半导体装置及采用其的显示装置的制作方法

文档序号:7111267阅读:193来源:国知局
专利名称:半导体装置及采用其的显示装置的制作方法
技术领域
本发明涉及一种将II族氧化物用作半导体层的半导体装置及采用其的显示装置,特别涉及适合于以氧化锌作为半导体层的半导体装置的性能改进的方法。
背景技术
近年来,一直在进行制作将氧化锌等II族氧化物用作半导体层的半导体装置的研究。这些研究,作为目的或手段,显示了半导体装置的改进,并且报告了很多高质量的具体技术。所谓其技术,概括讲,在半导体装置的性能提高上,有效的办法是,提高叠层膜的结晶性或控制上述结晶性、伴随其的界面控制以及杂质的掺杂,因此是使各叠层膜的叠层方法或叠层膜材料、掺杂材料变化的技术。
在如此的报告中,很少有专利申请的具体成果。此处,说明以下的4个现有技术(专利文献)。
例如,在日本国公开公报特开昭63-101740号公报(
公开日1988年5月6日,以下记为专利文献1)中,记载了将氧化锌等用作沟道层的纵型场效应晶体管型气敏元件。
在日本国公开公报特开2000-150900号公报(
公开日2000年5月30日,以下记为专利文献2)中,记载了通过在晶体管的沟道层采用氧化锌等的透明半导体,在栅绝缘层也采用透明绝缘型氧化物等,使晶体管透明,从而使液晶显示装置的数值孔径提高的技术。
在日本国公开公报特开2000-277534号公报(
公开日2000年10月6日,以下记为专利文献3)中记载,为试图解决氧化锌和衬底膜的晶格失配,其主要解决是通过作为上述衬底膜不使用研究中多采用的蓝宝石基板,而是使用晶体ScAlMgO4等的基板。并且记载了此时的晶格失配,得到大幅度改进即大约0.13%。记载了一种全新的技术,即,如果采用该基板叠层氧化锌,能够叠层几乎接近单晶的氧化锌。即,氧化锌的结晶性提高,是提高采用氧化锌的半导体器件的性能的关键,因此,作为衬底膜,如果采用考虑了晶格失配的ScAlMgO4等的基板,能成功地大幅度改进氧化锌的结晶性。
在日本国公开公报特开2002-76356号公报(
公开日2002年3月15日,以下记为专利文献4)中,为改进具有氧化锌等的透明沟道层的晶体管的通断比特性或迁移率特性,记载了在氧化锌中掺杂3d过渡金属元素的方法等。
上述专利文献1,在具体例中,以氧化铝为基板,在其上面形成氧化锌,制作纵型晶体管。认为这是由于考虑到晶格匹配,以提高氧化锌的结晶性为目的。
此外,专利文献3记载的氧化锌或ScAlMgO4等,由于考虑到晶格匹配,所以前提是晶体。
这是因为,如上所述,要提高半导体装置的性能,前提是叠层膜的结晶性的提高或上述结晶性的控制、以及伴随其的界面控制是有效的。
此外,专利文献2及专利文献4,在具体例中,在沟道层采用氧化锌,通过在其上面形成由氧化铝或ScAlMgO4等构成的栅绝缘膜,制作透明的晶体管。
在上述专利文献2及专利文献4中,记载了栅绝缘膜材料采用透明材料,并且举出了多个例子,但在其中含有氧化铝。这不是考虑到晶体管的栅绝缘膜和沟道层的界面控制而给出的例子,而是表示一例一般的透明绝缘膜材料。作为例外,作为考虑到晶格匹配的透明绝缘膜材料,记载了ScAlMgO4。在这种情况下,上述材料是以晶体为前提的。
但是,如上述各现有文献中所指出,在上述材料中使用晶体材料时,存在受到以下制约的问题。
1.成膜不容易。
2.基板的大型化不容易。
3.叠层膜的成膜的顺序被固定。
即,关于上述1,要作为规定的晶体成膜氧化锌等,例如,如脉冲激光沉积法等,精密的装置、精密的条件的确定及它们的可靠的维持是不可缺的。因此,要大量生产还需要进一步改进。另外,即使对于上述ScAlMgO4等基板的成膜,也可以说是同样的。
关于上述2,要作为规定的晶体成膜氧化锌等或ScAlMgO4等,如上所述,精密的装置、精密的条件的确定及它们的可靠的维持是不可缺的,对此,在液晶等大型基板中实现这些主要条件是不容易的。因此,要扩大向各产品的应用范围,还需进一步研究。
关于上述3,在作为规定的晶体成膜氧化锌等时,如上所述,考虑到晶格匹配性,作为衬底膜,需要以规定的晶体成膜ScAlMgO4等的基板,必然,衬底膜即ScAlMgO4等必须在成膜氧化锌等之前成膜。因此,例如,如果以FET为例,对于半导体层,只能用于栅电极成为基板的相反侧的顺参差型。这样,由于在半导体装置的设计上,设计的自由度窄,因此不是优选的。
另外,上述专利文献2,记载了对使用有采用了氧化锌的晶体管的半导体装置的性能进行提高的技术,但是未提及晶体管自身性能的提高或制作的简易化等。
此外,专利文献4,是改进晶体管的通断比特性或迁移率特性的技术,但是未提及影响晶体管的电特性上的阈值偏移等的、特别是晶体管的栅绝缘膜和沟道层的界面控制。
鉴于以上存在的问题,作为现有技术提出的各公报中记载的内容,尽管具有高的质量,但在技术应用上还存在问题。

发明内容
本发明的目的是提供一种在半导体层含有II族氧化物并且能用普通方法使其性能提高的半导体装置及采用其的显示装置。
本发明的半导体装置,是半导体层含有II族氧化物的半导体装置,其特征在于在上述半导体层的至少一方的面上,叠层有无定形的氧化铝(Al2O3)。
如果采用上述构成,在试图提高半导体层含有氧化锌等II族氧化物的半导体装置的性能时,在以往,采用叠层膜的结晶性提高、上述结晶性的控制、伴随其的界面控制以及杂质的掺杂等方法,而在本发明中,在半导体层的至少一方的面上,叠层无定形的氧化铝。通过形成如此的构成,能够得到用无定形的氧化铝以外的叠层膜不可能的、与用结晶性叠层膜制作全部叠层膜的半导体装置同等水平的性能。认为这是因为,通过在上述II族氧化物的半导体层上叠层无定形的氧化铝,能降低它们界面上的缺陷能级。所谓的上述缺陷能级,是半导体层的载流子迁移时成为障碍的电子缺陷。
由此,可以形成一种半导体层的半导体装置,其中氧化锌等的半导体层不像以往那样强烈要求提高结晶性、成膜容易并且作为半导体层可以使用容易与基板的大型化对应的II族氧化物。此外,也可以实现叠层膜的成膜的顺序不用固定、设计的自由度高,即通用的半导体装置。
另外,如果按FET考虑,对于半导体层,在栅电极成为基板的相反侧的所述顺参差型中,也可以在基板和半导体层之间,作为栅绝缘膜采用上述专利文献3的手法,形成本发明的无定形的氧化铝层,这样也能够将其它方法和本发明的方法组合使用。
在本发明的半导体装置中,上述II族氧化物,优选是氧化锌。作为能够用作半导体层的II族氧化物,例如有氧化锌(ZnO)、氧化锌镁(MgxZn1-xO)、氧化锌镉(CdxZn1-xO)、氧化镉(CdO)等,但其中,氧化锌特别适合,特别能够期待提高性能。
此外,本发明的显示装置,其特征在于,具有上述的半导体装置。
如果采用上述的构成,本发明的半导体装置,由于能够得到与用结晶性叠层膜制作全部叠层膜的半导体装置同等水平的性能,并且也能够容易与基板的大型化对应,所以能够非常适合在液晶显示装置等显示装置,特别是在大型的显示装置中实施。
本发明的其它的目的、特征及优点,可通过以下所示的记载详细了解。此外,本发明的利益,会在参照附图的下面的说明中明白。


图1是表示本发明的一实施方式的半导体装置即FET的结构的剖面图。
图2是表示本发明的其它实施方式的半导体装置即FET的结构的剖面图。
图3是表示本发明的又一其它实施方式的半导体装置即FET的结构的剖面图。
图4是图1~图3所示的FET的一使用例的有源矩阵型的液晶显示装置的概略的立体图。
图5是图4所示的液晶显示装置中的FET基板的主视图。
图6是表示图5所示的FET基板中的像素区域的构成的主视图。
图7是表示图1所示的FET的场效应迁移率和ZnO膜厚度的关系的图表。
具体实施例方式如果参照图1说明本发明的一实施方式,如下。
图1是表示本发明的一实施方式的半导体装置即场效应晶体管(FET)1的结构的剖面图。该FET1是逆参差型的MOSFET(metal oxidesemiconductor field effect transistor),大致通过在基板2上依次叠层栅极层3、栅绝缘层4、沟道层5、源极层6及漏极层7而构成。
基板2是叠层各层的平台,材料为硅晶片或玻璃、塑料等,在本发明中不特别限定。栅极层3是驱动该FET的栅极配线,作为其材料,可以列举金属或半导体等导电性物质,但也不特别限定。此外,该基板2的膜厚度,通常设定在0.1mm以上、2mm以下的范围内,栅极层3的膜厚度,通常设定在50nm以上、300nm以下的范围内,但也都不特别限定。
栅绝缘层4是本发明的内容,材料是无定形的氧化铝(Al2O3)。作为栅绝缘层4,在如此采用无定形的氧化铝的情况下,虽然不是特别限定的内容,但该栅绝缘层4的膜厚度,从耐电压的角度考虑,优选100nm以上,更优选200nm以上。另外,该栅绝缘层4的膜厚度,为得到足够的静电电容,优选700nm以下,更优选600nm以下。
沟道层5是氧化锌(ZnO)、氧化锌镁(MgxZn1-xO)、氧化锌镉(CdxZn1-xO)、氧化镉(CdO)等II族氧化物或含有它们的半导体层,其中氧化锌特别合适。该沟道层5的膜厚度,通常设定在100nm以上、200nm以下的范围内,但也不特别限定。
对于沟道层5,可以为提高迁移率而使其具有结晶性,也可以考虑基于晶界形成的扩散而为无定形。此外,在沟道层5具有结晶性的时候,也可以使其适宜具有取向性。
作为使沟道层5具有结晶性及取向性的方法,例如以沟道层5使用氧化锌为例进行列举时,可以举出由于氧化锌具有容易自带结晶性及取向性的性质,因此例如在采用溅射法时,将成膜率调整为比不使沟道层5具有结晶性及取向性的情况下的成膜率低的方法等。在此时的FET(FET1)中,能够期待提高迁移率。例如,在本发明人等的实验结果中,例如通过将成膜率设定在10~20/s的范围(1=10-10m),迁移率(场效应迁移率)大致上升一位数,得到4cm2/V·s左右的迁移率。
上述源极层6及漏极层7,分别为源极配线及漏极配线,由金属或半导体等导电性物质构成,只要是能够与沟道层5欧姆接触的材料,不特别限定。例如,也可以是铝(Al)、钼(Mo)、钽(Ta)、钛(Ti)、银(Ag)等金属,铟锡氧化物(ITO)、铟锌氧化物(IZO)等透明导电膜或在ZnO中掺杂杂质的导电膜等。上述源极层6及漏极层7的膜厚度,通常设定在50nm以上、300nm以下的范围内,但也不特别限定。
值得注目的是,在该FET1中,作为栅绝缘层4,采用无定形的氧化铝,与该栅绝缘层4连接并叠层沟道层5的氧化锌等。通过这些组合,界面上的缺陷能级被大幅度降低,该FET1的性能提高。作为该证据是通过上述组合,由于栅绝缘层和沟道层的界面的缺陷引起的晶体管的电特性的阈值偏移大致达到0V。对此,在液晶面板等常用的无定形的氮化硅和氧化锌的组合中,上述阈值偏移大,有时达到几十V。另外,所谓的缺陷能级,是沟道层5上的载流子迁移时成为障碍的电子缺陷。
表1,根据本发明者的实验结果,具体表示利用图1的结构的FET1的特性改进效果。作为表示FET的性能的重要的特性,有相对于栅极电压的源极漏极间的电流变化特性即Vg-Id特性。作为该Vg-Id特性特征的指标,有阈值电压、迁移率、通断比、滞后,表1示出这些指标。
实验条件如下。阈值电压、迁移率、通断比、滞后,使用半导体参数测定器(Agilent公司制,型号4155C),通过测定Vg-Id特性求出。
另外,这些所有试样,采用氧化锌作沟道层5。
具体是,在以下的实验中,采用由下述构成的FET,即在由无碱玻璃构成的0.7mm的基板2上,如图1所示,按此顺序叠层由钽(Ta)构成的1 50nm的栅极层3、分别由以下材料构成的200nm的栅绝缘层4、由具有结晶性的氧化锌构成的100nm的沟道层5、由铝(Al)构成的100nm的源极层6及漏极层7而成的FET。
以往的试样,是通过使各叠层膜具有结晶性而制作的试样,本发明的试样,如上所述,是在无定形的氧化铝(电阻率5×1013Ω·cm)的栅绝缘层4上,作为沟道层5,叠层具有结晶性的氧化锌而成的试样,比较用的试样,是将上述栅绝缘层4从本发明的无定形的氧化铝置换成无定形的氮化硅(电阻率1×1016Ω·cm),在其上面叠层具有结晶性的氧化锌而成的试样。此外,在上述以往的试样中,作为栅绝缘层4,采用锆酸钙(电阻率3×1014Ω·cm)。
表1

从表1看出,利用本发明的结构的FET,显示出与用结晶性叠层膜制作的以往的FET相当的性能。此外,作为上述栅绝缘层4,相对于作为无定形的氧化铝以外的一例而示出的无定形的氮化硅膜,能够看出在该无定形的氧化铝中性能格外提高。
如此,作为栅绝缘层4,通过采用无定形的氧化铝,能够得到与用结晶性叠层膜制作全部叠层膜的FET同等水平的性能。由此,确保减少界面的缺陷,对于氧化锌等的沟道层5,由于不像以往那样强烈要求提高考虑了晶格匹配的结晶性,并且衬底膜也为无定形,所以能够实现以成膜容易并且也能够容易与基板的大型化对应的II族氧化物作为沟道层5的FET。
此外,作为II族氧化物,通过采用氧化锌,特别能够期待特性的提高。另外,上述氧化铝,由于不是以晶体,而是以无定形叠层,因此成膜容易,例如能够以溅射法这样的现在大量生产中使用的装置,与以往相比能够简单地制作,而且与以往相比,能够使用大型基板。
如果参照图2说明本发明的其它实施方式,如下。
图2是表示本发明的其它实施方式的半导体装置即FET11的结构的剖面图。该FET11,是顺参差型的MOSFET,大致通过在基板12上依次叠层源极层16及漏极层17、沟道层15、栅绝缘层14、栅极层13而构成。基板12及各层13~17的功能及材料以及膜厚度,与上述图1的FET1中的基板各层3~7的功能及材料以及膜厚度相同,所以各自的说明省略。
如从上述图1和图2的结构的比较看出,由无定形的氧化铝构成的栅绝缘层4、14和由氧化锌等构成的沟道层5、15,先成膜哪一个都可以。由此,在半导体装置的设计上,设计的自由度高于以往,能够增加设计的选择范围,即能够通用。
另外,在该顺参差型的FET11中,在基板12和半导体层即沟道层15的之间,使用上述专利文献3的手法,也能够缓和晶格失配,在此情况下,沟道层15的结晶性进一步提高,能够期待性能的进一步提高。如此,也可以与其它方法组合采用本发明的手法。
如果参照图3说明本发明的又一其它实施方式,如下。
图3是表示本发明的又一其它实施方式的半导体装置即FET21的结构的剖面图。该FET21,是肖特基栅型的FET,大致通过在基板22上依次叠层衬底层24、沟道层25、栅极层23、源极层26及漏极层27而构成。
基板22,与上述的基板2、12同样,是用于叠层各层23~27的平台,材料为硅晶片或玻璃、塑料等,在本发明中,不特别限定。如上所述,在基板22上形成衬底层24的时候,该基板22的膜厚度,通常设定在0.1mm以上、2mm以下的范围内,但也不特别限定。
栅极层23,是用于驱动该FET21的栅极配线,其材料是金属或半导体等导电性物质,只要是与沟道层25肖特基接合的材料,不特别限定。例如金(Au)、铂(Pt)等。此外,上述栅极层23的膜厚度,与上述实施方式1同样,通常设定在50nm以上、300nm以下的范围内,但也不特别限定。
衬底层24,是用于控制与沟道层25的界面的膜,材料是无定形的氧化铝。该衬底层24的膜厚度,不是特别限定的内容,但从确保无定形的氧化铝的物性的角度考虑,优选5nm以上,更优选10nm以上。如果衬底层24的膜厚度小于5nm,膜厚度不均匀,有时不能充分发挥降低界面能级的效果。此外,另外,该衬底层的膜厚度,从生产效率的角度考虑,优选1μ以下,更优选500nm以下。
沟道层25,与上述沟道层5、15同样,由氧化锌等构成,也可以使其具有结晶性,或是无定形,在使沟道层25具有结晶性的时候,也可以使其具有适宜的取向性。此外,该沟道层25的膜厚度,也与上述实施方式1同样,通常设定在100nm以上、200nm以下的范围内,但也不特别限定。
源极层26及漏极层27,分别为源极配线及漏极配线,由金属或半导体等导电性物质构成,只要是与沟道层25欧姆接触的材料,不特别限定。上述源极层26及漏极层27的膜厚度,也与上述实施方式1同样,通常设定在50nm以上、300nm以下的范围内,但也不特别限定。
值得注目的是,在该FET21中,如从图3看出,是将无定形的氧化铝用作基板22和沟道层25之间的界面控制用的衬底层24。如此,不一定必须将所述氧化铝膜用作栅绝缘膜,通过在含有氧化锌等II族氧化物的半导体层的至少一方的面上叠层上述氧化铝的膜,能够降低半导体层的缺陷能级。
在以上的说明中,尽管列举了3例FET,但是本发明也不特别局限于此,在与含有II族氧化物的半导体层一同,叠层半导体或导体、绝缘体等,制作半导体装置时,都能够应用本发明。
如果参照图4~图6,说明采用本发明的半导体装置的显示装置的实施方式,如下。另外,为便于说明,对于具有与上述实施方式1~3相同的功能的构成要素,附加同一符号,并省略其说明。
图4是如上构成的FET1、11、21的一使用例的有源矩阵型的液晶显示装置31的概略的立体图。该液晶显示装置31,大致通过依次叠层偏振片32、TFT(thin film transistor)基板33、液晶层34、滤色器基板35、偏振片36。
偏振片32、36,使来自光源的光形成偏振光。TFT基板33,根据来自外部的各种信号,外加对液晶层34进行显示驱动的电压,作为TFT,使用上述FET1、11、21。
液晶层34,是根据来自TFT基板33的外加电压使偏振光变化的层。滤色器基板35,是用于着色偏振光的基板。偏振片36,是控制偏振光的透过和遮断的基板。在液晶层34的外周部,形成用于密封该液晶层34的液晶密封层37。
由此,如果根据外部的信号,TFT基板33对液晶层34外加电压,该液晶层34的偏振光变化,在偏振片36上,进行偏振光的透过和遮断,实现对应于外部的信号的显示。
图5是TFT基板33的主视图。在TFT基板33上,相互直交地形成多个栅极配线41及源极配线42,被这些栅极配线41及源极配线42区分的区域成为各像素,分别形成像素电极43。此外,在栅极配线41及源极配线42的交叉部44,作为FET配置上述的FET1、11、21,在以栅极配线41选择的像素的像素电极43,写入来自源极配线42的图像的数据。
在TFT基板33的外周部形成的端子部45、46,分别是用于连接向栅极配线41及源极配线42输入来自外部的信号用的驱动元件的区域。另外,如本发明,由于FET能够得到与用结晶性叠层膜制作所有叠层膜的FET同等水平的性能,所以也可以在该TFT基板33上一体形成上述驱动元件,此时,在端子部45、46上,形成驱动元件的FET。
图6是图5所示的FET基板中的像素区域的主视图。各像素区域,由2根栅极配线41和2根源极配线42围绕形成。在各像素区域内,与栅极配线41连接,形成栅极电极47,与源极配线42连接,形成源极电极48。然后,与像素电极43连接,形成漏极电极49。栅极电极47、源极电极48及漏极电极49各自在FET1中连接在栅极层3、源极层6及漏极层7上,在FET11中,连接在栅极层13、源极层16及漏极层17上,在FET21中,连接在栅极层23、源极层26及漏极层27上。通过以上构成对FET1、11、21进行驱动。
本发明,不局限于有源矩阵型的液晶显示装置,能够非常适合在所有使用与含有II族氧化物的半导体层一同,叠层半导体或导体、绝缘体等的基板的显示装置中实施。
在本实施方式中,验证无定形的氧化铝的电阻率与FET的Vg-Id特性中的滞后之间的关系。另外,为便于说明,对于具有与上述实施方式1~4相同的功能的构成要素,附加同一符号,并省略其说明。
表2,就在上述图1所示的FET1中,对于用于栅绝缘层4的无定形的氧化铝,示出无定形的氧化铝的电阻率与FET的Vg-Id特性中的滞后之间的关系。另外,如表2所示,除变更用于栅绝缘层4的无定形的氧化铝的电阻率外,测定条件如上述实施方式1所示。另外,表2示出的无定形的氧化铝的电阻率,利用水银探针法(SOLID STATE MEASURMENT INC公司制“495C-V SYSTEM(商品名)”)测定。
表2

由表2看出,通过氧化铝的电阻率增加,FET(FET1)的滞后减少。FET的滞后,反映半导体层和绝缘层的界面的缺陷能级,滞后小显示界面缺陷能级小,在FET的性能上是理想的。
如上述实施方式1的表1所示,FET的滞后,如果在3V以下,则能够实用,但从FET特性的稳定性方面考虑,实用上优选的滞后的大小大约在1V以下。因此,由表2的结果得出,无定形的氧化铝的电阻率,优选1×1014Ω·cm以上,更精确地说是优选1.2×1014Ω·cm以上,更优选2×1014Ω·cm以上。
此种情况,即使在无定形的氧化铝(栅绝缘层14或衬底层24)和半导体层(沟道层15、25)形成界面的图2所示的FET11和图3所示的FET21中,也可以说是同样的。
另外,FET的滞后,由于反映半导体层和绝缘层的界面的缺陷能级,因此无定形的氧化铝的电阻率,优选越大越好,在要得到无定形的氧化铝时,其上限为2×1017Ω·cm。
另外,无定形的氧化铝的电阻率,例如能够通过变化成膜保护气氛下的氧分压而进行变更。无定形的氧化铝的电阻率,例如能够通过降低氧分压而提高。例如在无定形的氧化铝的电阻率为2.3×1014Ω·cm时的氧分压为10mTorr(1.3Pa),在无定形的氧化铝的电阻率为2.6×1012Ω·cm时的氧分压为70mtorr(9.3Pa),表2记载的无定形的氧化铝,通过降低氧分压,能够更加增大电阻值。但是,以大约10-5torr(1.3mPa)为界,如果将氧分压降低到其以下,相反,有无定形的氧化铝的电阻率增高的倾向。如此,通过变化氧分压,能够得到具有所要求电阻值的无定形的氧化铝。
关于本发明的其它本实施方式,如果基于图1及图7说明,如下。在本实施方式中,主要说明与上述实施方式1的不同之处,为便于说明,对于具有与上述实施方式1~5相同的功能的构成要素,附加同一符号,并省略其说明。
在本实施方式中,利用如脉冲激光沉积(PLD)法,叠层无定形的氧化铝和氧化锌,制作图1所示的FET1。
图1的FET1,如上述实施方式1所述,是逆参差型的MOSFET,由于其结构如上述实施方式1所记载,该FET1中的FET基板2及栅极层3的功能及材料以及其膜厚度,也如上述实施方式1所记载,所以此处省略其说明。
在本实施方式中,在叠层了上述栅极层3的FET基板2上,作为栅绝缘层4,利用PLD法,沉积无定形的氧化铝(Al2O3)。沉积的条件,如下。即,使用KrF受激准分子激光器,激光器功率密度设定为3.0J/cm2、激光器脉冲重复频率设定为10Hz、沉积保护性气氛设定为氧、沉积压力设定为10mtorr(1.3Pa),靶材使用氧化铝烧结体,膜厚度设定为200nm左右。
然后,作为上述沟道层5,在上述栅绝缘层4上,利用PLD法,沉积氧化锌(ZnO)。沉积的条件,如下。即,使用KrF受激准分子激光器,激光器功率密度设定为1.0J/cm2、激光器脉冲重复频率设定为10Hz、沉积保护性气氛设定为氧、沉积压力设定为200mtorr(26.7Pa),靶材使用氧化锌烧结体,膜厚度设定为5~100nm左右。另外,关于该氧化锌的膜厚度(以下,记为ZnO膜厚度),后面详细叙述。
在分别成为源极配线及漏极配线的上述源极层6及漏极层7,采用铝(Al)。另外,在本实施方式中,在上述源极层6及漏极层7使用了Al,但作为该源极层6及漏极层7的材料,如上述实施方式1所记载,由金属或半导体等导电性物质构成,只要是能够与沟道层5欧姆接触的材料,不特别限定。作为该源极层6及漏极层7的材料,如上述实施方式1所记载,如上述实施方式1中例示,例如,能够采用Al、Mo、Ta、Ti、Ag等金属,ITO、IZO等透明导电膜或在ZnO中掺杂杂质的导电膜等。
图7示出利用以上工序制作的图1所示的FET1的迁移率(场效应迁移率)和氧化锌的膜厚度(以下,记为ZnO膜厚度)的关系。另外,除按如上所述采用PLD法形成栅绝缘层4及沟道层5,同时在每一测定中按以下所示变更上述沟道层5的膜厚度外,利用与上述实施方式1同样的测定条件,测定上述FET1的迁移率。此外,在栅绝缘层4,采用电阻率2.4×1014Ω·cm的氧化铝。
由图7得出,随着ZnO膜厚度增加,场效应迁移率增加,以30nm左右得到最大值。如果ZnO膜厚度再增加,场效应迁移率减小。
在采用无定形硅的薄膜晶体管中,场效应迁移率,优选0.35cm2/V·s左右,更优选0.5cm2/V·s左右,如果无实用上的问题,优选1.0cm2/V·s以上,更优选1.5cm2/V·s以上。由图7得出,在采用ZnO的薄膜晶体管中,场效应迁移率在0.35cm2/V·s以上的ZnO膜厚度在5~100nm的范围。因此,在采用ZnO的薄膜晶体管中,ZnO膜厚度的下限,从图7得出,在实用上,优选5nm以上,更优选10nm以上,最优选15nm以上,最最优选20nm以上。此外,ZnO膜厚度的上限,从图7得出,在实用上,优选100nm以下,更优选90nm以下,最优选80nm以下,最最优选60nm以下。此外,从图7得出,ZnO膜厚度在30nm~40nm的范围内时,由于场效应迁移率大致达到极大值,因此在要得到高场效应迁移率时,ZnO膜厚度最优选在30nm~40nm的范围内。
另外,在为实施发明的具体实施方式
项中形成的具体实施方式
或实施例中,只是为明确阐明本发明的技术内容,不应狭义地解释为只限定于如此的具体例,在本发明的构思和本发明要求保护的范围内,能够通过多种变更而实施。
本发明的半导体装置,在试图提高半导体层含有氧化锌等II族氧化物的半导体装置的性能时,通过在半导体层的至少一方的面上,叠层无定形的氧化铝,能够得到用无定形的氧化铝以外的叠层膜不可能的、与用结晶性叠层膜制作全部叠层膜的半导体装置同等水平的性能。
由此,对于氧化锌等的半导体层,不像以往那样强烈要求提高结晶性,能够实现成膜容易并且也能够容易与基板的大型化对应的II族氧化物作为半导体层的半导体装置。此外,不固定叠层膜的成膜的顺序,能够实现设计自由度高的半导体装置。
另外,特别是在上述II族氧化物是氧化锌的时候,通过与上述无定形的氧化铝组合,能够大幅度降低界面的缺陷能级,进一步提高该半导体装置的性能。通过上述组合,栅绝缘层和沟道层的界面的缺陷引起的晶体管的电特性的阈值偏移,大致达到0V。
上述半导体装置,如上所述,由于成膜容易并且也能够容易与基板的大型化对应,所以能够非常适合在液晶显示装置等显示装置,特别是在大型的显示装置中实施。
权利要求
1.一种半导体装置,是半导体层含有II族氧化物的半导体装置,其特征在于在上述半导体层的至少一方的面上,叠层有无定形的氧化铝。
2.如权利要求1所述的半导体装置,其特征在于,上述II族氧化物是氧化锌。
3.如权利要求1所述的半导体装置,其特征在于,上述半导体层由氧化锌构成,该半导体层的膜厚度在5nm以上、100nm以下。
4.如权利要求1~3中任何一项所述的半导体装置,其特征在于,上述无定形的氧化铝的电阻率,在1×1014Ω·cm以上、2×1017Ω·cm以下。
5.一种显示装置,其特征在于,具有权利要求1~4中任何一项所述的半导体装置。
全文摘要
在逆参差型的MOSFET(1)中,用无定形的氧化铝形成相对于由氧化锌构成的作为上述半导体层的沟道层(5)的栅绝缘层(4)。通过形成如此的结构,在沟道层(5)和栅绝缘层(4)的界面的缺陷能级被降低,能够得到与用结晶性叠层膜制作全部叠层膜的半导体装置同等水平的性能。另外,如此的方法,也能够用于顺参差型的MOSFET等,通用性也高。
文档编号H01L29/786GK1656617SQ03811609
公开日2005年8月17日 申请日期2003年3月26日 优先权日2002年5月22日
发明者吉冈宏人, 藤田达也, 越智久雄, 杉原利典, 原猛, 川崎雅司, 大野英男 申请人:夏普株式会社, 川崎雅司, 大野英男
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1