材料,其兼有金属氧化物材料的纳米特性和介孔结构,作为催化剂或载体在化工、制药和电化学等领域具有良好的应用的前景。单一介孔过渡金属氧化物的成功制备并应用在催化反应中,表现出较理想的催化活性。因此,研发高比表面积的有序介孔过渡金属复合氧化物的制备方法具有重大的实用价值。介孔金属复合氧化物通常的制备方法主要是使用软模板法,即利用所要求的前驱物与软模板剂形成溶胶,在一定温度下加入沉淀剂得到前驱物,再经过灼烧可得到具有介孔结构的目标产物。例如=Carreon等采用C12H25(OCH2CH2)23OH作为软模板剂、NH4OH作为沉淀剂,经过沉淀、灼烧、洗涤过程得到具有介孔结构的氧化钴-氧化镍复合物,其比表面积和孔径分别为83m2/g和7. Onm,并研究了其上催化氧化丙烧的性能(M. A. Carreon et al. , Eur. J. Inorg. Chem. ,2006,4983) ;Kitiyanan等也使用软模板法制备得到了介孔纳米 TiO2-ZrO2 电极材料,其比表面积为 109m2/g(A. Kitiyanan, et al.,]. Solid State Chem., 2005,178 :1044)。这种软模板法合成介孔金属复合氧化物时,由于在灼烧时,孔道易塌陷而使产物的比表面积大大降低,而且孔道结构是无序的。近年来,采用硬模板法合成介孔纳米金属复合氧化物也引起了广泛关注。例刘华等利用经正己烷功能化后的介孔二氧化硅(即SBA-15)为模板,经过浸溃、灼烧、洗涤和干燥过程,得到有序介孔Co3O4-CeO2复合氧化物,其比表面积为165m2/g,平均孔径分别为 6. Onm,孔容为0. 29cm3/g,发现其对CO的选择性氧化的高活性与其高比表面积和活性组分的高分散有关(刘华,等,分子催化,2011,25 :301)。然而,在利用功能化的介孔二氧化硅(SBA-15)作硬模板时,增加了合成过程的繁琐程度和成本,较软模板法制备的产物相比,尽管产物孔道的有序度有所提高,但产物的比表面积仍较低。因此,现有方法合成出的介孔复合金属氧化物在实用方面受到了很大程度的限制。

发明内容
本发明的目的在于克服以往的有机模板法制备的样品孔道易塌陷、耐热性较差和硬模板法制备的样品的孔道结构规整度和有序度不高、步骤繁杂、所得产物比表面积低等缺点,提供一种孔道结构有序、比表面积高的介孔过渡金属复合氧化物及其制备方法和应用。
本发明提供一种高比表面积介孔过渡金属复合氧化物的制备方法,所述方法包括以下步骤(a)在真空条件下,将过渡金属硝酸盐混合物的水溶液滴加到有序介孔二氧化硅粉末中,直至干燥得到样品I ;(b)将所述样品I加热至120°C,保持2小时,再继续加热至400 550°C,保持3 4小时后,自然冷却,得到样品II ;(C)将所述样品II用水洗涤后烘干,用质量分数为10% HF溶液浸泡并搅拌,过滤并用水充分洗涤除去介孔二氧化硅模板,得到样品III ;(d)将所述样品III干燥,即得到所述介孔过渡金属复合氧化物粉末。进一步地,步骤(a)所述真空条件是指真空度为40 80kPa,较佳为50 70kPa, 更佳为55 65kPa。在另一优选例中,所述真空条件的真空度为60kPa。在另一优选例中,在步骤(b)中,将所述样品I加热,以TC /min的速率加热至 120°C并保持2小时,再继续以1°C /min的速率升温至400 450°C并保持3 4小时后, 自然冷却,得到样品II。在另一优选例中,在步骤(C)中,所述水优选为去离子水。所述烘干的温度优选为 50 70°〇。在另一优选例中,在步骤(d)中,所述干燥温度为50 70°C,干燥时间为5 24hr。根据本发明,所述过渡金属硝酸盐混合物为硝酸锰、硝酸铬或硝酸钴中任两种的混合物,其物质的量的比为7 3 3 7。根据本发明,所述过渡金属硝酸盐混合物的水溶液中的过渡金属离子与二氧化硅的物质的量比为I : I I : 6。本发明的介孔过渡金属复合氧化物,利用X射线衍射(XRD)、透射电子显微镜 (TEM)、扫描电子显微镜(SEM)、N2吸附-脱附等技术表征所得产物的物理性质。结果表明, 所述的高比表面积介孔过渡金属复合氧化物Cr2O3-Co3O4Xr2O3-MnO2或Co3O4-MnO2的孔道是有序的,比表面积为196 240m2/g,平均孔径为8. 5 12. 8nm。本发明所使用的有序介孔分子筛(有序介孔二氧化硅,KIT-6)作硬模板,参照文献 K. Freddy, et al.,Chem. Commun.,2003, 2136 报道的方法合成。再以硝酸锰、硝酸铬或硝酸钴为金属源,在真空辅助分散的作用下,促使金属盐分子有效地、充分地分散到介孔分子筛的孔道内,再经干燥-灼烧-洗涤等过程,得到高比表面积介孔Cr203-Co304、Cr2O3-MnO2或Co3O4-MnO2复合氧化物,且其孔道结构是规则有序的。本发明方法的操作过程简便且易于控制,成本低廉,能有效的克服现有技术的不足,综合利用了介孔氧化硅模板的规则有序孔道和真空辅助充分分散的特点,得到高比表面积的有序介孔过渡金属复合氧化物。避免了将介孔氧化硅功能化的过程,也避免了软模板法在灼烧过程中导致的孔道塌陷,并可通过改变金属硝酸盐的配比和组成得到不同组成的介孔纳米过渡金属复合氧化物,适宜工业应用。


为更好的了解本发明,下面以实施例作详细说明,并给出附图描述本发明得到的高比表面积有序介孔Cr203-Co304、Cr2O3-MnO2或Co3O4-MnO2复合氧化物,其中图I (a)、1 (b)和I (c)分别为各实施例中使用的有序介孔二氧化硅KIT-6的广角 XRD谱图、小角XRD谱图和TEM照片。图2 (a) ,2(b)和2 (C)分别为实施例I中有序介孔Cr2O3-Co3O4复合氧化物的广角 XRD谱图、小角XRD谱图和SEM照片。图3 (a)、3 (b)和3 (c)分别为实施例2中有序介孔Cr2O3-MnO2复合氧化物的N2吸附-脱附等温线、孔径分布曲线和TEM照片。图4 (a) ,4(b)和4 (c)分别为实施例3中有序介孔Co3O4-MnO2复合氧化物的TEM照片、广角XRD谱图和小角XRD谱图。
具体实施例方式本申请的发明人经过广泛而深入的研究,意外发现直接利用多面体状有序介孔二氧化硅(即KIT-6)分子筛为硬模板,辅以真空辅助分散技术,使过渡金属硝酸盐能够充分地充满模板的孔道中,再经过灼烧-洗涤-干燥等过程,便可得到很高比表面积(196 240m2/g)的有序介孔过渡金属复合氧化物,开辟了一种制备高比表面积且具有有序介孔结构的过渡金属复合氧化物的新途径。下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。本发明提到的上述特征,或实施例提到的特征可以任意组合。本案说明书所揭示的所有特征可与任何组合物形式并用,说明书中所揭示的各个特征,可以被任何提供相同、 均等或相似目的的替代性特征取代。因此除有特别说明,所揭示的特征仅为均等或相似特征的一般性例子。实施例I有序介孔Cr2O3-Co3O4复合氧化物的制备在室温下,向50mL 0. 5mol/L HCl 溶液中加入 I. 5g P123 (Pluronic P123, HO (CH2CH20) 20 (CH2CH (CH3) 0) 70 (CH2CH20) 20H),搅拌至溶解,以 I °C /min 的速率升温至 35 °C, 在搅拌情况下加入I. 5g正丁醇,继续在35°C下搅拌60分钟,再向上述溶液中加入3. Og 正硅酸乙酯(TEOS)(其物质的量比为P123 正丁醇TEOS 盐酸去离子水=
0.016 1.32 I. 04 1.83 195),在35°C下继续搅拌24小时后,转入自压釜中在100°C 水热处理24小时,经过滤和洗涤后在60°C干燥过夜,然后在马弗炉中以TC /min升温至 550°C并在该温度下灼烧4小时,得到介孔氧化硅(KIT-6)白色粉末。其孔道结构是规则有序的,比表面积为810m2/g,平均孔径为4. 5nm。称取0. 5g KIT-6白色粉末置于U形管底部,连接真空泵,并在真空度60kPa下保持 200分钟,再称I. 28g硝酸铬和0. 41g硝酸钴溶于15mL去离子水中,并将溶液滴加到U形管中,且继续保持真空度不变直至样品干燥。取出样品置于马弗炉中以1°C /min的速率升温至120°C并保持120分钟,再以1°C /min的速率继续升温至400°C并保持180分钟,自然降温后得到前驱物。最后用10wt% HF溶液洗涤前驱物以除去硅模板,经过过滤和洗涤后,再在60°C干燥24小时后,即得有序介孔Cr2O3-Co3O4复合氧化物粉末。其比表面积为236m2/ g,平均孔径为8. 9nm。实施例2有序介孔Cr2O3-MnO2复合氧化物的制备硬模板KIT-6的合成同实施例I。将0.5g KIT-6加入到U形管中,在真空度70kPa下保持200分钟。取I. 28g硝酸铬和0. 39mL质量百分比浓度50%硝酸锰溶液加入到15mL去离子水中搅拌溶解,并将溶液滴加到U形管中,且继续保持真空度不变直至样品接近干燥,取出样品置于马弗炉中以 I0C /min的速率升温至120°C并保持120分钟,再以1°C /min的速率继续升温至450°C并保持180分钟,自然降温后得到前驱物。最后用10wt% HF溶液洗涤前驱物以除去硅模板,过滤和洗涤后,再在60°C干燥24小时后,即得有序介孔Cr2O3-MnO2复合氧化物粉末,其比表面积为221m2/g,平均孔径为9. 6nm。实施例3有序介孔Co3O4-MnO2复合氧化物的制备硬模板KIT-6的合成同实施例I。取0. 86g硝酸钴和0. 39mL 50%硝酸锰溶液加入到15mL去离子水中搅拌溶解,其余步骤同实施例2,即得介孔Co3O4-MnO2复合氧化物粉末。测试结果表明介孔Co3O4-MnO2复合氧化物粉末的孔道结构是有序的,其比表面积为208m2/g,平均孔径为10. 5nm。实施例4 22实施例4 22的实验步骤与实施例I 3基本相同,不同之处在于硝酸盐的加入量及与模板剂的比例,灼烧温度和灼烧时间,得到不同孔径分布和不同比表面积的介孔过渡金属复合氧化物,其结果列于表I。表I实施例4 22的实验条件及结果
权利要求
1.一种介孔过渡金属复合氧化物的制备方法,其特征在于,所述方法包括以下步骤(a)在真空条件下,将过渡金属硝酸盐混合物的水溶液滴加到有序介孔二氧化硅粉末中,直至干燥得到样品I ;(b)将所述样品I加热至120°C,保持2小时,再继续加热至400 450°C,保持3 4 小时后,自然冷却,得到样品II ;(c)将所述样品II用去离子水洗涤后烘干,用10wt%HF溶液浸泡并搅拌,过滤并用水充分洗涤除去介孔二氧化硅模板,得到样品III ;(d)将所述样品III干燥,即得到所述介孔过渡金属复合氧化物粉末。
2.根据权利要求I所述的制备方法,其特征在于,所述过渡金属硝酸盐混合物为硝酸锰、硝酸铬或硝酸钴中任两种的混合物,其物质的量的比为7 : 3 3 : 7。
3.根据权利要求I所述的制备方法,其特征在于,所述过渡金属硝酸盐混合物的水溶液中的过渡金属离子与二氧化硅的物质的量比为I : I I : 6。
全文摘要
本发明公开了一种介孔过渡金属复合氧化物的制备方法。本发明的介孔过渡金属复合氧化物的孔道结构是规则有序的,平均孔径为8.5~12.8nm,比表面积为196~240m2/g。本发明以有序介孔二氧化硅粉末为硬模板,以过渡金属硝酸盐为金属源,经过真空辅助浸渍-洗涤-干燥-灼烧过程,制备得到本发明的介孔过渡金属复合氧化物。本发明的介孔过渡金属复合氧化物孔道有序,比表面积高,适合用作电化学材料、催化剂及载体、光电材料、磁性材料、能量存贮材料。
文档编号B82Y40/00GK102583255SQ20121000148
公开日2012年7月18日 申请日期2012年1月4日 优先权日2012年1月4日
发明者任冬梅, 包德才, 夏云生, 戴洪兴, 鲁奇林 申请人:渤海大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1